Structural Analysis of the Sympathetic Restoration and Conservation of the Gopinath Temple, Kathmandu, Nepal
Abstract
:1. Introduction
2. Methodology
2.1. Historic Research
2.2. Visual Inspection
2.3. Numerical Modeling
2.4. Climate-Change Considerations
3. Results and Discussion
3.1. Temple History and Characteristics
3.2. Visual Inspection Report
3.3. Finite-Element Model and Structural Analysis
3.3.1. Modal Analysis and Calibration of the Model
3.3.2. Pushover Analysis
3.3.3. Retrofit Proposal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Tracking Progress towards Inclusive, Safe, Resilient and Sustainable Cities and Human Settlements, SDG 11 Synthesis Report. 2018. Available online: https://uis.unesco.org/sites/default/files/documents/sdg11-synthesis-report-2018-en.pdf (accessed on 30 January 2024).
- Europa Nostra. The Venice Manifesto for a European Cultural Citizenship. 2023. Available online: https://www.europanostra.org/wp-content/uploads/2023/11/2023-Venice-Manifesto-English.pdf (accessed on 30 January 2024).
- United Nations. Policy Document for the Integration of a Sustainable Development Perspective into the Processes of the World Heritage Convention. 2015. Available online: https://whc.unesco.org/document/139747 (accessed on 30 January 2024).
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 30 January 2024).
- Hayles, C.; Huddleston, M.; Chinowsky, P.; Helman, J. Climate Adaptation Planning: Developing a Methodology for Evaluating Future Climate Change Impacts on Museum Environments and Their Collections. Heritage 2023, 6, 7446–7465. [Google Scholar] [CrossRef]
- Saba, M.; Golondrino, G.E.C.; Torres-Gil, L.K. A Critical Assessment of the Current State and Governance of the UNESCO Cultural Heritage Site in Cartagena de Indias, Colombia. Heritage 2023, 6, 5442–5468. [Google Scholar] [CrossRef]
- Vardopoulos, I. Adaptive Reuse for Sustainable Development and Land Use: A Multivariate Linear Regression Analysis Estimating Key Determinants of Public Perceptions. Heritage 2023, 6, 809–828. [Google Scholar] [CrossRef]
- Papatzani, S.; Michail, G.; Tzamalis, G.; Skitsas, G. UNESCO Historic Centre (Chorá) of Patmos Island: Conservation and Reconstruction of a Collapsed Urban House. Heritage 2022, 5, 3100–3132. [Google Scholar] [CrossRef]
- Marenić, Z.B.; Pavlović, R.; Tutek, I. Industrial Heritage of Dubrovnik—Unaffirmed Potential of Gruž Bay. Heritage 2022, 5, 2332–2369. [Google Scholar] [CrossRef]
- Elnaggar, A. Nine principles of green heritage science: Life cycle assessment as a tool enabling green transformation. Heritage Sci. 2024, 12, 7. [Google Scholar] [CrossRef]
- Li, L.; Tang, Y. Towards the Contemporary Conservation of Cultural Heritages: An Overview of Their Conservation History. Heritage 2023, 7, 175–192. [Google Scholar] [CrossRef]
- Xie, K.; Zhang, Y.; Han, W. Architectural Heritage Preservation for Rural Revitalization: Typical Case of Traditional Village Retrofitting in China. Sustainability 2024, 16, 681. [Google Scholar] [CrossRef]
- Rios, A.J. Learning from the Past: Parametrical analysis of cob walls. Appl. Sci. 2023, 13, 9045. [Google Scholar] [CrossRef]
- Jiménez Rios, A.; O’Dwyer, D. Earthen buildings in Ireland. In 6th International Congress on Construction History (6ICCH 2018), Brussels, Belgium, 9–13 July 2018; Wouters, I., van de Voorde, S., Bertels, I., Espion, B., de Jonge, K., Zastavni, D., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 787–794. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9780429446719-12/earthen-buildings-ireland-jim%C3%A9nez-rios-alejandro-dwyer-dermot (accessed on 30 February 2024).
- Sardella, A.; Palazzi, E.; von Hardenberg, J.; Del Grande, C.; De Nuntiis, P.; Sabbioni, C.; Bonazza, A. Risk mapping for the sustainable protection of cultural heritage in extreme changing environments. Atmosphere 2020, 11, 700. [Google Scholar] [CrossRef]
- Briz, E.; Garmendia, L.; Marcos, I.; Gandini, A. Improving the Resilience of Historic Areas Coping with Natural and Climate Change Hazards: Interventions Based on Multi-Criteria Methodology. Int. J. Arch. Heritage 2023, 1–28. [Google Scholar] [CrossRef]
- Coïsson, E.; Ferrari, L. Emergency Response to Damaged Architectural Heritage: Time, Safety and Conservation. In Structural Analysis of Historical Constructions; Endo, Y., Hanazato, T., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 1320–1331. [Google Scholar] [CrossRef]
- Roca, P.; Cervera, M.; Gariup, G.; Pela, L. Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches. Arch. Comput. Methods Eng. 2010, 17, 299–325. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Cattari, S. PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bull. Earthq. Eng. 2014, 13, 13–47. [Google Scholar] [CrossRef]
- Bracchi, S.; Rota, M.; Penna, A.; Magenes, G. Consideration of modelling uncertainties in the seismic assessment of masonry buildings by equivalent-frame approach. Bull. Earthq. Eng. 2015, 13, 3423–3448. [Google Scholar] [CrossRef]
- Tomić, I.; Vanin, F.; Beyer, K. Uncertainties in the Seismic Assessment of Historical Masonry Buildings. Appl. Sci. 2021, 11, 2280. [Google Scholar] [CrossRef]
- D’altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; de Miranda, S. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Arch. Comput. Methods Eng. 2020, 27, 1153–1185. [Google Scholar] [CrossRef]
- Božulić, I.; Vanin, F.; Beyer, K. Numerical Modeling of FRP-Strengthened Masonry Structures Using Equivalent Frame Models. In Structural Analysis of Historical Constructions; Endo, Y., Hanazato, T., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 400–406. [Google Scholar] [CrossRef]
- de Sousa Medeiros, K.A.; Palhares, R.d.A.; Parsekian, G.A.; Shrive, N.G. Simplified frame models to simulate the in-plane load–displacement response of multi-story, perforated, partially grouted masonry walls. Structures 2023, 55, 2086–2104. [Google Scholar] [CrossRef]
- Bertani, G.; Patruno, L.; D’altri, A.; Castellazzi, G.; de Miranda, S. A single-surface multi-failure strength domain for masonry. Int. J. Solids Struct. 2024, 288, 112624. [Google Scholar] [CrossRef]
- Pereira, M.; D’Altri, A.M.; de Miranda, S.; Glisic, B. 3D Non-periodic Masonry Texture Generation of Cultural Heritage Structures. In Structural Analysis of Historical Constructions; Endo, Y., Hanazato, T., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 366–373. [Google Scholar] [CrossRef]
- Rios, A.J.; Nela, B.; Pingaro, M.; Reccia, E.; Trovalusci, P. Rotation and sliding collapse mechanisms for in plane masonry pointed arches: Statistical parametric assessment. Eng. Struct. 2022, 262, 114338. [Google Scholar] [CrossRef]
- Rios, A.J.; Pingaro, M.; Reccia, E.; Trovalusci, P. Statistical Assessment of In-Plane Masonry Panels Using Limit Analysis with Sliding Mechanism. J. Eng. Mech. 2022, 148, 04021158. [Google Scholar] [CrossRef]
- Rios, A.J.; Nela, B.; Pingaro, M.; Reccia, E.; Trovalusci, P. Parametric analysis of masonry arches following a limit analysis approach: Influence of joint friction, pier texture, and arch shallowness. Math. Mech. Solids 2023, 10812865231175385. [Google Scholar] [CrossRef]
- Prajapati, S.; Shrestha, K.C.; Shakya, M. Seismic fragility evaluation of the Nepalese pagoda temple: A case study of Laxmi Narsingha temple. J. Build. Eng. 2024, 87, 108993. [Google Scholar] [CrossRef]
- Yavartanoo, F.; Kim, T.; Kim, J.; Jang, H.; Kim, C.-S. Out-of-plane behavior of U-shaped unreinforced masonry structures. J. Build. Eng. 2024, 86, 108984. [Google Scholar] [CrossRef]
- Meoni, A.; D’alessandro, A.; Mattiacci, M.; García-Macías, E.; Saviano, F.; Parisi, F.; Lignola, G.P.; Ubertini, F. Structural performance assessment of full-scale masonry wall systems using operational modal analysis: Laboratory testing and numerical simulations. Eng. Struct. 2024, 304, 117663. [Google Scholar] [CrossRef]
- Magenes, G.; Penna, A.; Senaldi, I.E.; Rota, M.; Galasco, A. Shaking Table Test of a Strengthened Full-Scale Stone Masonry Building with Flexible Diaphragms. Int. J. Arch. Heritage 2013, 8, 349–375. [Google Scholar] [CrossRef]
- Guerrini, G.; Senaldi, I.; Graziotti, F.; Magenes, G.; Beyer, K.; Penna, A. Shake-Table Test of a Strengthened Stone Masonry Building Aggregate with Flexible Diaphragms. Int. J. Arch. Herit. 2019, 13, 1078–1097. [Google Scholar] [CrossRef]
- Vintzileou, E.; Mouzakis, C.; Adami, C.-E.; Karapitta, L. Seismic behavior of three-leaf stone masonry buildings before and after interventions: Shaking table tests on a two-storey masonry model. Bull. Earthq. Eng. 2015, 13, 3107–3133. [Google Scholar] [CrossRef]
- Mininno, G.; Ghiassi, B.; Oliveira, D.V. Modelling of the In-Plane and Out-of-Plane Performance of TRM-Strengthened Masonry Walls. Key Eng. Mater. 2017, 747, 60–68. [Google Scholar] [CrossRef]
- Arce, A.; Kapsalis, P.; Papanicolaou, C.G.; Triantafillou, T.C. Diagonal Compression Tests on Unfired and Fired Masonry Wallettes Retrofitted with Textile-Reinforced Alkali-Activated Mortar. J. Compos. Sci. 2023, 8, 14. [Google Scholar] [CrossRef]
- Shabani, A.; Feyzabadi, M.; Kioumarsi, M. Model updating of a masonry tower based on operational modal analysis: The role of soil-structure interaction. Case Stud. Constr. Mater. 2022, 16, e00957. [Google Scholar] [CrossRef]
- Wang, P.; Milani, G. Specialized 3D Distinct element limit analysis approach for a fast seismic vulnerability evaluation of massive masonry structures: Application on traditional pagodas. Eng. Struct. 2023, 282, 115792. [Google Scholar] [CrossRef]
- Jiao, L.; Tapponnier, P.; Mccallum, A.C.-C.; Xu, X. The shape of the Himalayan “Arc”: An ellipse pinned by syntaxial strike-slip fault tips. Proc. Natl. Acad. Sci. USA 2024, 121, e2313278121. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, L.; Adhikari, L.B.; Vergne, J.; Hetényi, G.; Subedi, S. The 2015 April 25 Gorkha Earthquake. In Himalaya: Dynamics of a Giant, Current Activity of the Himalayan Range; Wiley: Hoboken, NJ, USA, 2023; Volume 3, pp. 217–237. [Google Scholar] [CrossRef]
- Elliott, J.R.; Jolivet, R.; González, P.J.; Avouac, J.-P.; Hollingsworth, J.; Searle, M.P.; Stevens, V.L. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 2016, 9, 174–180. [Google Scholar] [CrossRef]
- Xiong, N.; Niu, F.; Wang, R. Significance of Nonplanar Rupture of the Mainshock and Optimal Faulting in Forecasting Aftershocks of the 2015 Mw 7.8 Gorkha Earthquake. Seism. Res. Lett. 2020, 91, 1606–1616. [Google Scholar] [CrossRef]
- Varum, H.; Dumaru, R.; Furtado, A.; Barbosa, A.R.; Gautam, D.; Rodrigues, H. Chapter 3—Seismic Performance of Buildings. In Nepal after the Gorkha Earthquake, in Impacts and Insights of the Gorkha Earthquake; Gautam, D., Rodrigues, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–63. [Google Scholar] [CrossRef]
- UNESCO. 45 COM Convention Concerning the Protection of the World Cultural and Natural Heritage. 2023. Available online: https://whc.unesco.org/archive/2023/whc23-45com-7B-en.pdf (accessed on 20 February 2024).
- Saisi, A.; Borlenghi, P.; Gentile, C. Between Safety and Conservation—Procedure for the Assessment of Heritage Buildings Based on Historic Research. Buildings 2023, 13, 2236. [Google Scholar] [CrossRef]
- Roca, P. The Iscarsah Guidelines on the Analysis, Conservation and Structural Restoration of Architectural Heritage. In Proceedings of the 12th International Conference on Structural Analysis of Historical Constructions (SAHC), Barcelona, Spain, 29 September–1 October 2021; Available online: https://www.scipedia.com/public/Roca_2021a (accessed on 20 February 2024).
- Ranjitkar, R.K.; Joshi, L. Lakshmi Narayan Temple Kathmandu Darbar Initiative Final Report. 2004. Available online: https://danam.cats.uni-heidelberg.de/files/danam-cms/Lakshmi_Narayan_Temple_KDI_Final_Report_DyGUJ9h.pdf (accessed on 30 January 2024).
- Mishra, M.; Lourenço, P.B. Artificial intelligence-assisted visual inspection for cultural heritage: State-of-the-art review. J. Cult. Herit. 2024, 66, 536–550. [Google Scholar] [CrossRef]
- Bayraktar, A.; Hökelekli, E. Seismic Performances of Different Spandrel Wall Strengthening Techniques in Masonry Arch Bridges. Int. J. Arch. Heritage 2020, 15, 1722–1740. [Google Scholar] [CrossRef]
- Parajuli, H.R. Determination of mechanical properties of the Kathmandu Valleey world heritage brick masonry buildings. In Proceedings of the 15 World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012; Available online: https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_3139.pdf (accessed on 30 January 2024).
- Parajuli, H.R.; Maskey, P.N.; Kiyono, J. Disaster Risk Management for the Historic City of Patan, Nepal, Final Report of the Kathmandu Research Project. 2012. Available online: https://r-dmuch.jp/wp/assets/en/project/dl_files/report/2012+03+KTM+Final+Report.pdf (accessed on 20 February 2018).
- Gavrilovich, P.; Pichard, P. Methodology for strengthening and repair of earthquake damaged monuments in Pagan—Burma. In Proceedings of the Eight World Conference on Earthquake Engineering, San Francisco, CA, USA, 21–28 July 1984; Available online: https://www.iitk.ac.in/nicee/wcee/article/8_vol1_609.pdf (accessed on 20 February 2018).
- Jaishi, B.; Ren, W.X.; Zong, Z.H.; Maskey, P.N. Dynamic and seismic performance of old multi-tiered temples in Nepal. Eng. Struct. 2003, 25, 1827–1839. [Google Scholar] [CrossRef]
- William, K.; Warnke, E. Constitutive model for the triaxial behaviour of concrete, in IABSE reports of the working commissions = Rapports des commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen. In Proceedings of the Seminar on Concrete Structures Subjected to Triaxial Stresses, Bergamo, Italy, 17–19 May 1974; pp. 1–30. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Mechanical APDL Feature Archive; ANSYS Inc.: Canonsburg, PA, USA, 2023. [Google Scholar]
- Rios, A.J.; O’Dwyer, D. Numerical modelling of cob’s non-linear monotonic structural behaviour. Int. J. Comput. Methods 2020, 17, 1940013. [Google Scholar] [CrossRef]
- Altunişik, A.C.; Genç, A.F.; Günaydin, M.; Okur, F.Y.; Karahasan, O. Dynamic response of a historical armory building using the finite element model validated by the ambient vibration test. J. Vib. Control. 2018, 24, 5472–5484. [Google Scholar] [CrossRef]
- Sinaei, S.; Abadi, E.I.Z.; Hoseini, S.J. Failure Analysis of Skewed Persian Brick Masonry Barrel Vaults: Experimental and Numerical Study. J. Perform. Constr. Facil. 2023, 37, 04023057. [Google Scholar] [CrossRef]
- Hejazi, M.; Soltani, Y. Parametric study of the effect of hollow spandrel (Konu) on structural behaviour of Persian brick masonry barrel vaults. Eng. Fail. Anal. 2020, 118, 104838. [Google Scholar] [CrossRef]
- Shabani, A.; Kioumarsi, M. Seismic assessment and strengthening of a historical masonry bridge considering soil-structure interaction. Eng. Struct. 2023, 293, 116589. [Google Scholar] [CrossRef]
- Shakya, M. Modal Analysis Using Ambient Vibration Measurement and Damage Identification of Three Tiered Radha Krishna Temple. 2010. Available online: https://www.researchgate.net/publication/260096970_MODAL_ANALYSIS_USING_AMBIENT_VIBRATION_MEASUREMENT_AND_DAMAGE_IDENTIFICATION_OF_THREE_TIERED_RADHA_KRISHNA_TEMPLE (accessed on 20 February 2018).
- Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M.R.; Sasatani, T. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake. Earth Planets Space 2016, 68, 10. [Google Scholar] [CrossRef]
- IS:1905-1987; Code of Practice for Structural Use of Unreinforced Masonry. Bureau of Indian Standards: New Delhi, India, 1987. Available online: https://archive.org/details/gov.in.is.1905.1987 (accessed on 20 February 2018).
- European Commission. Industry 5.0: Human-Centric, Sustainable and Resilient. 2020. Available online: https://op.europa.eu/en/publication-detail/-/publication/aed3280d-70fe-11eb-9ac9-01aa75ed71a1 (accessed on 30 January 2024).
Property | Masonry | Timber |
---|---|---|
Density (kg/m3) | 1800.00 | 800.0 |
Young’s modulus (MPa) | 250.00 | 12,500.0 |
Poisson’s ratio (−) | 0.24 | 0.3 |
Uniaxial compressive strength (MPa) | 1.00 | - |
Uniaxial tensile Strength (MPa) | 0.05 | - |
Shear transfer coefficient for open cracks | 0.30 | - |
Shear transfer coefficient for closed cracks | 0.80 |
Natural Frequency | Micro Tremor Results | Computer Model before Calibration | Difference in Percentage | Computer Model after Calibration | Difference in Percentage |
---|---|---|---|---|---|
Mode 1 | 2.00 | 4.63 | 131.50% | 2.00 | 0.00% |
Mode 2 | 4.50 | 9.51 | 111.33% | 4.27 | 5.11% |
Mode 3 | 7.40 | - * | - * | 7.31 | 1.22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arce, A.; Jiménez Rios, A.; Tomic, I.; Biggs, D. Structural Analysis of the Sympathetic Restoration and Conservation of the Gopinath Temple, Kathmandu, Nepal. Heritage 2024, 7, 3194-3210. https://doi.org/10.3390/heritage7060151
Arce A, Jiménez Rios A, Tomic I, Biggs D. Structural Analysis of the Sympathetic Restoration and Conservation of the Gopinath Temple, Kathmandu, Nepal. Heritage. 2024; 7(6):3194-3210. https://doi.org/10.3390/heritage7060151
Chicago/Turabian StyleArce, Andrés, Alejandro Jiménez Rios, Igor Tomic, and David Biggs. 2024. "Structural Analysis of the Sympathetic Restoration and Conservation of the Gopinath Temple, Kathmandu, Nepal" Heritage 7, no. 6: 3194-3210. https://doi.org/10.3390/heritage7060151
APA StyleArce, A., Jiménez Rios, A., Tomic, I., & Biggs, D. (2024). Structural Analysis of the Sympathetic Restoration and Conservation of the Gopinath Temple, Kathmandu, Nepal. Heritage, 7(6), 3194-3210. https://doi.org/10.3390/heritage7060151