A Reflection on the Conservation of Waterlogged Wood: Do Original Artefacts Truly Belong in Public Museum Collections?
Abstract
1. Introduction
2. Materials and Methods
2.1. Properties of Waterlogged Wood Compared to Other Archaeological Materials
2.2. A Brief History of Waterlogged Wood Conservation
2.3. Established Methods for the Conservation of Waterlogged Wood
2.3.1. Potassium Alum–Glycerin–Linseed Oil Method
2.3.2. Polyethylene Glycol (PEG)
2.3.3. Melamine: Arigal-C and Kaurin 800
2.3.4. Alcohol–Ether–Resin Method
2.3.5. Polybutyl Methacrylate
2.3.6. Acetone–Rosin Method
2.3.7. Electrokinetic Method
2.3.8. Garrouste/Bouis Method
2.3.9. Radiation-Induced Polymerization
2.3.10. Hard Wax Mixture
2.3.11. Sucrose Method
2.4. Conservation Examples
3. Results
3.1. Controversies Surrounding Current Methods of Waterlogged Wood Conservation
3.2. Fundamental Ethical Guidelines for the Protection of Underwater Cultural Heritage
- Respect for the Integrity of the Object
- 2.
- Competence and Capability
- 3.
- Uniform Standards
- 4.
- Appropriateness of Methodology
- 5.
- The Principle of Reversibility
- 6.
- Limitations in Aesthetic Re-integration
- 7.
- Continual Self-Education
- 8.
- Oversight of Support Staff
3.3. Digital Technologies and Waterlogged Wood
3.4. Photogrammetry and the Evolution of Underwater 3D Documentation
4. Discussion
4.1. Photogrammetry and Ethical Practice in Underwater Archaeology
4.2. Appropriate Solutions for the Protection of Waterlogged Wood
4.3. Public Presentation and Educational Value of Documented Shipwrecks
4.4. What Should Be Done?
4.5. Toward a Responsible and Sustainable Approach to the Protection of Waterlogged Wood
4.6. Three Viable Solutions for the Protection and Presentation of Waterlogged Wooden Artefacts
- Reburial for Non-Museum-Priority Artefacts
- 2.
- Remote Presentation for Cost-Constrained Finds
- 3.
- Museum Display of Exceptional Finds in a Controlled Aquatic Environment
- −
- A conservator–restorer from a national conservation center.
- −
- An architect to assist in the design of the aquatic display chamber and its integration into museum spaces.
- −
- A computer scientist to implement automated environmental monitoring using sensors.
- −
- A microbiologist to guide the creation of a closed aquatic system.
- −
- An aquarist to advise on the development of the water chamber.
- −
- A mechanical engineer to support water flow optimization using cavitation-based methods [85].
- −
- A museum curator from the institution where the artefact would be housed.
5. Conclusions
- −
- Propose a new reburial strategy using 3D scanning and biodegradable containment.
- −
- Demonstrate ethical and environmental benefits of avoiding invasive chemical treatments.
- −
- Apply comparative volumetric analysis to evaluate conservation impact.
- −
- Limitations of the proposal are as follows:
- −
- Case studies are limited to specific artefacts and environments.
- −
- Reburial feasibility varies with site accessibility and legal restrictions.
- −
- Lack of long-term reburial trial data under monitored conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kovacs, M.G. The Epic of Gigamesh; Stanford University Press: Redwood City, CA, USA, 1989. [Google Scholar]
- Gonda, J. A History of Indian Literature 1, Veda and Upanishads, Fasc. 1, Vedic Literature (Samhitas and Brahmanas); Otto Harrassowitz: Wiesbaden, Germany, 1975; ISBN 9783447016032. [Google Scholar]
- Banks, E.J. Senkereh, the Ruins of Ancient Larsa. Biblic. World 1905, 25, 389–392. [Google Scholar] [CrossRef]
- Farnoux, A.; Schnapp, A. La conquête du passé. aux origines de l’archéologie, 1993. Topoi Orient-Occident. 1994, 4, 223–230. [Google Scholar]
- Erič, M.; Gaspari, A. Sinja Gorica: Poročilo o Arheološkem Podvodnem Pregledu Struge Reke Ljubljanice na Območju Zavarovanja Desne Brežine ob Sinjegoriških Ribnikih. Ljubljana: Zavod za Varstvo Kulturne Dediščine Slovenije, 2009. Available online: https://plus.cobiss.net/cobiss/si/sl/bib/290297#full (accessed on 3 July 2025).
- Gaspari, A.; Erič, M.; Odar, B. A Palaeolithic wooden point from Ljubljansko barje, Slovenia. In Submerged Prehistory; Benjamin, J., Ed.; Oxbow Books: Oxford, UK, 2011; pp. 186–192. [Google Scholar]
- Broda, M.; Hill, C.A.S. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Lobb, M.; Krawiec, K.; Howard, A.; Gearey, B.; Chapman, H. A New Approach to Recording and Monitoring Wet-preserved Archaeological Wood Using Threedimensional Laser Scanning. J. Archaeol. Sci. 2010, 37, 2995–2999. [Google Scholar] [CrossRef]
- Erič, M.; Kovačič, R.; Berginc, G.; Pugelj, M.; Stopinšek, Ž.; Solina, F. The impact of the latest 3D technologies on the documentation of underwater heritage sites. In Proceedings of the 2013 Digital Heritage International Congress, Marseille, France, 28 October–1 November 2013; Alonzo, C.A., Ed.; IEEE: Marseille, France, 2013; pp. 281–288. [Google Scholar] [CrossRef]
- Guček Puhar, E.; Erič, M.; Kavkler, K.; Cramer, A.; Celec, K.; Korat Bensa, L.; Jaklič, A.; Solina, F. Comparison and deformation analysis of five 3D models of the Paleolithic wooden point from the Ljubljanica River. In Proceedings of the 2018 Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino, Italy, 22–24 October 2018; pp. 449–454. [Google Scholar] [CrossRef]
- Guček Puhar, E.; Erič, M.; Solina, F.; Jaklič, A.; Korat Bensa, L. Anatomical-morphological analysis of a volumetric 3D model of an archaeological object. Archeol. Calc. 2021, 32, 197–208. [Google Scholar] [CrossRef]
- Guček Puhar, E.; Korat, L.; Erič, M.; Jaklič, A.; Solina, F. Microtomographic analysis of a Paleolithic wooden point from the Ljubljanica River. Sensors 2022, 22, 2369. [Google Scholar] [CrossRef]
- Wittkopper, M. Der Aktuelle Stand der Holzkonservierung mit Melamin/Aminoharzen am Römisch-Germanischen Zentralmuseum AdR, 2 (Gruppe 8); RGMZ: Mainz, Germany, 1998. [Google Scholar]
- Čufar, K.; Merela, M.; Erič, M. A Roman barge in the Ljubljanica river (Slovenia): Wood identification, dendrochronological dating and wood preservation research. J. Archaeol. Sci. 2014, 44, 128–135. [Google Scholar] [CrossRef]
- Organ, R.M. Carbowax and Other Materials in the Treatment of Water-logged Paleolithic Wood. Stud. Conserv. 1959, 4, 96–105. [Google Scholar] [CrossRef]
- Christensen, B.B. The Conservation of Waterlogged Wood in the National Museum of Denmark with a Report on the Methods Chosen for the Stabilization of the Timbers of the Viking Ships from Roskilde Fjord and a Report on Experiments Carried out in Order to Improve upon These Methods; National Museum of Denmark: Copenhagen, Denmark, 1970. [Google Scholar]
- Walsh-Korb, Z.; Janeček, E.-R.; Hodgkinson, J.; Sedlmair, J.; Koutsioubas, A.; Spring, D.; Welch, M.; Hirschmugl, C.; Toprakcioglu, C.; Nitschke, J.; et al. Multifunctional supramolecular polymer networks as next generation consolidates for archaeological wood conservation. Proc. Natl. Acad. Sci. USA 2014, 111, 17743–17748. [Google Scholar] [CrossRef]
- Mühlethaler, B.; Barkman, L.; Noack, D. Conservation of Waterlogged Wood and Wet Leather; ICCROM, Eyrolles: Paris, France, 1973. [Google Scholar]
- Gaspari, A. Pontonium iz Lip na Ljubljanskem barju. Arheol. Vestn. 1998, 49, 187–224. [Google Scholar]
- Hoffmann, P. On the Stabilization of Waterlogged Oakwood with PEG. II. designing a Two-Step Treatment for Multi-Quality Timbers. Stud. Conserv. 1986, 31, 95–117. [Google Scholar] [CrossRef]
- Jenssen, V.; Murdock, L. Review of the Conservation of Machault Ships Timbers: 1973–1982. In Proceedings of the ICOM Waterlogged Wood Working Group Conference, Ottawa, ON, Canada, 15–18 September 1981; Grattan, W.D., McCawley, J.C., Eds.; International Council of Museums (ICOM): Paris, France, 1982. [Google Scholar]
- Christensen, B.B. Developments in the Treatment of Waterlogged Wood in the National Museum of Denmark During the Years 1962–69. Stud. Conserv. 1971, 16 (Suppl. S2), 27–44. [Google Scholar] [CrossRef]
- Albright, A.B. The Preservation of Small Water-Logged Wood Specimens with Polyethylene Glycol. Curator 1966, 9, 228–234. [Google Scholar] [CrossRef]
- Carlee, E. What Do We Know About PEG? 2009. Available online: https://ellencarrlee.wordpress.com/2009/04/ (accessed on 3 July 2025).
- Hoffmann, P. On the stabilisation of waterlogged oakwood with PEG—Molecular size versus degree of degradation. In Waterlogged Wood: Study and Conservation, Proceedings of the 2nd ICOM Waterlogged Wood Working Group Conference, Grenoble, France, 29–31 August 1984; Centre dÉtude et de Traitement des Bois Gorgés d’Eau: Grenoble, France, 1985; pp. 95–117. [Google Scholar]
- Hoffmann, P. The Bremen Cog sails a new course. Int. J. Naut. Archaeol. 1986, 15, 215–219. [Google Scholar] [CrossRef]
- Morén, R.; Centerwall, B. The Use of Polyglycols in the Stabilizing and Preservation of Wood. Meddelanden Fran Lunds Universitets Historiska Museum. Mooch Domsjö Aktiebolag. 1961. Available online: https://books.google.si/books?id=tkdAHAAACAAJ (accessed on 3 July 2025).
- Mortensen, M.; Egsgaard, H.; Hvilsted, S.; Shashoua, Y.; Glastrup, J. Characterisation of the polyethylene glycol impregnation of the Swedish warship Vasa and one of the Danish Skuldelev Viking ships. J. Archaeol. Sci. 2007, 34, 1211–1218. [Google Scholar] [CrossRef]
- Munnikendam, R.A. Conservation of waterlogged wood using radiation polymerization. Stud. Conserv. 1967, 12, 70–75. [Google Scholar] [CrossRef]
- Müller-Beck, H.; Haas, A. Holzkonservierung mit Arigal C (CIBA). Jahrb. Bernischen Hist. Mus. Bern 1957, 37, 260–271. [Google Scholar]
- Parrent, J.M. The conservation of waterlogged wood using sucrose. Stud. Conserv. 1985, 30, 63–72. [Google Scholar] [CrossRef]
- Scopigno, R.; Cignoni, P.; Pietroni, N.; Callieri, M.; Dellepiane, M. Digital Fabrication Techniques for Cultural Heritage: A Survey. Comput. Graph. Forum 2017, 36, 6–21. [Google Scholar] [CrossRef]
- Seborg, R.M.; Inverarity, R.B. Preservation of Old, Waterlogged Wood by Treatment with Polyethylene Glycol. Science 1962, 136, 649–650. [Google Scholar] [CrossRef]
- Seinturier, J.; Riedinger, C.; Mahiddine, A.; Peloso, D.; Boï, J.-M.; Merad, D.; Drap, P. Towards a 3D Based Platform for Cultural Heritage Site Survey and Virtual Exploration. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIV International CIPA Symposium, Strasbourg, France, 2–6 September 2013; pp. 1–6. [Google Scholar]
- Rosenqvist, A.M. Experiments on the conservation of waterlogged wood and leather by freeze drying. Marit. Monogr. Rep. 1975, 16, 9–23. [Google Scholar]
- Rowley, J.; Hartley, R. Organizing Knowledge: An Introduction to Managing Access to Information, 4th ed.; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Müller-Beck, H.; Haas, A. A Method for Wood Preservation using Arigal C. Stud. Conserv. 1960, 5, 260–271. [Google Scholar] [CrossRef]
- Müller-Beck, H. and Haas, A., Ein neues verfahren zur konservierung von feuchthoelzern. Z. Fuer Museumstechnik 1961, 1, 157–168. [Google Scholar]
- Müller-Beck, H.; Thieme, J. Zur reinigung und festigung mittelalterlicher holz–und gewebefunde. Neue Museumkunde 1966, 9, 63–75. [Google Scholar]
- Neumüller, M.; Reichinger, A.; Rist, F.; Kern, C. 3D Printing for Cultural Heritage: Preservation, Accessibility, Research and Education. In 3D Research Challenges in Cultural Heritage. A Roadmap in Digital Heritage Preservation; Ioannides, M., Quak, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 119–134. [Google Scholar] [CrossRef]
- Cesar, T.; Danevčič, T.; Kavkler, K.; Stopar, D. Melamine polymerization in organic solutions and waterlogged archaeological wood studied by FTIR spectroscopy. J. Cult. Herit. 2017, 23, 106–110. [Google Scholar] [CrossRef]
- Haas, A.; Müller-Beck, H.; Schweingruber, F. Erfahrungen bei der Konservierung von Feuchthölzern mit Arigal C. Jahrb. Bernischen Hist. Mus. Bern 1963, 62, 41–42. [Google Scholar]
- Christensen, B.B. Om Konservering af Mosefundne Trögenstande. In Aarborger for Nordisk Old Kyndighed og Historie 1950–1951; Nabu Press: Charleston, SC, USA, 1951; pp. 22–55. [Google Scholar]
- Opała-Owczarek, M.; Owczarek, P.; Rahmonov, O.; Niedzwiedz, T. The First Dendrochronological Dating of Timber from Tajikistan—Potential for Developing a Millennial Tree-Ring Record. Tree-Ring Res. 2018, 74, 50–62. [Google Scholar] [CrossRef]
- McKerrell, H.; Roger, E.; Varsanyi, A. The Acetone/Rosin method for conservation of waterlogged wood. Stud. Conserv. 1972, 17, 111–125. [Google Scholar] [CrossRef]
- Bryce, T.; McKerrell, H.; Varsanyi, A. The Acetone-Rosin Method for the Conservation of Waterlogged Wood and Some Thoughts on the Penetration of PEG into Oak. Natl. Marit. Mus. Monogr. 1975, 16, 35–43. [Google Scholar]
- Cebertowicz, R.; Jasienski, D. Elektrokinetyczna Methoda Petryficacji Drewna Oraz Mumifikacji Matewki z Prehistorycznego Wykopaliska w BISKUPINIE. Prace 1 Sesji Nankowei Politechniki Gdanskiej. Gdansk, 1951.
- Williams, E.; Peachey, C. The Conservation of Archaeological Materials: Current Trends and Future Directions; BAR Publishing: Oxford, UK, 2010. [Google Scholar]
- Bouis, J. Principes de conservation et de restauration des bois antiques immerges. Reun. Mixte Comete L’ICOM Trait. Peint. 1960, 67, 6–13. [Google Scholar]
- Murray, H. The Conservation of Artefacts from the Mary Rose. In Proceedings of the ICOM Waterlogged Wood Working Group Conference, Ottawa, ON, Canada, 15–18 September 1981; Grattan, W.D., McCawley, J.C., Eds.; International Council of Museums (ICOM): Paris, France, 1982. [Google Scholar]
- Karpov, V.L.; Serenkov, V. Radiation Makes Better Woods and Copolymers. Nucleonics 1960, 18, 88–90. [Google Scholar]
- De Guichen, G.; Gaumann, T.; Mühlerthaler, B. Methode de Conservation des Bois Provenant de Cites Lacustres par Diffusion d’un Monomere et Polymerisation par Rayons Gamma. Ecole Polytechnique Federale de Lausanne, 1966.
- Pang, J.T.T. The treatment of waterlogged oak timbers from 17th century Dutch East Indiaman, Batavia, using polyethylene glycol. In Proceedings of the ICOM Committee for Conservation, 6th Triennial Meeting, Ottawa, ON, Canada, 21–25 September 1981; Grattan, D.W., McCawley, J.C., Eds.; Preprints; International Council of Museums (ICOM): Paris, France, 1981; p. 13. [Google Scholar]
- Remondino, F.; Del Pizzo, S.; Kersten, T.P.; Troisi, S. Low-Cost and Open-Source Solutions for Automated Image Orientation—A Critical Overview. In Proceedings of the International Conference on Cultural Heritage, EuroMed, Limassol, Cyprus, 29 October–3 November 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 40–54. [Google Scholar] [CrossRef]
- Hoffmann, P. Sucrose for waterlogged wood. not so simple at all. In Proceedings of the ICOM Committee for Conservation, 11th Triennial Meeting, Wet Organic and Archaeological Materials 2, Edinbourgh, Scotland, 1–6 September 1996; Bridgland, J., Ed.; ICOM Committee for Conservation: Edinbourgh, Scotland, 1996; pp. 657–662. [Google Scholar]
- Stamm, A.J. Treatment with Sucrose and Invert Sugar. Ind. Eng. Chem. 1937, 29, 833–835. [Google Scholar] [CrossRef]
- Tahira, A.; Howard, W.; Pennington, R.; Kennedy, A. Mechanical strength studies on degraded waterlogged wood treated with sugars. Stud. Conserv. 2017, 62, 223–228. [Google Scholar] [CrossRef]
- Barkman, L.; Oddy, W.A. The preservation of the warship Wasa. In Problems in the Conservation of Waterlogged Wood; Barkman, L., Ed.; National Maritime Museum: Greenwich, UK, 1975; pp. 65–66. [Google Scholar]
- Barkman, L.; Bengtsson, S.; Håfors, B.; Lundvall, B. Processing of waterlogged wood. In Proceedings of the Pacific Northwest West side Wood Conservation Conference, Neah Bay, WA, USA, 19–22 September 1976; Grosso, G.H., Ed.; Makah Graphic Arts: Neah Bay, WA, USA, 1976; pp. 17–26. [Google Scholar]
- Bjurhager, I.; Halonen, H.; Lindfors, E.-L.; Iversen, T.; Almkvist, G.; Gamstedt, K.; Berglund, L. State of Degradation in Archeological Oak from the 17th Century Vasa Ship: Substantial Strength Loss Correlates with Reduction in (Holo)Cellulose Molecular Weight. Biomacromolecules 2012, 13, 2521–2527. [Google Scholar] [CrossRef]
- Li, R.; Guo, J.; Macchioni, N.; Pizzo, B.; Xi, G.; Tian, X.; Chen, J.; Sun, J.; Jiang, X.; Cao, J.; et al. Characterisation of waterlogged archaeological wood from Nanhai No. 1 shipwreck by multidisciplinary diagnostic methods. J. Cult. Herit. 2022, 56, 25–35. [Google Scholar] [CrossRef]
- Fors, Y.; Sandström, M. Sulfur and iron in shipwrecks cause conservation concerns. Chem. Soc. Rev. 2006, 35, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Helms, A.C.; Martiny, A.; Hofman-Bang, J.; Ahring, B.; Kilstrup, M. Identification of bacterial cultures from archaeological wood using molecular biological techniques. Int. Biodeterior. Biodegrad. 2004, 53, 79–88. [Google Scholar] [CrossRef]
- Almkvist, G.; Persson, I. Degradation of polyethylene glycol and hemicellulose in the Vasa. Holzforschung 2008, 62, 64–70. [Google Scholar] [CrossRef]
- Almkvist, G.; Persson, I. Fenton-induced degradation of polyethylene glycol and oak holocellulose. A model experiment in comparison to changes observed in conserved waterlogged wood. Holzforschung 2008, 62, 704–708. [Google Scholar] [CrossRef]
- Björdal, C.; Nilsson, T.; Daniel, G. Microbial decay of waterlogged archaeological wood found in Sweden Applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 1999, 43, 63–73. [Google Scholar] [CrossRef]
- Brassel, J. Das färben von Arigal-C konservierten feuchthölzern. Jahrb. Bernischen Hist. Mus. Bern 1960, 39, 438–440. [Google Scholar]
- Sawada, M. Some problems of setting of PEG 4000 impregnated in wood. In Waterlogged Wood: Study and Conservation, Proceedings of the 2nd ICOM Waterlogged Wood Working Group Conference, Grenoble, France, 29–31 August 1984; Centre dÉtude et de Traitement des Bois Gorgés d’Eau: Grenoble, France, 1985; pp. 117–124. [Google Scholar]
- Wielicka, M. Prace e konserwacja drewna pochodzacego z wykopalisk w Bi-skupinie i Gdansku (Research for the protection of wood from the excavations in Biskupin and Gdansk). Wiad. Archeol. 1960, 25, 288–296. [Google Scholar]
- Trockmorton, P. Oldest Known Shipwreck Yields Bronze Age Cargo. Natl. Geogr. 1962, 121, 671–696. [Google Scholar]
- Grattan, D.W. A practical comparative study of several treatments for waterlogged wood. Stud. Conserv. 1982, 27, 124–136. [Google Scholar] [CrossRef]
- Grattan, D.W.; McCawley, J.C.; Cook, C. The potential of the Canadian winter climate for the freeze-drying of degraded waterlogged wood: Part II. Stud. Conserv. 1982, 25, 118–136. [Google Scholar] [CrossRef]
- Manders, M.R. Guidelines for Protection of Submerged Wooden Cultural Heritage; WreckProtect: Amersfoort, The Netherlands, 2011. [Google Scholar]
- Gregory, D.; Jensen, P. The importance of analysing waterlogged wooden artefacts and environmental conditions when considering their in situ preservation. J. Wetl. Archaeol. 2006, 6, 65–81. [Google Scholar] [CrossRef]
- Ford, B.; Hamilton, D.L.; Catsambis, A. (Eds.) The Oxford Handbook of Maritime Archaeology; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Gregory, D.; Manders, M. (Eds.) Best Practices for Locating, Surveying, Assessing, Monitoring and Preserving Underwater Archaeological Sites, SASMAP Guideline Manual 2; National Museum of Denmark: Copenhagen, Denmark, 2015. [Google Scholar]
- De Reu, J.; De Smedt, P.; Herremans, D.; Van Meirvenne, M.; Laloo, P.; De Clercq, W. On Introducing an Image-based 3D Reconstruction Method in Archaeological Excavation Practice. J. Archaeol. Sci. 2014, 41, 251–262. [Google Scholar] [CrossRef]
- Jaklič, A.; Erič, M.; Mihajlović, I.; Stopinšek, Ž.; Solina, F. Volumetric models from 3D point clouds: The case study of sarcophagi cargo from a 2nd/3rd century AD Roman shipwreck near Sutivan on island Brač, Croatia. J. Archaeol. Sci. 2015, 62, 143–152. [Google Scholar] [CrossRef]
- Drap, P. Underwater Photogrammetry for Archaeology. In Special Applications of Photogrammetry; Da Silva, D.C., Ed.; IntechOpen: London, UK, 2012; pp. 111–136. [Google Scholar] [CrossRef]
- Erič, M.; Berginc, G.; Kovačič, R.; Pugelj, M.; Solina, F. Successful use of temporary underwater 3D documenting methodology: Early Roman barge from Ljubljanica river, Slovenia. In Proceedings of the IKUWA V International Congress on Underwater Archaeology, Heritage for Humanity, Cartagena, Spain, 15–18 October 2014; Negueruela Martínez, I., Castillo Belinchón, R., Recio Sánchez, P., Eds.; Ministry of Education, Culture, and Sports: Madrid, Spain, 2016; pp. 259–274. [Google Scholar]
- Mahiddine, A.; Seinturier, J.; Peloso, D.; Boulaassal, H.; Boï, J.-M.; Merad, D.; Drap, P. Validating Photogrammetric Orientation Steps by the Use of Relevant Theoretical Models. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIV International CIPA Symposium, Strasbourg, France, 2–6 September 2013; Volume XL-5/W2, pp. 1–6. [Google Scholar] [CrossRef]
- McCarthy, J. Multi-image photogrammetry as a practical tool for cultural heritage survey and community engagement. J. Archaeol. Sci. 2014, 43, 175–185. [Google Scholar] [CrossRef]
- McCarthy, J.; Benjamin, J. Multi-image Photogrammetry for Underwater Archaeological Site Recording: An Accessible, Diver-Based Approach. J. Marit. Archaeol. 2014, 9, 95–114. [Google Scholar] [CrossRef]
- Menna, F.; Agrafiotis, P.; Georgopoulos, A. State of the art and applications in archaeological underwater 3D recording and mapping. J. Cult. Herit. 2018, 33, 231–248. [Google Scholar] [CrossRef]
- Širok, B.; Dular, M.; Petkovšek, M. Postopek Čiščenja Odpadnih Voda s Hidrodinamsko Kavitacijo; Fakulteta za Strojništvo, Univerza v Ljubljani, Laboratorij za Vodne in Turbinske Stroje: Ljubljana, Slovenia, 2013. [Google Scholar]
- Bass, F.G. Archaeology Under Water; Praeger: New York, NY, USA, 1966. [Google Scholar]
- Unger, A.; Unger, W. Holzkonservierung. Schutz und Festigung von Kulturgut aus Holz; VEB Fachbuchverlag: Leipzig, Germany, 1990. [Google Scholar]
- Canciani, M.; Gambogi, P.; Romano, F.G.; Cannata, G.; Drap, P. Low cost digital photogrammetry for underwater archaeological site survey and artifact insertion. The case study of the Dolia wreck in Secche della Meloria—Livorno—Italia. In International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIV 5/W12; ISPRS: Hannover, Germany, 2003; pp. 95–100. [Google Scholar]
- Erič, M.; Berginc, G.; Kovačič, R.; Celec, K. A short review of the application of 3D documentation methods on selected UW heritage sites in Slovenia and the Adriatic: The need for changes in methodology. In Proceedings of the N.E.R.D. New European Researches and Discoveries in Underwaterarchaeology Conference, Kiel, Germany, 21–23 November 2014; Marijana, C., Enzmann, J., Jürgens, F., Steffensen, F., Ulrich, J., Wilkes, F., Eds.; UPA Series: Bonn, Germany, 2016; pp. 10–18. [Google Scholar]
- Ricca, M.; Alexandrakis, G.; Bonazza, A.; Bruno, F.; Petriaggi, B.D.; Elkin, D.; Lagudi, A.; Nicolas, S.; Novák, M.; Papatheodorou, G.; et al. A Sustainable Approach for the Management and Valorization of Underwater Cultural Heritage: New Perspectives from the TECTONIC Project. Sustainability 2020, 12, 5000. [Google Scholar] [CrossRef]
- Erič, M.; Guček Puhar, E.; Stopinšek, Ž.; Jaklič, A.; Solina, F. The significance of detailed analysis of 3D cloud points which include data that the human eye can overlook. the case of a flat-bottomed ship from the Ljubljanica river. SKYLLIS Z. Marit. Limnische Archäologie Kult.gesch. 2019, 19, 29–40. [Google Scholar]
- Balletti, C.; Beltrame, C.; Costa, E.; Guerra, F.; Vernier, P. Underwater Photogrammetry and 3D Reconstruction of Marble Cargos Shipwreck. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL5-W5, Underwater 3D Recording and Modeling, Piano di Sorrento, Italy, 16–17 April 2015. [Google Scholar] [CrossRef]
- Diamanti, E.; Georgopoulos, A.; Vlachaki, F. Geometric Documentation of Underwater Archaeological Sites. In Proceedings of the XXIII CIPA Symposium, Prague, Czech Republic, 12–16 September 2011; pp. 1–9. [Google Scholar]
- Yamafune, K.; Torres, R.; Castro, F. Multi-Image Photogrammetry to Record and Reconstruct Underwater Shipwreck Sites. J. Archaeol. Method Theory 2017, 24, 703–725. [Google Scholar] [CrossRef]
- Antlej, K.; Erič, M.; Šavnik, M.; Zupanek, B.; Slabe, J.; Battestin, B. Combining 3D technologies in the field of cultural heritage: Three case studies. In Proceedings of the VAST 2011—The 12th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, Short and Project Paper Proceedings, Prato, Italy, 18–21 October 2011; Dellepiane, M., Niccolucci, F., Serna, S.P., Rushmeier, H., Van Gool, L., Eds.; The Eurographics Association: Goslar, Germany, 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Nogid, I.; Pozdnjak, A. Natural Organic Dyes Used in Russia for Dyeing Fabrics; Muhlethaler, B., Barkma, L., Noack, D., Eds.; Edition Eyrothes: Paris, France, 1973. [Google Scholar]
- Molloy, B.; Milić, M. Wonderful Things? A Consideration of 3D Modelling of Objects in Material Culture Research. Open Archeol. 2018, 4, 97–113. [Google Scholar] [CrossRef]
- Seborg, R.M.; Inverarity, R.B. Conservation of 200-year-old Water- logged Boats with Polyethylene Glycol. Stud. Conserv. 1962, 7, 111–120. [Google Scholar] [CrossRef]
- Barreau, J.-B.; Jouneau, J.; Charlet, C.; Ferré, G.; Robert, J. Digitization, Virtual Reality and Robotic Sculpture for the Preservation and Enhancement of the Public Heritage of the Sculpted Rocks of Rothéneuf. J. Comput. Cult. Herit. 2023, 15, 70. [Google Scholar] [CrossRef]
- Sandström, M.; Jalilehvand, F.; Persson, I.; Gelius, U.; Frank, P.; Hall-Roth, I. Deterioration of the seventeenth-century warship Vasa by internal formation of sulphuric acid. Nature 2002, 415, 893–897. [Google Scholar] [CrossRef]
- Bekić, L. Conservation of Underwater Archaeological Finds; ICUA: Zadar, Croatia, 2014. [Google Scholar]
- Bekić, L.; Igor, M. Istraživanje Podvodne Kulturne Baštine u Hrvatskoj; ICUA: Zadar, Croatia, 2009. [Google Scholar]
- Erič, M.; Poglajen, S. Seriously endangered maritime underwater heritage in Slovenia: Management options. In Proceedings of the IKUWA IV International Conference of Underwater Archaeology, Managing the Underwater Cultural Heritage, Zadar, Croatia, 29 September–2 October 2011; Boerker, B., Ed.; DEGUWA: Bubenreuth, Germany, 2014; pp. 200–210. [Google Scholar]
- Joy. Chongqing: The First Underwater Museum in China Has Been Built and Opened. 2009. Available online: https://www.watermuseums.net/network/chongqing-baiheliang-underwater-museum (accessed on 3 July 2025).
- Donahue, M.Z. An Underwater Museum in Egypt Could Bring Thousands of Sunken Relics into View. Smithsonian Magazine. 2015. Available online: https://www.smithsonianmag.com/innovation/underwater-museum-egypt-could-bring-thousands-sunken-relics-into-view-180957645/ (accessed on 3 July 2025).
- Jones, D.M. Waterlogged Wood: Guidelines on the Recording, Sampling, Conservation and Curation of Waterlogged Wood; English Heritage Guidelines; English Heritage: London, UK, 2010. [Google Scholar]
- Crook, L. ZJA to Create Museum Around Underwater 18th-Century Shipwreck. 2020. Available online: https://www.archdaily.com/953211/zja-designs-underwater-museum-for-a-shipwreck-in-amsterdam (accessed on 3 July 2025).
- Rosenqvist, A.M. The Stabilizing of Wood found in the Viking Ship of Oseberg—Part I. Stud. Conserv. 1959, 4, 13–22. [Google Scholar]
- Christensen, M.; Kutzke, H.; Hansen, F. New materials used for the consolidation of archaeological wood–past attempts, present struggles, and future requirements. J. Cult. Herit. 2012, 13 (Suppl. S3), S183–S190. [Google Scholar] [CrossRef]
Procedure/Storage Method | Stabilization Required | Environment Type | Expected Longevity | Risk of Degradation | Notes/Examples |
---|---|---|---|---|---|
PEG treatment + Controlled Drying | Yes | Dry, RH 50–60%, temp < 18 °C | Long term (decades) | Low | Industry standard (e.g., Oseberg, Mary Rose); prevents shrinkage and microbial decay |
Sugar/Alcohol Impregnation (e.g., lactitol) | Yes | Same as above | Long term | Low | Alternative to PEG; less used but promising |
Anoxic Storage (sealed containers or chambers) | No/Optional | Oxygen-free, sealed | Long term | Very low | Imitates burial conditions; high cost; used in sensitive or high-value artefacts |
Refrigerated Wet Storage | No | Water-saturated, 4–10 °C | Medium–long term (up to decades) | Low–medium | Useful as interim; risk increases over time without treatment |
Controlled RH Storage (untreated wood) | Optional | RH 50–60%, temp stable | Medium–long term | Medium | Works for some dry-stored finds; used in Scandinavian reserves |
Air-Drying Without Pre-treatment | No | Ambient air | Short term | High | Causes collapse, cracking, decay; not recommended |
Reburial in Anoxic Sediment | No | Anaerobic, waterlogged | Long term (potentially indefinite) | Low | Depends on site chemistry; effective in peat, clay, silt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erič, M.; Stopar, D.; Guček Puhar, E.; Korat Bensa, L.; Saje, N.; Jaklič, A.; Solina, F. A Reflection on the Conservation of Waterlogged Wood: Do Original Artefacts Truly Belong in Public Museum Collections? Heritage 2025, 8, 273. https://doi.org/10.3390/heritage8070273
Erič M, Stopar D, Guček Puhar E, Korat Bensa L, Saje N, Jaklič A, Solina F. A Reflection on the Conservation of Waterlogged Wood: Do Original Artefacts Truly Belong in Public Museum Collections? Heritage. 2025; 8(7):273. https://doi.org/10.3390/heritage8070273
Chicago/Turabian StyleErič, Miran, David Stopar, Enej Guček Puhar, Lidija Korat Bensa, Nuša Saje, Aleš Jaklič, and Franc Solina. 2025. "A Reflection on the Conservation of Waterlogged Wood: Do Original Artefacts Truly Belong in Public Museum Collections?" Heritage 8, no. 7: 273. https://doi.org/10.3390/heritage8070273
APA StyleErič, M., Stopar, D., Guček Puhar, E., Korat Bensa, L., Saje, N., Jaklič, A., & Solina, F. (2025). A Reflection on the Conservation of Waterlogged Wood: Do Original Artefacts Truly Belong in Public Museum Collections? Heritage, 8(7), 273. https://doi.org/10.3390/heritage8070273