Development Trend in Non-Destructive Techniques for Cultural Heritage: From Material Characterization to AI-Driven Diagnosis
Abstract
1. Introduction
2. Non-Destructive Techniques (NDTs)
2.1. Spectroscopy-Based Techniques
2.1.1. FTIR Spectroscopy
2.1.2. Raman Spectroscopy
2.1.3. NMR Spectroscopy and Relaxometry
2.2. X-Ray-Based Techniques
2.2.1. Conventional XRD and XRF
2.2.2. Total Reflection XRF (TRXRF)
2.2.3. Spatially Resolved X-Ray Techniques
2.3. Digital-Based Techniques
2.3.1. Digital Imaging and Visualization
2.3.2. Volumetric and Structural Imaging
2.3.3. Data Fusion and Computational Processing
2.3.4. AI-Assisted Diagnosis and Virtual Restoration
3. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CH | Cultural heritage |
NDT | Non-destructive technique |
XRF | X-ray fluorescence |
XRD | X-ray diffraction (XRD) |
ATR | Attenuated total reflectance |
μ-RS | Micro-Raman spectroscopy |
ED-XRF | Energy-dispersive X-ray fluorescence spectroscopy |
SERS | Surface-enhanced Raman spectroscopy |
NMR | Nuclear magnetic resonance |
MIP | Mercury intrusion porosimetry |
MRI | Magnetic resonance imaging |
TRXRF | Total reflection XRF |
MA-XRD | Macro-XRD |
μ-XRD | Micro-XRD |
IRT | Infrared thermography |
PT | Pulse thermography |
HSI | Hyperspectral imaging |
MSI | Multispectral imaging |
CT | Computed tomography |
μ-CT | Micro-CT |
SfM | Structure-from-motion |
AI | Artificial intelligence |
CNN | Convolutional neural network |
LIBS | Laser-induced breakdown spectroscopy |
LA-ICP-MS | Laser ablation inductively coupled plasma mass spectrometry |
OCT | Optical coherence tomography |
IBA | Ion beam analysis |
PIXE | Proton-induced X-ray emission |
RBS | Rutherford backscattering spectrometry |
PIGE | Particle-induced gamma-ray emission |
CRM | Certified reference material |
References
- Jagielska-Burduk, A.; Pszczyński, M.; Stec, P. Cultural heritage education in UNESCO cultural conventions. Sustainability 2021, 13, 3548. [Google Scholar] [CrossRef]
- Muradov, M.; Kot, P.; Markiewicz, J.; Łapiński, S.; Tobiasz, A.; Onisk, K.; Shaw, A.; Hashim, K.; Zawieska, D.; Mohi-Ud-Din, G. Non-destructive system for in-wall moisture assessment of cultural heritage buildings. Meas 2022, 203, 111930. [Google Scholar]
- Forrest, C. An international perspective on sunken state vessels as underwater cultural heritage. Ocean. Dev. Int. Law 2003, 34, 41–57. [Google Scholar] [CrossRef]
- Cappa, F.; Piñar, G.; Brenner, S.; Frühmann, B.; Wetter, W.; Schreiner, M.; Engel, P.; Miklas, H.; Sterflinger, K. The kiev folia: An interdisciplinary approach to unravelling the past of an ancient slavonic manuscript. Int. Biodeterior. Biodegrad. 2022, 167, 105342. [Google Scholar] [CrossRef]
- Minhus, S.M.; Huie, L. The tendency of traditional costume at heritage festival for cultural revival. SAGE Open 2021, 11, 215824402110169. [Google Scholar] [CrossRef]
- Sallam, A.; Hemeda, S.; Toprak, M.S.; Muhammed, M.; Hassan, M.; Uheida, A. CT scanning and MATLAB calculations for preservation of coptic mural paintings in historic Egyptian monasteries. Sci. Rep. 2019, 9, 3903. [Google Scholar] [CrossRef]
- Mikayama, A.; Hokoi, S.; Ogura, D.; Okada, K.; Su, B. The effects of windblown sand on the deterioration of mural paintings in cave 285, in Mogao caves, Dunhuang. J. Build. Phys. 2018, 42, 652–671. [Google Scholar]
- Costantini, I.; Castro, K.; Madariaga, J.M. Portable and laboratory analytical instruments for the study of materials, techniques and environmental impacts in mediaeval mural paintings. Anal. Methods 2018, 10, 4854–4870. [Google Scholar] [CrossRef]
- Harth, A. X-ray fluorescence (XRF) on painted heritage objects: A review using topic modeling. Herit. Sci. 2024, 12, 17. [Google Scholar]
- Crina Anca Sandu, I.; de Sá, M.H.; Pereira, M.C. Ancient ‘gilded’ art objects from European cultural heritage: A review on different scales of characterization. Surf. Interface Anal. 2011, 43, 1134–1151. [Google Scholar] [CrossRef]
- Lehmann, E.H.; Vontobel, P.; Deschler-Erb, E.; Soares, M. Non-invasive studies of objects from cultural heritage. Nucl. Instrum. Methods Phys. Res. Sect. A 2005, 542, 68–75. [Google Scholar] [CrossRef]
- Liu, G.L.; Kazarian, S.G. Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Analyst 2022, 147, 1777–1797. [Google Scholar] [CrossRef]
- Camara, A. International council of museums (icom): Code of ethics. In Encyclopedia of Global Archaeology; Springer International Publishing: Cham, Switzerland, 2020; pp. 5868–5872. [Google Scholar]
- EN 16085:2012; Conservation of Cultural Property—Methodology for Sampling from Materials of Cultural Property—General Rules. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- EN 16853:2017; Conservation of Cultural Heritage—Conservation Process—Decision Making, Planning and Implementation. European Committee for Standardization (CEN): Brussels, Belgium, 2017.
- EN 16095:2012; Conservation of Cultural Property—Condition Recording for Movable Cultural Heritage. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- Dutta, A. Fourier transform infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 10, 73–93. [Google Scholar]
- Campanella, B.; Palleschi, V.; Legnaioli, S. Introduction to vibrational spectroscopies. ChemTexts 2021, 7, 5. [Google Scholar] [CrossRef]
- Zhang, W.B. Review on analysis of biodiesel with infrared spectroscopy. Renew. Sustain. Energy Rev. 2012, 16, 6048–6058. [Google Scholar] [CrossRef]
- Goda, K.; Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 2013, 7, 102–112. [Google Scholar] [CrossRef]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Librando, V.; Minniti, Z.; Lorusso, S. Ancient and modern paper characterization by FTIR and micro-Raman spectroscopy. Conserv. Sci. Cult. Herit. 2011, 11, 249–268. [Google Scholar]
- Raditoiu, V.; Chican, I.E.; Raditoiu, A.; Fierascu, I.R.; Fierascu, C.; Fotea, P. VR Technologies in Cultural Heritage; Duguleană, M., Carrozzino, M., Gams, M., Tanea, I., Eds.; Springer: Cham, Switzerland, 2019; pp. 3–9. [Google Scholar]
- Kozłowski, R.M.; Mackiewicz-Talarczyk, M. 1A-Introduction to natural textile fibres. In Handbook of Natural Fibres; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 1–13. [Google Scholar]
- Vasconcelos, A.; Freddi, G.; Cavaco-Paulo, A. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 2008, 9, 1299–1305. [Google Scholar] [CrossRef]
- Zhang, M.; Ba, Z.; Liu, J.; Lei, Y.; Kaya, M.; Tang, K. Rapid and non-destructive identification of the leather artifacts using FTIR-PCA. J. Cult. Herit. 2025, 72, 150–159. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Liu, J.; Lei, Y.; Kaya, M.G.A.; Tang, K. Long-term antioxidant and ultraviolet light shielding gelatin films for the preservation of leather artifacts. Int. J. Biol. Macromol. 2025, 291, 138981. [Google Scholar]
- Zhang, M.; Liu, J.; Li, B.; Lei, Y.; Albu Kaya, M.G.; Zhang, X.; Tang, K. Revealing the secrets of a lacquered leather artifact through molecular fingerprints. npj Herit. Sci. 2025, 13, 148. [Google Scholar] [CrossRef]
- Hermans, J.J.; Keune, K.; van Loon, A.; Iedema, P.D. An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings. J. Anal. At. Spectrom. 2015, 30, 1600–1608. [Google Scholar] [CrossRef]
- Derrick, M.R.; Stulik, D.; Landry, J.M. Infrared Spectroscopy in Conservation Science; Getty Conservation Institute: Los Angeles, CA, USA, 1999. [Google Scholar]
- Medeghini, L.; Mignardi, S.; De Vito, C.; Conte, A.M. Evaluation of a FTIR data pretreatment method for principal component analysis applied to archaeological ceramics. Microchem. J. 2016, 125, 224–229. [Google Scholar] [CrossRef]
- Bitossi, G.; Giorgi, R.; Mauro, M.; Salvadori, B.; Dei, L. Spectroscopic Techniques in Cultural Heritage Conservation: A Survey. Appl. Spectrosc. Rev. 2005, 40, 187–228. [Google Scholar] [CrossRef]
- Bell, J.; Nel, P.; Stuart, B. Non-invasive identification of polymers in cultural heritage collections: Evaluation, optimisation and application of portable FTIR (ATR and external reflectance) spectroscopy to three-dimensional polymer-based objects. Herit. Sci. 2019, 7, 95. [Google Scholar]
- Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Rousaki, A.; Vandenabeele, P. In situ Raman spectroscopy for cultural heritage studies. J. Raman Spectrosc. 2021, 52, 2178–2189. [Google Scholar] [CrossRef]
- Edwards, H.G.; Vandenabeele, P.; Colomban, P. Raman Spectroscopy in Cultural Heritage Preservation; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Coccato, A.; Caggiani, M.C. An overview of principal components analysis approaches in Raman studies of cultural heritage materials. J. Raman Spectrosc. 2024, 55, 125–147. [Google Scholar]
- Tournié, A.; Prinsloo, L.C.; Paris, C.; Colomban, P.; Smith, B.J. The first in situ Raman spectroscopic study of san rock art in South Africa: Procedures and preliminary results. J. Raman Spectros. 2011, 42, 399–406. [Google Scholar]
- Hernanz, A.; Ruiz-López, J.F.; Madariaga, J.M.; Gavrilenko, E.; Maguregui, M.; Fdez-Ortiz de Vallejuelo, S.; Martínez-Arkarazo, I.; Alloza-Izquierdo, R.; Baldellou-Martínez, V.; Viñas-Vallverdú, R. Spectroscopic characterisation of crusts interstratified with prehistoric paintings preserved in open-air rock art shelters. J. Raman Spectrosc. 2014, 45, 1236–1243. [Google Scholar]
- Prieto-Taboada, N.; Fdez-Ortiz de Vallejuelo, S.; Santos, A.; Veneranda, M.; Castro, K.; Maguregui, M.; Morillas, H.; Arana, G.; Martellone, A.; de Nigris, B. Understanding the degradation of the blue colour in the wall paintings of Ariadne’s house (Pompeii, Italy) by non-destructive techniques. J. Raman Spectrosc. 2021, 52, 85–94. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Wu, F.; Wang, Y.; Guo, H.; He, X.; Zhang, X.; Wang, F. In situ analysis of pigments on the murals of Yanshan Temple in Fanshi County, Shanxi Province, China by portable Raman and XRF spectrometers. Eur. Phys. J. Plus 2023, 138, 48. [Google Scholar] [CrossRef]
- Mosca, S.; Frizzi, T.; Pontone, M.; Alberti, R.; Bombelli, L.; Capogrosso, V.; Nevin, A.; Valentini, G.; Comelli, D. Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem. J. 2016, 124, 775–784. [Google Scholar] [CrossRef]
- Colomban, P.; Lu, T.A.; Milande, V. Non-invasive on-site Raman study of blue-decorated early soft-paste porcelain: The use of arsenic-rich (European) cobalt ores-comparison with huafalang Chinese porcelains. Ceram. Int. 2018, 44, 9018–9026. [Google Scholar] [CrossRef]
- Colomban, P.; Simsek Franci, G.; Koleini, F. On-site Raman spectroscopic study of beads from the necropolis of Vohemar, Northern Madagascar (>13th C.). Heritage 2021, 4, 524–540. [Google Scholar] [CrossRef]
- Colomban, P.; Gironda, M.; Edwards, H.G.M.; Mesqui, V. The enamels of the first (soft-paste) European blue and white porcelains: Rouen, Saint-Cloud and Paris factories: Complementarity of Raman and X-ray fluorescence analyses with mobile instruments to identify the cobalt ore. J. Raman Spectrosc. 2021, 52, 2246–2261. [Google Scholar] [CrossRef]
- Analytical Methods Committee. Surface-enhanced Raman spectroscopy (SERS) in cultural heritage. Anal. Methods 2017, 9, 4338–4340. [Google Scholar] [CrossRef]
- Pozzi, F.; Leona, M. Surface-enhanced Raman spectroscopy in art and archaeology. Stud. Conserv. 2016, 61, 67–77. [Google Scholar] [CrossRef]
- Bruni, S.; Guglielmi, V.; Pozzi, F. Historical organic dyes: A surface-enhanced Raman scattering (SERS) spectral database on Ag Lee-Meisel colloids aggregated by NaClO4. J. Raman Spectrosc. 2011, 42, 1267–1281. [Google Scholar] [CrossRef]
- Leona, M. Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering. Proc. Natl. Acad. Sci. USA 2009, 106, 14757–14762. [Google Scholar] [CrossRef]
- Capitani, D.; Di Tullio, V.; Proietti, N. Nuclear magnetic resonance to characterize and monitor cultural heritage. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 64, 29–69. [Google Scholar] [CrossRef]
- Blümich, B.; Casanova, F.; Perlo, J.; Presciutti, F.; Anselmi, C.; Doherty, B. Noninvasive testing of art and cultural heritage by mobile NMR. Acc. Chem. Res. 2010, 43, 761–770. [Google Scholar] [CrossRef]
- Blümich, B.; Casanova, F.; Appelt, S. NMR at low magnetic fields. Chem. Phys. Lett. 2009, 477, 231–240. [Google Scholar] [CrossRef]
- Madariaga, J.M. Analytical chemistry in the field of cultural heritage. Anal. Methods 2015, 7, 4848–4876. [Google Scholar] [CrossRef]
- Rehorn, C.; Blümich, B. Cultural heritage studies with mobile NMR. Anal. Chem. 2018, 57, 7304–7312. [Google Scholar] [CrossRef]
- Baias, M. Mobile NMR: An essential tool for protecting our cultural heritage. Magn. Reson. Chem. 2017, 55, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Proietti, N.; Capitani, D.; Di Tullio, V. Applications of nuclear magnetic resonance sensors to cultural heritage. Sensors 2014, 14, 6977–6997. [Google Scholar] [CrossRef] [PubMed]
- Camaiti, M.; Bortolotti, V.; Fantazzini, P. Stone porosity, wettability changes and other features detected by MRI and NMR relaxometry: A more than 15-year study. Magn. Reson. Chem. 2015, 53, 34–47. [Google Scholar] [CrossRef]
- Brai, M.; Camaiti, M.; Casieri, C.; De Luca, F.; Fantazzini, P. Nuclear magnetic resonance for cultural heritage. Magn. Reson. Imaging 2007, 25, 461–465. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Liu, X.; Wang, Y.; Tang, H.; Qu, L.; Shang, Y.; Chen, W. Quantitative assessment of collagen degradation in archaeological leather by solid-state NMR. J. Cult. Herit. 2022, 58, 179–185. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, J.; Liu, J.; Chen, Y.; Lu, Y.; Lei, Y.; Kaya, M.G.A.; Tang, K. A comprehensive evaluation of a historical leather armor from Yanghai cemetery, Turpan. Herit. Sci. 2024, 12, 162. [Google Scholar] [CrossRef]
- Moricca, C.; Stagno, V.; Hamza, N.M.; Favero, G.; Sadori, L.; Capuani, S. The high potential of micro-magnetic resonance imaging for the identification of archaeological reeds: The case study of Tutankhamun. J. Herit. Sci. 2023, 6, 7170–7180. [Google Scholar] [CrossRef]
- Morigi, M.; Casali, F.; Bettuzzi, M.; Brancaccio, R.; d’Errico, V. Application of X-ray computed tomography to cultural heritage diagnosis. Appl. Phys. A 2010, 100, 653–661. [Google Scholar] [CrossRef]
- Brittain, H.G. X-ray diffraction and x-ray fluorescence. J. Chem. Educ. 2006, 47, 177–226. [Google Scholar]
- Trojek, T.; Musílek, L.; Čechák, T. X-ray fluorescence analysis of cultural artefacts-applications to the Czech heritage. Radiat. Phys. Chem. 2014, 95, 381–384. [Google Scholar] [CrossRef]
- Galli, A.; Bonizzoni, L. Contribution of X-ray fluorescence techniques in cultural heritage materials characterization. Appl. Sci. 2022, 12, 6309. [Google Scholar] [CrossRef]
- Gómez-Morón, M.A.; Ortiz, P.; Martín-Ramírez, J.M.; Ortiz, R.; Castaing, J. A new insight into the vaults of the kings in the Alhambra (Granada, Spain) by combination of portable XRD and XRF. Microchem. J. 2016, 125, 260–265. [Google Scholar] [CrossRef]
- Daniel Martin-Ramos, J.; Zafra-Gómez, A.; Vílchez, J.L. Non-destructive pigment characterization in the painting little madonna of foligno by X-ray powder diffraction. Microchem. J. 2017, 134, 343–353. [Google Scholar] [CrossRef]
- Luo, W.; Si, Y.; Wang, H.; Qin, Y.; Huang, F.; Wang, C. Leather material found on a 6th B.C. Chinese bronze sword: A technical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 1630–1633. [Google Scholar] [CrossRef]
- Franquelo, M.L.; Duran, A.; Perez-Rodriguez, J.L. Laboratory multi-technique study of Spanish decorated leather from the 12th to 14th centuries. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 218, 331–341. [Google Scholar] [CrossRef]
- Artem, S.M.; Nailyam, N.U.; Galina, V.P.; Maria, M.M.; Dmitriy, L.S.; Vitaly, V.P.; Dmitry, O.K.; Elena, I.D. Combination of total-reflection X-Ray fluorescence method and chemometric techniques for provenance study of archaeological ceramics. Molecules 2023, 28, 1099. [Google Scholar]
- Vázquez, C.; Albornoz, A.; Hajduk, A.; Elkin, D.; Custo, G.; Obrustky, A. Total reflection X-ray fluorescence and archaeometry: Application in the Argentinean cultural heritage. Spectrochim. Acta B At. Spectrosc. 2008, 63, 1415–1419. [Google Scholar] [CrossRef]
- Fernández-Ruiz, R.; García-Heras, M. Study of archaeological ceramics by total-reflection X-ray fluorescence spectrometry: Semi-quantitative approach. Spectrochim. Acta B At. Spectrosc. 2007, 62, 1123–1129. [Google Scholar] [CrossRef]
- Claudia Caliri, P.R.; Romano, F.P. Combined use of MA-XRF scanning and XRD for the non-invasive investigation of illuminated manuscript fragments. In Proceedings of the Technart 2017 International Conference, Bilbao, Spain, 2–6 May 2017. [Google Scholar]
- Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 2012, 106, 309–323. [Google Scholar] [CrossRef]
- Kavuru, M.; Rosina, E. IR Thermography for the Restoration of Colonial Architecture in India-Case study of the British Residency in Hyderabad, Telangana. J. Cult. Herit. 2021, 48, 24–28. [Google Scholar] [CrossRef]
- Hatır, M.E.; İnce, İ.; Bozkurt, F. Investigation of the effect of microclimatic environment in historical buildings via infrared thermography. J. Build. Eng. 2022, 57, 104916. [Google Scholar] [CrossRef]
- Tortora, M.; Sfarra, S.; Chiarini, M.; Daniele, V.; Taglieri, G.; Cerichelli, G. Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings. Appl. Surf. Sci. 2016, 387, 971–985. [Google Scholar] [CrossRef]
- Mercuri, F.; Zammit, U.; Orazi, N.; Paoloni, S.; Marinelli, M.; Scudieri, F. Active infrared thermography applied to the investigation of art and historic artefacts. J. Therm. Anal. Calorim. 2011, 104, 475–485. [Google Scholar] [CrossRef]
- Laureti, S.; Sfarra, S.; Malekmohammadi, H.; Burrascano, P.; Hutchins, D.; Senni, L.; Silipigni, G.; Maldague, X.; Ricci, M. The use of pulse-compression thermography for detecting defects in paintings. NDT E Int. 2018, 98, 147–154. [Google Scholar] [CrossRef]
- Lanteri, L.; Agresti, G.; Pelosi, C. A new practical approach for 3D documentation in ultraviolet fluorescence and infrared reflectography of polychromatic sculptures as fundamental step in restoration. Heritage 2019, 2, 207–215. [Google Scholar] [CrossRef]
- Chu, Y.C.; Huang, Y.Y.; Ye, C.Y.; Chen, S.L. Automated wall moisture detection in heritage sites based on convolutional neural network (CNN) for infrared imagery. Appl. Sci. 2025, 15, 6495. [Google Scholar] [CrossRef]
- Wevers, M.; Nicolaï, B.; Verboven, P.; Swennen, R.; Roels, S.; Verstrynge, E.; Lomov, S.; Kerckhofs, G.; Van Meerbeek, B.; Mavridou, A.M.; et al. Applications of CT for non-destructive testing and materials characterization. In Industrial X-Ray Computed Tomography; Carmignato, S., Dewulf, W., Leach, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 267–331. [Google Scholar]
- Vlassenbroeck, J.; Cnudde, V.; Masschaele, B.; Dierick, M.; Van Hoorebeke, L.; Jacobs, P. A comparative and critical study of X-ray CT and neutron CT as non-destructive material evaluation techniques. Geol. Soc. Lond. Spec. Publ. 2007, 271, 277–285. [Google Scholar] [CrossRef]
- Du Plessis, A.; Broeckhoven, C.; Guelpa, A.; Le Roux, S.G. Laboratory x-ray micro-computed tomography: A user guideline for biological samples. Gigascience 2017, 6, 27. [Google Scholar] [CrossRef]
- Laycock, S.D.; Bell, G.D.; Mortimore, D.B.; Greco, M.K.; Corps, N.; Finkle, I. Combining X-ray micro-CT technology and 3D printing for the digital preservation and study of a 19th Century Cantonese chess piece with intricate internal structure. J. Comput. Cult. Herit. 2013, 5, 1–7. [Google Scholar] [CrossRef]
- Fernandes, H.; Summa, J.; Daudre, J.; Rabe, U.; Fell, J.; Sfarra, S.; Gargiulo, G.; Herrmann, H.G. Characterization of ancient marquetry using different non-destructive testing techniques. Appl. Sci. 2021, 11, 7979. [Google Scholar] [CrossRef]
- Fuchs, T.O.J.; Hanke, R. 3D X-ray Tomography—Basics and Latest Developments. In Handbook of Advanced Non-Destructive Evaluation; Ida, N., Meyendorf, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Stock, S.R. Microcomputed Tomography: Methodology and Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Schwartz, L.F. Morphing the three faces of Mona: The decision-making steps Leonardo used to create his Mona Lisa. Comput. Graph. 1995, 19, 529–539. [Google Scholar] [CrossRef]
- Bettuzzi, M.; Morigi, M.P.; Brancaccio, R.; Peccenini, E.; Casali, F. A mobile computed tomography system for on-site cultural heritage analysis. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering, Milan, Italy, 6–9 June 2017. [Google Scholar]
- Mannes, D.; Schmid, F.; Frey, J.; Schmidt-Ott, K.; Lehmann, E. Combined neutron and X-ray imaging for non-invasive investigations of cultural heritage objects. Phys. Procedia 2015, 69, 653–660. [Google Scholar] [CrossRef]
- Maher, M.A. X-RAY computed tomography of a late period falcon bronze coffin. Radiat. Phys. Chem. 2020, 166, 108475. [Google Scholar] [CrossRef]
- Machado, A.; Silva, A.; Campos, G.; Gomes, C.; Oliveira, D.; Lopes, R. Analysis of metallic archaeological artifacts by x-ray computed microtomography technique. Appl. Radiat. Isot. 2019, 151, 274–279. [Google Scholar] [CrossRef]
- Hoehse, M.; Paul, A.; Gornushkin, I.; Panne, U. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS. Anal. Bioanal. Chem. 2012, 402, 1443–1450. [Google Scholar] [CrossRef]
- Pessanha, S.; Manso, M.; Carvalho, M.L. Application of spectroscopic techniques to the study of illuminated manuscripts: A survey. Spectrochim. Acta Part B 2012, 71, 54–61. [Google Scholar] [CrossRef]
- Janssens, K.; Van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; De Nolf, W.; Vermeulen, M.; et al. Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-ray methods. Top. Curr. Chem. 2016, 374, 81. [Google Scholar] [CrossRef]
- Janssens, K.; De Nolf, W.; Van Der Snickt, G.; Vincze, L.; Vekemans, B.; Terzano, R.; Brenker, F.E. Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis. TrAC Trends Anal. Chem. 2010, 29, 464–478. [Google Scholar] [CrossRef]
- Targowski, P.; Iwanicka, M. Optical coherence tomography: Its role in the non-invasive structural examination and conservation of cultural heritage objects—A review. Appl. Phys. A 2012, 106, 265–277. [Google Scholar] [CrossRef]
- Patrucco, G.; Gómez, A.; Adineh, A.; Rahrig, M.; Lerma, J.L. 3D data fusion for historical analyses of heritage buildings using thermal images: The Palacio de Colomina as a case study. Remote Sens. 2022, 14, 5699. [Google Scholar] [CrossRef]
- Raimundo, J.; Medina, S.; Mata, J.; Herrero-Tejedor, T.; Priego-de-los-Santos, E. Deep learning enhanced multisensor data fusion for building assessment using multispectral voxels and self-organizing maps. Heritage 2024, 7, 1043–1073. [Google Scholar] [CrossRef]
- Cera, V. Multisensor data fusion for culture heritage assets monitoring and preventive conservation. ISPRS Internat. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, 46, 151–157. [Google Scholar] [CrossRef]
- Bilici Genc, B.; Bostanci, E.; Eskici, B.; Erten, H.; Caglar Eryurt, B.; Acici, K.; Ketenoglu, D.; Asuroglu, T. Development of a new non-destructive analysis method in cultural heritage with artificial intelligence. Electronics 2024, 13, 4039. [Google Scholar] [CrossRef]
- Marco, F.; Marina, K.; Massimiliano, P.; Arianna, T.; Alessio, D.B.; Stuart, J. Machine learning for cultural heritage: A survey. Pattern Recognit. Lett. 2020, 133, 102–108. [Google Scholar] [CrossRef]
- Tejedor, B.; Lucchi, E.; Bienvenido-Huertas, D.; Nardi, I. Non-destructive techniques (NDT) for the diagnosis of heritage buildings: Traditional procedures and futures perspectives. Energy Build. 2022, 263, 12029. [Google Scholar] [CrossRef]
Category | Analytical Target | Spatial Resolution | Portability | Invasiveness | Typical CH Applications |
---|---|---|---|---|---|
Spectroscopic techniques (FTIR, Raman, pNMR) | Organic binders, Pigments, Mental alloys | Point analysis: 10 μm (Raman) to 5 mm (pXRF) | Handheld (pXRF), Benchtop (FTIR/Raman) | Non-invasive | Pigment ID, corrosion product analysis, organic material characterization |
X-ray techniques (XRD, XRF) | Crystalline phases, Elemental composition | 0.1–1 mm (lab XRD) to 3–10 mm (pXRF) | Mobile systems available | Non-invasive | Mineral identification, alloy composition mapping, authenticity verification |
Spatially resolved X-ray (μ-XRD, MA-XRF) | Elemental distribution | 10–100 μm | Limited (benchtop) | Non-invasive | Hidden underdrawing mapping, pigment stratigraphy, degradation front visualization |
Digital imaging (HSI, MSI, IRT) | Surface features, Sub-surface defects | 30 μm (micro-HSI)-5 mm (IRT) | Tripod-mounted systems | Non-invasive | Mural deterioration mapping, hidden text recovery, moisture distribution monitoring |
Volumetric imaging (CT, μ-CT, Photogrammetry) | Internal structure, 3D morphology | 0.5 μm (μ-CT) to 0.1 mm (CT) | No | Non-destructive | Bronze core casting analysis, mummy wrapping study, ceramic manufacturing technique reconstruction |
Data fusion (Heperspectral and CT, MSI and XRF) | Multi-scale properties | N/A | Partial | Non-invasive | Cross-validated material diagnosis |
AI-assisted diagnosis | Pattern recognition, Predictive modeling | Pixel-level (segmentation) | Cloud-based processing | Algorithmic | Automated crack detection, virtual inpainting, large-scale site monitoring |
Material Type | Diagnostic Capability |
---|---|
Paper/Cellulose | Fiber sourcing, sizing agents |
Textile (silk/wool/leather) | Protein differentiation (fiber, keratin, collagen) |
Paintings | Metal soap identification (Zn/Cu/Pb carboxylates) |
Stone/Ceramics | Binder degradation markers |
Polymers | 3D artifact characterization |
Learning Paradigm | Representative Algorithms | Typical Applications | Key Advantages |
---|---|---|---|
Supervised learning | CNN, U-Net, Mask R-CNN, Transformer-based | Crack/defect detection, material/region segmentation | High accuracy with labeled data |
Unsupervised/ self-supervised learning | PCA, NMF, SOM, k-means, Autoencoders | Spectrum clustering, anomaly detection, representation learning | Works without labels |
Generative modeling | GANs, Diffusion Models | Mural inpainting, 2D coin reconstruction, 3D virtual restoration | Realistic restorations, immersive visualization |
Semi-supervised /transfer learning | — | Leveraging limited, domain-specific datasets for reconstruction or cross-domain detection | Reduces annotation cost, improves generalization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, S.; Shao, H.; Ba, Z.; Liu, J.; Albu Kaya, M.G.; Tang, K.; Han, G. Development Trend in Non-Destructive Techniques for Cultural Heritage: From Material Characterization to AI-Driven Diagnosis. Heritage 2025, 8, 381. https://doi.org/10.3390/heritage8090381
Zhang M, Liu S, Shao H, Ba Z, Liu J, Albu Kaya MG, Tang K, Han G. Development Trend in Non-Destructive Techniques for Cultural Heritage: From Material Characterization to AI-Driven Diagnosis. Heritage. 2025; 8(9):381. https://doi.org/10.3390/heritage8090381
Chicago/Turabian StyleZhang, Mingrui, Suchi Liu, Haojian Shao, Zonghuan Ba, Jie Liu, Mǎdǎlina Georgiana Albu Kaya, Keyong Tang, and Guohe Han. 2025. "Development Trend in Non-Destructive Techniques for Cultural Heritage: From Material Characterization to AI-Driven Diagnosis" Heritage 8, no. 9: 381. https://doi.org/10.3390/heritage8090381
APA StyleZhang, M., Liu, S., Shao, H., Ba, Z., Liu, J., Albu Kaya, M. G., Tang, K., & Han, G. (2025). Development Trend in Non-Destructive Techniques for Cultural Heritage: From Material Characterization to AI-Driven Diagnosis. Heritage, 8(9), 381. https://doi.org/10.3390/heritage8090381