Investigation of Photoelectron Properties of Polymer Films with Silicon Nanoparticles
Abstract
:1. Introduction
2. Experimental
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kazmerski; Lawrence, L. Photovoltaics: A review of cell and module technologies. Renew. Sustain. Energy Rev. 1997, 1, 71–170. [Google Scholar] [CrossRef]
- Meyer, P.V. Technical and economic optimization for CdTe PV at the turn of the millennium. Prog. Photovolt. Res. Appl. 2000, 8, 161–169. [Google Scholar] [CrossRef]
- Rau, U.; Schock, H.W. Cu(In, Ga)Se2 solar Cells. Clean Electricity from Photovoltaics. Ser. Photoconvers. Solar Energy 2001, 1, 277–345. [Google Scholar]
- Gremenok, V.F.; Tivanov, M.S.; Zalesski, V.B. Solar cells based on semiconductors. Int. Sci. J. Altern. Energy Ecol. 2009, 69, 59–124. [Google Scholar]
- Emelyanov, A.V.; Khenkin, M.V.; Kazanskii, A.G.; Forsh, P.A.; Kashkarov, P.K.; Gecevicius, M.; Beresna, M.; Kazansky, P.G. Femtosecond laser induced crystallization of hydrogenated amorphous silicon for photovoltaic applications. Thin Solid Films 2014, 556, 410–413. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf (accessed on 25 April 2019).
- Hemaprabhaa, E.; Pandeya, U.K.; Chattopadhyaya, K.; Ramamurthya, P.C. Doped silicon nanoparticles for enhanced charge transportation in organic inorganic hybrid solar cells. Solar Energy 2018, 173, 744–751. [Google Scholar] [CrossRef]
- Salikhov, R.B.; Biglova, Y.N.; Yumaguzin, Y.M.; Salikhov, T.R.; Mustafin, A.G. Solar photoconverters based on thin films of organic materials. Tech. Phys. Lett. 2013, 39, 854–859. [Google Scholar] [CrossRef]
- Niesar, S.; Dietmueller, R.; Nesswetter, H.; Wiggers, H.; Stutzmann, M. Silicon/organic semiconductor heterojunction for solar cells. Phys. Stat. Sol. A. 2009, 206, 2775–2781. [Google Scholar] [CrossRef]
- Shao, M.; Keum, J.; Chen, J.; He, Y.; Chen, W.; Browning, J.F.; Jakowski, J.; Sumpter, B.G.; Ivanov, I.N.; Ma, Y.-Z.; et al. The Isotopic Effects of Deuteration on Optoelectronic Properties of Conducting Polymers. Nat. Commun. 2014, 5, 3180. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Holman, Z.C.; Kortshagen, U.R. Hybrid solar cells from P3HT and silicon nanocrystals. Nano Lett. 2009, 9, 449–456. [Google Scholar] [CrossRef]
- Kaftelen, H.; Ocakoglu, K.; Thomann, R.; Tu, S.Y.; Weber, S.; Erdem, E. EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys. Rev. B 2012, 86, 014113-1–014113-9. [Google Scholar] [CrossRef]
- Erdem, E. Microwave power, temperature, atmospheric and light dependence of intrinsic defects in ZnO nanoparticles: A study of electron paramagnetic resonance (EPR) spectroscopy. J. Alloy. Compd. 2014, 605, 34–44. [Google Scholar] [CrossRef]
- Von Bardeleben, H.J.; Ortega, C.; Grosman, A.; Morazzani, V.; Siejka, J.; Stievenard, D. Defect and structure analysis of n+-, p+- and p-type porous silicon by the electron paramagnetic resonance technique. J. Lumin. 1993, 57, 301–313. [Google Scholar] [CrossRef]
- Riikonen, J.; Salomaki, M.; van Wonderen, J.; Kemell, M.; Xu, W.; Korhonen, O.; Ritala, M.; MacMillan, F.; Salonen, J.; Lehto, V.-P. Surface chemistry, reactivity and pore structure of porous silicon oxidized by various methods. Langmuir 2012, 28, 10573–10583. [Google Scholar] [CrossRef]
- Demin, V.A.; Konstantinova, E.A.; Kashkarov, P.K. Luminescence and photosensitization properties of ensembles of silicon nanocrystals in terms of an exciton migration model. J. Exp. Theor. Phys. 2010, 111, 830–843. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emelyanov, A.; Kazanskii, A.; Kashkarov, P.; Konkov, O.; Terukov, E.; Forsh, P.; Khenkin, M.; Kukin, A.; Beresna, M.; Kazansky, P. Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties. Semiconductors 2012, 46, 749–754. [Google Scholar] [CrossRef]
- Falke, S.; Eravuchira, P.; Maternyb, A.; Lienaua, C. Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends. J. Raman Spectrosc. 2011, 42, 1897–1900. [Google Scholar] [CrossRef]
- Motaung, D.E.; Malgas, G.F.; Nkosi, S.S.; Mhlongo, G.H.; Mwakikunga, B.W.; Malwela, T.; Arendse, C.J.; Muller, T.F.G.; Cummings, F.R. Comparative study: The effect of annealing conditions on the properties of P3HT:PCBM blends. J. Mater. Sci. 2013, 48, 1763–1778. [Google Scholar] [CrossRef]
- Konkin, A.; Roth, H.-K.; Scharff, P.; Aganov, A.; Ambacher, O.; Sensfuss, S. K-band ESR studies of structural anisotropy in P3HT and P3HT/PCBM blend polymer solid films: Paramagnetic defects after continuous wave Xe-lamp photolysis. Solid State Commun. 2009, 149, 893–897. [Google Scholar] [CrossRef]
- Saini, V.; Li, Z.R.; Bourdo, S.; Dervishi, E.; Xu, Y.; Ma, X.D.; Kunets, V.P.; Salamo, G.J.; Viswanathan, T.; Biris, A.R.; et al. Electrical, optical, and morphological properties of P3HT-MWNT nanocomposites prepared by in situ polymerization. J. Phys. Chem. C 2009, 113, 8023–8029. [Google Scholar] [CrossRef]
- Baibarac, M.; Lapkowski, M.; Pron, A.; Lefrant, S.; Baltog, I. SERS spectra of poly (3-hexylthiophene) in oxidized and unoxidized states. J. Raman Spectrosc. 1998, 29, 825–832. [Google Scholar] [CrossRef]
- Louarn, G.; Trznadel, M.; Buisson, J.P.; Laska, J.; Pron, A.; Lapkowski, M.; Lefrant, S. Raman spectroscopic studies of regioregular poly (3-alkylthiophenes). J. Phys. Chem. 1996, 100, 12532–12539. [Google Scholar] [CrossRef]
- Klimov, E.; Li, W.; Yang, X.; Hoffmann, J.G.; Loos, G. Scanning Near-Field and Confocal Raman Microscopic Investigation of P3HT-PCBM Systems for Solar Cell Applications. Macromolecules 2006, 39, 4493–4496. [Google Scholar] [CrossRef]
- Emelyanov, A.V.; Konstantinova, E.A.; Forsh, P.A.; Kazanskii, A.G.; Khenkin, M.V.; Petrova, N.N.; Terukov, E.I.; Kirilenko, D.A.; Bert, N.A.; Konnikov, S.G.; et al. Features of the structure and defect states in hydrogenated polymorphous silicon films. JETP Lett. 2013, 97, 466–469. [Google Scholar] [CrossRef]
- Cantin, J.L.; Schoisswohl, M.; Von Bardeleben, H.J. Electron-paramagnetic-resonance study of the microscopic structure of the Si(001)-SiO2 interface. Phys. Rev. B. 1995, 52, R11599–11602. [Google Scholar] [CrossRef]
- Minnekhanov, A.A.; Konstantinova, E.A.; Pustovoi, V.I.; Kashkarov, P.K. The Influence of the Formation and Storage Conditions of Silicon Nanoparticles Obtained by Laser-Induced Pyrolysis of Monosilane on the Nature and Properties of Defects. Tech. Phys. Lett. 2017, 43, 424–427. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinova, E.A.; Vorontsov, A.S.; Forsh, P.A. Investigation of Photoelectron Properties of Polymer Films with Silicon Nanoparticles. Surfaces 2019, 2, 387-394. https://doi.org/10.3390/surfaces2020028
Konstantinova EA, Vorontsov AS, Forsh PA. Investigation of Photoelectron Properties of Polymer Films with Silicon Nanoparticles. Surfaces. 2019; 2(2):387-394. https://doi.org/10.3390/surfaces2020028
Chicago/Turabian StyleKonstantinova, Elizaveta A., Alexander S. Vorontsov, and Pavel A. Forsh. 2019. "Investigation of Photoelectron Properties of Polymer Films with Silicon Nanoparticles" Surfaces 2, no. 2: 387-394. https://doi.org/10.3390/surfaces2020028
APA StyleKonstantinova, E. A., Vorontsov, A. S., & Forsh, P. A. (2019). Investigation of Photoelectron Properties of Polymer Films with Silicon Nanoparticles. Surfaces, 2(2), 387-394. https://doi.org/10.3390/surfaces2020028