A Review on the Fabrication and Characterization of Titania Nanotubes Obtained via Electrochemical Anodization
Abstract
:1. Introduction
2. Fabrication of TiO2 Nanotubes
2.1. Mechanisms in TNT Formation during Anodizing
2.2. Parameters Effecting Properties of Nanotubes
2.3. Properties Modification of Nanotubes
3. TNT Application in Solar Cells
4. TNTs for Biomedical Applications
5. TNTs for Water Purification
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Salem, S.S.; Hammad, E.N.; Mohamed, A.A.; El-dougdoug, W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Bioint. Res. Appl. Chem. 2022, 13, 41. [Google Scholar] [CrossRef]
- Taniguchi, N. On the basic concept of nanotechnology. In Proceedings of the ICPE, Tokyo, Japan, 26–29 August 1974; pp. 18–23. [Google Scholar]
- Mulvaney, P. Nanoscience vs Nanotechnology—Defining the Field. ACS Nano 2015, 9, 2215–2217. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.K.; Grigoriev, A.; Mishra, Y.K.; Ahuja, R. Progress in supercapacitors: Roles of two dimensional nanotubular materials. Nanoscale Adv. 2020, 2, 70–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wawrzyniak, J.; Grochowska, K.; Karczewski, J.; Kupracz, P.; Ryl, J.; Dołęga, A.; Siuzdak, K. The geometry of free-standing titania nanotubes as a critical factor controlling their optical and photoelectrochemical performance. Surf. Coat. Technol. 2020, 389, 125628. [Google Scholar] [CrossRef]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 2011, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liang, X.; Wang, J.; Jiao, S.; Xue, D. Multifunctional inorganic nanomaterials for energy applications. Nanoscale 2020, 12, 14–42. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Chen, J.; Wang, M.; Sheng, X.; Chen, X.; Feng, X.; Mao, S.S. Titanium dioxide nanostructures for photoelectrochemical applications. Prog. Mater. Sci. 2018, 98, 299–385. [Google Scholar] [CrossRef]
- Dai, L.; Chang, D.W.; Baek, J.; Lu, W. Carbon nanomaterials: Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1122. [Google Scholar] [CrossRef]
- Xue, X.; Ji, W.; Mao, Z.; Mao, H.; Wang, Y.; Wang, X.; Ruan, W.; Zhao, B.; Lombardi, J.R. Raman investigation of nanosized TiO2: Effect of crystallite size and quantum confinement. J. Phys. Chem. C 2012, 116, 8792–8797. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci. 2019, 106, 100574. [Google Scholar] [CrossRef]
- Ali, S.; Granbohm, H.; Lahtinen, J. Titania nanotubes prepared by rapid breakdown anodization for photocatalytic decolorization of organic dyes under UV and natural solar light. Nanoscale Res. Lett. 2018, 13, 179. [Google Scholar] [CrossRef]
- Absalan, Y.; Gholizadeh, M.; Butusov, L.; Bratchikova, I.; Kopylov, V.; Kovalchukova, O. Titania nanotubes (TNTs) prepared through the complex compound of gallic acid with titanium; examining photocatalytic degradation of the obtained TNTs. Arab. J. Chem. 2020, 13, 7274–7288. [Google Scholar] [CrossRef]
- Poddar, S.; Bit, A.; Sinha, S.K. A study on influence of anodization on the morphology of titania nanotubes over Ti6Al4V alloy in correlation to hard tissue engineering application. Mater. Chem. Phys. 2020, 254, 123457. [Google Scholar] [CrossRef]
- Pawlik, A.; Rehman, M.A.U.; Nawaz, Q.; Bastan, F.E.; Sulka, G.D.; Boccaccini, A.R. Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochim. Acta 2019, 307, 465–473. [Google Scholar] [CrossRef]
- Mohan, L.; Dennis, C.; Padmapriya, N.; Anandan, C.; Rajendran, N. Effect of electrolyte temperature and anodization time on formation of TiO2 nanotubes for biomedical applications. Mater. Today Commun. 2020, 23, 101103. [Google Scholar] [CrossRef]
- Tak, M.; Tomar, H.; Mote, R.G. Synthesis of titanium nanotubes (TNT) and its influence on electrochemical micromachining of titanium. Procedia CIRP 2020, 95, 803–808. [Google Scholar] [CrossRef]
- Quiroz, H.; Cuenca, A.D. Synthesis of self-organized TiO2 nanotube arrays: Microstructural, stereoscopic, and topographic studies. J. Appl. Phys. 2016, 120, 051703. [Google Scholar] [CrossRef]
- Roy, P.; Kim, D.; Lee, K.; Spiecker, E.; Schmuki, P. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2010, 2, 45–59. [Google Scholar] [CrossRef]
- Lin, K.S.; Lin, Y.G.; Cheng, H.W.; Haung, Y.H. Preparation and characterization of V-Loaded titania nanotubes for adsorption/photocatalysis of basic dye and environmental hormone contaminated wastewaters. Catal. Today 2018, 307, 119–130. [Google Scholar] [CrossRef]
- Chernozem, R.V.; Surmeneva, M.A.; Ignatov, V.P.; Peltek, O.O.; Goncharenko, A.A.; Muslimov, A.R.; Timin, A.S.; Tyurin, A.I.; Ivanov, Y.F.; Grandini, C.R.; et al. Comprehensive characterization of titania nanotubes fabricated on Ti-Nb alloys: Surface topography, structure, physicomechanical behavior, and a cell culture assay. ACS Biomater. Sci. Eng. 2020, 6, 1487–1499. [Google Scholar] [CrossRef]
- Hasan, A.; Saxena, V.; Pandey, L.M. Surface functionalization of Ti6Al4V via self-assembled monolayers for improved protein adsorption and fibroblast adhesion. Langmuir 2018, 34, 3494–3506. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Gulati, K.; Wang, N.; Zhang, Z.; Ivanovski, S. Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants. Mater. Sci. Eng. C 2018, 88, 182–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunrath, M.F.; Vargas, A.L.M.; Sesterheim, P.; Teixeira, E.R.; Hubler, R. Extension of hydrophilicity stability by reactive plasma treatment and wet storage on TiO2 nanotube surfaces for biomedical implant applications. J. R. Soc. Interface 2020, 17, 20200650. [Google Scholar] [CrossRef]
- Mansoorianfar, M.; Khataee, A.; Riahi, Z.; Shahin, K.; Asadnia, M.; Razmjou, A.; Hojjati-Najafabadi, A.; Mei, C.; Orooji, Y.; Li, D. Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. Ultrason. Sonochem. 2020, 64, 104783. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zangari, G. TiO2 nanotubes architectures for solar energy conversion. Coatings 2021, 11, 931. [Google Scholar] [CrossRef]
- Alijani, M.; Sopha, H.; Ng, S.; Macak, J.M. High aspect ratio TiO2 nanotube layers obtained in a very short anodization time. Electrochim. Acta 2021, 376, 138080. [Google Scholar] [CrossRef]
- Macak, J.M.; Jarosova, M.; Jäger, A.; Sopha, H.; Klementová, M. Influence of the Ti microstructure on anodic self-organized TiO2 nanotube layers produced in ethylene glycol electrolytes. Appl. Surf. Sci. 2016, 371, 607–612. [Google Scholar] [CrossRef]
- Li, D.G.; Chen, D.R.; Wang, J.D.; Liang, P. Effect of acid solution, fluoride ions, anodic potential and time on the microstructure and electronic properties of self-ordered TiO2 nanotube arrays. Electrochim. Acta 2016, 207, 152–163. [Google Scholar] [CrossRef]
- Abdullah, M.; Kamarudin, S.K. Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview. Renew. Sustain. Energy Rev. 2017, 76, 212–225. [Google Scholar] [CrossRef]
- Gulati, K.; Santos, A.; Findlay, D.; Losic, D. Optimizing anodization conditions for the growth of titania nanotubes on curved surfaces. J. Phys. Chem. C 2015, 119, 16033–16045. [Google Scholar] [CrossRef]
- Çırak, B.B.; Karadeniz, S.M.; Kılınç, T.; Caglar, B.; Ekinci, A.E.; Yelgin, H.; Kürekçi, M. Synthesis, surface properties, crystal structure and dye sensitized solar cell performance of TiO2 nanotube arrays anodized under different voltages. Vacuum 2017, 144, 183–189. [Google Scholar] [CrossRef]
- Mansoorianfar, M.; Rahighi, R.; Hojjati-Najafabadi, A.; Mei, C.; Li, D. Amorphous/crystalline phase control of Nanotubular TiO2 membranes via pressure-engineered anodizing. Mater. Des. 2020, 198, 109314. [Google Scholar] [CrossRef]
- Nikolai, T.; Larina, L.; Kang, J.K.; Shevaleevskiy, O. Sol-gel processed TiO2 nanotube photoelectrodes for dye-sensitized solar cells with enhanced photovoltaic performance. Nanomaterials 2020, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol-gel based materials for biomedical applications. Prog. Mater. Sci. 2015, 77, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Yue, L.; Gao, W.; Zhang, D.; Guo, F.; Ding, W.; Chen, Y. Colloids Seeded Deposition: Growth of Titania Nanotubes in Solution. Am. Chem. Soc. 2006, 128, 11042–11043. [Google Scholar] [CrossRef]
- Cossuet, T.; Rapenne, L.; Renou, G.; Appert, E.; Consonni, V. Template-assisted growth of open-ended TiO2 nanotubes with hexagonal shape using atomic layer deposition. Cryst. Growth Des. 2021, 21, 125–132. [Google Scholar] [CrossRef]
- Kaur, A.; Bajaj, B.; Kaushik, A.; Saini, A.; Sud, D. A review on template assisted synthesis of multi-functional metal oxide nanostructures: Status and prospects. Mater Sci. Eng. B 2022, 286, 116005. [Google Scholar] [CrossRef]
- Zavala, M.A.L.; Morales, S.A.L.; Santos, M.Á. Synthesis of stable TiO2 nanotubes: Effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon 2017, 3, e00456. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere 2018, 219, 804–825. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, K.; Lai, Y. Recent advances in preparation, modification and applications of TiO2 nanostructures by electrochemical anodization. Handb. Nanoelectrochem. 2015, 1379–1416. [Google Scholar] [CrossRef]
- Giorgi, L.; Dikonimos, T.; Giorgi, R.; Buonocore, F.; Faggio, G.; Messina, G.; Lisi, N. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing. Nanotechnology 2018, 29, 095604. [Google Scholar] [CrossRef] [PubMed]
- Bavykin, D.V.; Walsh, F.C. Titanate and titania nanotubes synthesis, properties and applications introduction and scope. In Titanate and Titania Nanotubes: Synthesis, Properties and Applications; Royal Soc Chemistry: Cambridge, UK, 2010; pp. 1–19. [Google Scholar]
- Albu, S.P.; Schmuki, P. Influence of anodization parameters on the expansion factor of TiO2 nanotubes. Electrochim. Acta 2012, 91, 90–95. [Google Scholar] [CrossRef]
- Chernozem, R.V.; Surmeneva, M.A.; Surmenev, R.A. Influence of anodization time and voltage on the parameters of TiO2 nanotubes. IOP Conf. Ser. Mater. Sci. Eng. 2016, 116, 12025. [Google Scholar] [CrossRef] [Green Version]
- Escada, A.L.; Nakazato, R.Z.; Claro, A.P.R.A. Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5Mo alloy surface for biomedical application. Mater. Res. 2017, 20, 1282–1290. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Mo, A. A review on the electrochemically self-organized titania nanotube arrays: Synthesis, Modifications, and biomedical applications. Nanoscale Res. Lett. 2018, 13, 187. [Google Scholar] [CrossRef]
- Lim, Y.-C.; Zainal, Z.; Tan, W.-T.; Hussein, M.Z. Anodization parameters influencing the growth of titania nanotubes and their photoelectrochemical response. Int. J. Photoenergy 2012, 2012, 638017. [Google Scholar] [CrossRef]
- Shah, U.H.; Rahman, Z.; Deen, K.M.; Asgar, H.; Shabib, I.; Haider, W. Investigation of the formation mechanism of titanium oxide nanotubes and its electrochemical evaluation. J. Appl. Electrochem. 2017, 47, 1147–1159. [Google Scholar] [CrossRef]
- Ban, T.; Tanaka, Y.; Ohya, Y. Fabrication of titania films by sol-gel method using transparent colloidal aqueous solutions of anatase nanocrystals. Thin Solid Films 2010, 519, 3468–3474. [Google Scholar] [CrossRef]
- Lee, M.; Kim, T.; Bae, C.; Shin, H.; Kim, J. Fabrication and applications of metal-oxide nano-tubes. JOM 2010, 62, 44–49. [Google Scholar] [CrossRef]
- Sungur, Å. Titanium Dioxide Nanoparticles. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Martnez, L.M.T., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–18. [Google Scholar]
- Karaman, M.; Saripek, F.; Koysuren, O.; Yildiz, H. Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method. Appl. Surf. Sci. 2013, 283, 993–998. [Google Scholar] [CrossRef]
- Taziwa, R.; Meyer, E.; Takata, N. Structural and raman spectroscopic characterization of C-TiO2 Nanotubes synthesized by a template assisted sol-gel technique. J. Nanosci. Nanotechnol. Res. 2017, 1, 4. [Google Scholar]
- Kumar, A.; Yadav, N.; Bhatt, M.; Mishra, N.K.; Chaudhary, P.; Singh, R. Sol-gel derived nanomaterials and it’s applications: A review. Res. J. Chem. Sci. 2015, 5, 1–6. [Google Scholar]
- Fu, C.; Hu, X.; Yang, Z.; Shen, L.; Zheng, Z. Preparation and properties of waterborne bio-based polyurethane/siloxane cross-linked films by an in situ sol–gel process. Prog. Org. Coat. 2015, 84, 18–27. [Google Scholar] [CrossRef]
- Tan, A.W.; -Murphy, B.P.; Ahmad, R.; Akbar, S.A. Review of titania nanotubes: Fabrication and cellular response. Ceram. Int. 2012, 38, 4421–4435. [Google Scholar] [CrossRef]
- Liu, N.; Albu, S.P.; Lee, K.; So, S.; Schmuki, P. Water annealing and other low temperature treatments of anodic TiO2 nanotubes: A comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim. Acta 2012, 82, 98–102. [Google Scholar] [CrossRef]
- Ahmad, A.; Haq, E.U.; Akhtar, W.; Arshad, M.; Ahmad, Z. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes. Appl. Nanosci. 2017, 7, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Gibran, K.; Ibadurrahman, M. Effect of electrolyte type on the morphology and crystallinity of TiO2nanotubes from Ti-6Al-4V anodization. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 12038. [Google Scholar] [CrossRef] [Green Version]
- Kapusta-KoÅ‚odziej, J.; Syrek, K.; Pawlik, A.; Jarosz, M.; Tynkevych, O.; Sulka, G.D. Effects of anodizing potential and temperature on the growth of anodic TiO2 and its photoelectrochemical properties. Appl. Surf. Sci. 2016, 396, 1119–1129. [Google Scholar] [CrossRef]
- Jarosz, M.; Pawlik, A.; -Kołodziej, J.K.; Jaskuła, M.; Sulka, G.D. Effect of the previous usage of electrolyte on growth of anodic titanium dioxide (ATO) in a glycerol-based electrolyte. Electrochim. Acta 2014, 136, 412–421. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.; Han, J.; Ji, L.; Wang, J.; Chen, J.; Wang, Y. Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays. Appl. Surf. Sci. 2014, 297, 103–108. [Google Scholar] [CrossRef]
- Muzakir, M.M.; Zainal, Z.; Lim, H.N.; Abdullah, A.H.; Bahrudin, N.N.; Ali, M.S. Electrochemically reduced titania nanotube synthesized from glycerol-based electrolyte as supercapacitor electrode. Energies 2020, 13, 2767. [Google Scholar] [CrossRef]
- Srimuangmak, K.; Niyomwas, S. Effects of voltage and addition of water on photocatalytic activity of TiO2 nanotubes prepared by anodization method. Energy Procedia 2011, 9, 435–439. [Google Scholar] [CrossRef]
- Shah, U.H.; Deen, K.M.; Asgar, H.; Rahman, Z.; Haider, W. Understanding the mechanism of TiO2 nanotubes formation at low potentials (at % 8V) through electrochemical methods. J. Electroanal. Chem. 2017, 807, 228–234. [Google Scholar] [CrossRef]
- Ono, S.; Asoh, H. A new perspective on pore growth in anodic alumina films. Electrochem. Commun. 2021, 124, 106972. [Google Scholar] [CrossRef]
- Riboni, F.; Nguyen, N.T.; So, S.; Schmuki, P. Aligned metal oxide nanotube arrays: Key-aspects of anodic TiO2 nanotube formation and properties. Nanoscale Horiz. 2016, 1, 445–466. [Google Scholar] [CrossRef] [Green Version]
- Tesler, A.B.; Altomare, M.; Schmuki, P. Morphology and optical properties of highly ordered TiO2 nanotubes grown in NH4F/o-H3PO4 electrolytes in view of light-harvesting and catalytic applications. ACS Appl. Nano Mater. 2020, 3, 10646–10658. [Google Scholar] [CrossRef]
- Li, J. Hydrodynamic control of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells. Mater. Sci. Eng. C 2020, 109, 110562. [Google Scholar] [CrossRef]
- Pasikhani, J.V.; Gilani, N.; Pirbazari, A.E. The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays. Nano Struct. Nano Objects 2016, 8, 7–14. [Google Scholar] [CrossRef]
- Cortes, F.J.Q.; Arias-Monje, P.J.; Phillips, J.; Zea, H. Empirical kinetics for the growth of titania nanotube arrays by potentiostatic anodization in ethylene glycol. Mater. Des. 2016, 96, 80–89. [Google Scholar] [CrossRef]
- Joanna, K.-K.; Syrek, K.; Sulka, G.D. Synthesis and photoelectrochemical properties of anodic oxide films on titanium formed by pulse anodization. J. Electrochem. Soc. 2018, 165, H838. [Google Scholar] [CrossRef]
- Regonini, D.; Clemens, F. Anodized TiO2 nanotubes: Effect of anodizing time on film length, morphology and photoelectrochemical properties. Mater. Lett. 2014, 142, 97–101. [Google Scholar] [CrossRef]
- Joanna, K.-K.; Chudecka, A.; Sulka, G.D. 3D nanoporous titania formed by anodization as a promising photoelectrode material. J. Electroanal. Chem. 2018, 823, 221–233. [Google Scholar] [CrossRef]
- Sturgeon, M.R.; Lai, P.; Hu, M.Z. A comparative study of anodized titania nanotube architectures in aqueous and nonaqueous solutions. J. Mater. Res. 2011, 26, 2612–2623. [Google Scholar] [CrossRef]
- Mahmoud, M. Self-ordered TiO2 nanotubes prepared by anodization in fluorine-free electrolyte as additive-free anode for lithium-ion microbatteries. ECS Meet. Abstr. 2019, MA2019-04, 76. [Google Scholar] [CrossRef]
- Shuai, Q. A novel elaboration for various morphologies of three-layer TiO2 nanotubes by oxygen bubble mould. Mater. Res. Bull. 2018, 106, 220–227. [Google Scholar] [CrossRef]
- Dussan, A.; Boharrquez, A.; Quiroz, H.P. Effect of annealing process in TiO2 thin films: Structural, morphological, and optical properties. Appl. Surf. Sci. 2017, 424, 111–114. [Google Scholar] [CrossRef]
- Das, S.; Zazpe, R.; Prikryl, J.; Knotek, P.; Krbal, M.; Sopha, H.; Podzemna, V.; Macak, J.M. Influence of annealing temperatures on the properties of low aspect-ratio TiO2 nanotube layers. Electrochim. Acta 2016, 213, 452–459. [Google Scholar] [CrossRef]
- Bauer, S.; Pittrof, A.; Tsuchiya, H.; Schmuki, P. Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochem. Commun. 2011, 13, 538–541. [Google Scholar] [CrossRef]
- Aiempanakit, M.; Lumpol, V.; Mangsup, T.; Triamnak, N.; Sritharathikun, J.; Suwanchawalit, C. Fabrication of titanium dioxide nanotubes and their photovoltaic performance for dye-sensitized solar cells. Int. J. Electrochem. Sci. 2020, 15, 10392–10405. [Google Scholar] [CrossRef]
- Bai, Y.; Mora-Seró, I.; de Angelis, F.; Bisquert, J.; Wang, P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 2014, 114, 10095–10130. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Joby, N.G.; Krishnakumar, N. Enhanced photovoltaic characterization and charge transport of TiO2 nanoparticles/nanotubes composite photoanode based on indigo carmine dye-sensitized solar cells. J. Sol-Gel Sci. Technol. 2013, 67, 618–628. [Google Scholar] [CrossRef]
- Qadir, M.B.; Li, Y.; Sahito, I.A.; Arbab, A.A.; Sun, K.C.; Mengal, N.; Memon, A.A.; Jeong, S.H. Highly functional TNTs with superb photocatalytic, optical, and electronic performance achieving record PV efficiency of 10.1% for 1D-based DSSCs. Small 2016, 12, 4508–4520. [Google Scholar] [CrossRef] [PubMed]
- Haran, N.H.; Yousif, Q.A. The efficiency of TiO2 nanotube photoanode with graphene nanoplatelets as counter electrode for a dye-sensitised solar cell. Int. J. Ambient Energy 2022, 43, 336–343. [Google Scholar] [CrossRef]
- Mathew, A.; Rao, G.M.; Munichandraiah, N. Effect of TiO2 electrode thickness on photovoltaic properties of dye sensitized solar cell based on randomly oriented Titania nanotubes. Mater. Chem. Phys. 2011, 127, 95–101. [Google Scholar] [CrossRef]
- Li, F.; Chen, C.; Tan, F.; Yue, G.; Shen, L.; Zhang, W. A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells. Nanoscale Res. Lett. 2014, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Vats, T.; Sharma, S.N.; Kumar, J. Investigation of annealing effects on TiO2 nanotubes synthesized by a hydrothermal method for hybrid solar cells. Optik 2018, 171, 492–500. [Google Scholar] [CrossRef]
- Lee, J.; Jho, J.Y. Fabrication of highly ordered and vertically oriented TiO2 nanotube arrays for ordered heterojunction polymer/inorganic hybrid solar cell. Sol. Energy Mater. Sol. Cells 2011, 95, 3152–3156. [Google Scholar] [CrossRef]
- Javed, H.M.A.; Ahmad, M.I.; Que, W.; Qureshi, A.A.; Sarfaraz, M.; Hussain, S.; Iqbal, M.Z.; Nisar, M.Z.; Shahid, M.; AlGarni, T.S. Encapsulation of TiO2 nanotubes with Cs nanoparticles to enhance electron injection and thermal stability of perovskite solar cells. Surf. Interfaces 2021, 23, 101033. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, X.; Deng, Y.; Li, B.; Yuan, C. Life cycle assessment of titania perovskite solar cell technology for sustainable design and manufacturing. ChemSusChem 2015, 8, 3882–3891. [Google Scholar] [CrossRef]
- Wang, X.; A Kulkarni, S.; Li, Z.; Xu, W.; Batabyal, S.K.; Zhang, S.; Cao, A.; Wong, L.H. Wire-shaped perovskite solar cell based on TiO2nanotubes. Nanotechnology 2016, 27, 20LT01. [Google Scholar] [CrossRef] [Green Version]
- Husain, A.A.F. A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, T.; Wang, Y. Insights into TiO2 polymorphs: Highly selective synthesis, phase transition, and their polymorph-dependent properties. RSC Adv. 2017, 7, 52755–52761. [Google Scholar] [CrossRef]
- Barbieriková, Z.; Pližingrová, E.; Motlochová, M.; Bezdička, P.; Boháček, J.; Dvoranová, D.; Brezová, V. N-Doped titanium dioxide nanosheets: Preparation, characterization and UV/visible-light activity. Appl. Catal. B Environ. 2018, 232, 397–408. [Google Scholar] [CrossRef]
- Dambournet, D.; Belharouak, I.; Amine, K. Tailored preparation methods of TiO2 anatase, rutile, brookite: Mechanism of formation and electrochemical properties. Chem. Mater. 2010, 22, 1173–1179. [Google Scholar] [CrossRef]
- Mansfeldova, V.; Zlamalova, M.; Tarabkova, H.; Janda, P.; Vorokhta, M.; Piliai, L.; Kavan, L. Work function of TiO2 (anatase, rutile, and brookite) single crystals: Effects of the environment. J. Phys. Chem. C 2021, 125, 1902–1912. [Google Scholar] [CrossRef]
- Hou, X.; Aitola, K.; Lund, P.D. TiO2 nanotubes for dye-sensitized solar cells—A review. Energy Sci. Eng. 2021, 9, 921–937. [Google Scholar] [CrossRef]
- Jen, H.-P.; Lin, M.-H.; Li, L.-L.; Wu, H.-P.; Huang, W.-K.; Cheng, P.-J.; Diau, E.W.-G. High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays. ACS Appl. Mater. Interfaces 2013, 5, 10098–10104. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Bai, J.; Le Formal, F.; Moon, S.-J.; Cevey-Ha, L.; Humphry-Baker, R.; Grätzel, C.; Zakeeruddin, S.M.; Grätzel, M. Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. J. Phys. Chem. C 2012, 116, 3266–3273. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, M.R.; Kumaresan, D.; Jothi, S.; McGettrick, J.D.; Watson, T.M. Reduced graphene oxide wrapped hierarchical TiO2 nanorod composites for improved charge collection efficiency and carrier lifetime in dye sensitized solar cells. Appl. Surf. Sci. 2018, 428, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.-Y.; Lei, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 5750–5757. [Google Scholar] [CrossRef]
- Debnath, K.; Majumder, T.; Mondal, S.P. Photoelectrochemical study of hydrothermally grown vertically aligned rutile TiO2 nanorods. Chem. Phys. 2022, 561, 111609. [Google Scholar] [CrossRef]
- Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2015, 52, 54–64. [Google Scholar] [CrossRef]
- Bagher, A.M. Types of solar cells and application. Am. J. Opt. Photonics 2015, 3, 94. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Jain, K.K.; Sharma, A. Solar cells: In research and applications—A review. Mater. Sci. Appl. 2015, 6, 1145–1155. [Google Scholar] [CrossRef] [Green Version]
- Karthick, S.; Hemalatha, K.; Balasingam, S.K.; Clinton, F.M.; Akshaya, S.; Kim, H. Dye-Sensitized Solar Cells: History, Components, Configuration, and Working Principle. In Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 1–16. [Google Scholar] [CrossRef]
- Ma, C.; Hou, D.; Jiang, J.; Fan, Y.; Li, X.; Li, T.; Ma, Z.; Ben, H.; Xiong, H. Elucidating the synergic effect in nanoscale MoS2/TiO2 heterointerface for Na-Ion storage. Adv. Sci. 2022, 2204837. [Google Scholar] [CrossRef]
- Luo, D.; Liu, B.; Fujishima, A.; Nakata, K. TiO2 nanotube arrays formed on Ti meshes with periodically arranged holes for flexible dye-sensitized solar cells. ACS Appl. Nano Mater. 2019, 2, 3943–3950. [Google Scholar] [CrossRef]
- Sasidharan, S.; Pradhan, S.C.; Jagadeesh, A.; Nair, B.N.; Mohamed, A.A.; KN, N.U.; Soman, S.; Hareesh, U.N. Bifacial dye-sensitized solar cells with enhanced light scattering and improved power conversion efficiency under full sun and indoor light conditions. ACS Appl. Energy Mater. 2020, 3, 12584–12595. [Google Scholar] [CrossRef]
- Xu, T.; Qiao, Q. Conjugated polymer–inorganic semiconductor hybrid solar cells. Energy Environ. Sci. 2011, 4, 2700–2720. [Google Scholar] [CrossRef]
- Heo, J.H.; Im, K.; Kim, J.; Im, S.H. Efficient metal halide perovskite solar cells prepared by reproducible electrospray coating on vertically aligned TiO2 nanorod electrodes. ACS Appl. Mater. Interfaces 2019, 12, 886–892. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Liao, W.-P.; Lin, W.-H.; Wu, J.-J. Modulation of photocarrier dynamics in indoline dye-modified TiO2 nanorod Array/P3HT hybrid solar cell with 4-tert-Butylpridine. J. Phys. Chem. C 2012, 116, 25721–25726. [Google Scholar] [CrossRef]
- Chatterjee, S.; Patra, W.S.; Rout, B.; Glass, G.A.; D’Souza, F.; Chatterjee, S. Achievement of superior efficiency of TiO2 nanorod-nanoparticle composite photoanode in dye sensitized solar cell. J. Alloys Compd. 2020, 826, 154188. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, H.; Yang, Y.; Huang, J.; Wu, K.; Chen, Z.; Wang, X.; Lin, C.; Lai, Y. Progress in TiO2 nanotube coatings for biomedical applications: A review. J. Mater. Chem. B 2018, 6, 1862–1886. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Li, R.; Tang, X.; Guo, D.; Qing, Y.; Qin, Y. Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: A review of current techniques. Int. J. Nanomed. 2019, 14, 7217–7236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gai, X.; Bai, Y.; Li, S.; Hou, W.; Hao, Y.; Zhang, X.; Yang, R.; Misra, R. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid. Acta Biomater. 2020, 106, 387–395. [Google Scholar] [CrossRef]
- Mahyad, B. Biomedical applications of TiO2 nanostructures: Recent Advances. Int. J. Nanomed. 2020, 15, 3447–3470. [Google Scholar]
- Souza, J.C.M.; Sordi, M.B.; Kanazawa, M.; Ravindran, S.; Henriques, B.; Silva, F.S.; Aparicio, C.; Cooper, L.F. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019, 94, 112–131. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar] [CrossRef]
- Hu, N.; Wu, Y.; Xie, L.; Yusuf, S.M.; Gao, N.; Starink, M.J.; Tong, L.; Chu, P.K.; Wang, H. Enhanced interfacial adhesion and osseointegration of anodic TiO2 nanotube arrays on ultra-fine-grained titanium and underlying mechanisms. Acta Biomater. 2020, 106, 360–375. [Google Scholar] [CrossRef]
- Abbass, M.K.; Khadhim, M.J.; Jasim, A.N.; Issa, M.J. A study the effect of porosity of bio-active ceramic hydroxyapatite coated by electrophoretic deposition on the Ti6Al4V alloy substrate. J. Phys. Conf. Ser. 2021, 1773, 012035. [Google Scholar] [CrossRef]
- Esmaeilnejad, A.; Mahmoudi, P.; Zamanian, A.; Mozafari, M. Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications. Ceram. Int. 2019, 45, 19275–19282. [Google Scholar] [CrossRef]
- Kunrath, M.F.; Penha, N.; Ng, J.C. Anodization as a promising surface treatment for drug delivery implants and a non-cytotoxic process for surface alteration: A pilot study. J. Osseointegration 2020, 12, 45–49. [Google Scholar] [CrossRef]
- López-Pavón, L.; Dagnino-Acosta, D.; López-Cuéllar, E.; Meléndez-Anzures, F.; Zárate-Triviño, D.; Barrón-González, M.; Moreno-Cortez, I.; Kim, H.Y.; Miyazaki, S. Synthesis of nanotubular oxide on Ti–24Zr–10Nb–2Sn as a drug-releasing system to prevent the growth of Staphylococcus aureus. Chem. Pap. 2021, 75, 2441–2450. [Google Scholar] [CrossRef]
- Effendy, W.N.F.W.E.; Mydin, R.B.S.; Gazzali, A.M.; Sreekantan, S. Therapeutic nano-device: Study of biopolymer coating on titania nanotubes array loaded with chemodrug targeted for localized cancer therapy application. IOP Conf. Ser. Mater. Sci. Eng. 2020, 932, 012116. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Xue, H.; Wang, T.; Chen, B.; Dong, X.; Yang, L.; Dai, J.; Lou, X.; Xia, F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: From chemical to clinical. J. Nanobiotechnol. 2022, 20, 344. [Google Scholar] [CrossRef]
- Jiménez, V.A.; Moreno, N.; Guzmán, L.; Torres, C.C.; Campos, C.H.; Alderete, J.B. Visible-light-responsive folate-conjugated titania and alumina nanotubes for photodynamic therapy applications. J. Mater. Sci. 2020, 55, 6976–6991. [Google Scholar] [CrossRef]
- Qin, J.; Yang, D.; Maher, S.; Lima-Marques, L.; Zhou, Y.; Chen, Y.; Atkins, G.J.; Losic, D. Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration. J. Mater. Chem. B 2018, 6, 3136–3144. [Google Scholar] [CrossRef]
- Somsanith, N.; Kim, Y.-K.; Jang, Y.-S.; Lee, Y.-H.; Yi, H.-K.; Jang, J.-H.; Kim, K.-A.; Bae, T.-S.; Lee, M.-H. Enhancing of osseointegration with propolis-loaded TiO2 nanotubes in rat mandible for dental implants. Materials 2018, 11, 61. [Google Scholar] [CrossRef] [Green Version]
- Roguska, A.; Belcarz, A.; Zalewska, J.; Hołdyński, M.; Andrzejczuk, M.; Pisarek, M.; Ginalska, G. Metal TiO2 nanotube layers for the treatment of dental implant infections. ACS Appl. Mater. Interfaces 2018, 10, 17089–17099. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Lu, R.; Gao, S.; Ling, Y.; Chen, S. Responses of human gingival fibroblasts to superhydrophilic hydrogenated titanium dioxide nanotubes. Colloids Surf. B Biointerfaces 2020, 198, 111489. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Lu, R.; Gao, S.; Ling, Y.; Chen, S. TiO2 nanotubes modified with Au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities. J. Electroanal. Chem. 2019, 842, 66–73. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Shivaram, A.; Mitra, I.; Bose, S. Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration. Acta Biomater. 2019, 96, 686–693. [Google Scholar] [CrossRef]
- Dong, Y.; Ye, H.; Liu, Y.; Xu, L.; Wu, Z.; Hu, X.; Ma, J.; Pathak, J.L.; Liu, J.; Wu, G. pH dependent silver nanoparticles releasing titanium implant: A novel therapeutic approach to control peri-implant infection. Colloids Surf. B Biointerfaces 2017, 158, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Sasireka, A.; Rajendran, R.; Raj, V. In vitro corrosion resistance and cytocompatibility of minerals substituted apatite/biopolymers duplex coatings on anodized Ti for orthopedic implant applications. Arab. J. Chem. 2020, 13, 6312–6326. [Google Scholar] [CrossRef]
- Feng, W.; Liu, N.; Gao, L.; Zhou, Q.; Yu, L.; Ye, X.; Huo, J.; Huang, X.; Li, P.; Huang, W. Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines. J. Mater. Sci. Technol. 2021, 69, 188–199. [Google Scholar] [CrossRef]
- Nezhad, E.Z.; Qu, X.; Musharavati, F.; Jaber, F.; Appleford, M.R.; Bae, S.; Uzun, K.; Struthers, M.; Chowdhury, M.E.; Khandakar, A. Effects of titanium and carbon nanotubes on nano/micromechanical properties of HA/TNT/CNT nanocomposites. Appl. Surf. Sci. 2021, 538, 148123. [Google Scholar] [CrossRef]
- Tong, T.; Shereef, A.; Wu, J.; Binh, C.T.T.; Kelly, J.J.; Gaillard, J.; Gray, K.A. Effects of Material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ. Sci. Technol. 2013, 47, 12486–12495. [Google Scholar] [CrossRef]
- Xie, Y.; Fu, D. Photoelectrocatalysis reactivity of independent titania nanotubes. J. Appl. Electrochem. 2010, 40, 1281–1291. [Google Scholar] [CrossRef]
- Sriram, S.; Nambi, I.M.; Chetty, R. Electrochemical reduction of hexavalent chromium on titania nanotubes with urea as an anolyte additive. Electrochim. Acta 2018, 284, 427–435. [Google Scholar] [CrossRef]
- Zhuang, W.; Jin, S.; Zhang, F.; Wang, D. Combined toxicity of TiO2 nanospherical particles and TiO2 nanotubes to two microalgae with different morphology. Nanomaterials 2020, 10, 2559. [Google Scholar] [CrossRef]
- Bilek, O.; Fialova, T.; Otahal, A.; Adam, V.; Smerkova, K.; Fohlerova, Z. Antibacterial activity of AgNPs-TiO2 nanotubes: Influence of different nanoparticle stabilizers. RSC Adv. 2020, 10, 44601–44610. [Google Scholar] [CrossRef] [PubMed]
- Pesode, P.A.; Barve, S.B. Recent advances on the antibacterial coating on titanium implant by micro-Arc oxidation process. Mater. Today Proc. 2021, 47, 5652–5662. [Google Scholar] [CrossRef]
Process | Benefits | Drawbacks | Ref. |
---|---|---|---|
Sol–gel |
|
| [34,35] |
Template-assisted |
|
| [37,38,53] |
Hydrothermal |
|
| [39,40] |
VLS growth |
|
| [36] |
Electrochemical anodization |
|
| [37,41,42,47] |
Application | System | Major Findings | Ref. |
---|---|---|---|
Dental Implants |
|
| [131] |
|
| [132] | |
|
| [133] | |
|
| [134] | |
|
| [135] | |
Orthopedic Implants |
|
| [136] |
|
| [137] | |
|
| [138] | |
|
| [139] | |
|
| [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batool, S.A.; Salman Maqbool, M.; Javed, M.A.; Niaz, A.; Rehman, M.A.U. A Review on the Fabrication and Characterization of Titania Nanotubes Obtained via Electrochemical Anodization. Surfaces 2022, 5, 456-480. https://doi.org/10.3390/surfaces5040033
Batool SA, Salman Maqbool M, Javed MA, Niaz A, Rehman MAU. A Review on the Fabrication and Characterization of Titania Nanotubes Obtained via Electrochemical Anodization. Surfaces. 2022; 5(4):456-480. https://doi.org/10.3390/surfaces5040033
Chicago/Turabian StyleBatool, Syeda Ammara, Muhammad Salman Maqbool, Muhammad Awais Javed, Akbar Niaz, and Muhammad Atiq Ur Rehman. 2022. "A Review on the Fabrication and Characterization of Titania Nanotubes Obtained via Electrochemical Anodization" Surfaces 5, no. 4: 456-480. https://doi.org/10.3390/surfaces5040033
APA StyleBatool, S. A., Salman Maqbool, M., Javed, M. A., Niaz, A., & Rehman, M. A. U. (2022). A Review on the Fabrication and Characterization of Titania Nanotubes Obtained via Electrochemical Anodization. Surfaces, 5(4), 456-480. https://doi.org/10.3390/surfaces5040033