Application of High-Surface Tension and Hygroscopic Ionic Liquid-Infused Nanostructured SiO2 Surfaces for Reversible/Repeatable Anti-Fogging Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of [BHEDMA][MeSO3]-Infused SNF-Covered Glass Slides
2.3. Preparation of FAS17-Coated and Krytox-Infused SNF-Covered Glass Slides
2.4. Preparation of [EMI][TFSI]-Infused SNF-Covered Glass Slides
2.5. Measurements of Static and Dynamic Wettability
2.6. Anti-Fogging Test 1: Cold/Warm Test
2.7. Anti-Fogging Test 2: Hot Vapor Test
2.8. Anti-Frosting Test
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Z.; Feng, X.; Guo, Z.; Niu, S.; Ren, L. Flourishing Bioinspired Antifogging Materials with Superwettability: Progresses and Challenges. Adv. Mater. 2018, 30, 1704652. [Google Scholar] [CrossRef] [PubMed]
- Durán, I.R.; Laroche, G. Current trends, challenges, and perspectives of anti-fogging technology: Surface and material design, fabrication strategies, and beyond. Prog. Mater. Sci. 2019, 99, 106–186. [Google Scholar] [CrossRef]
- Mozumder, M.S.; Mourad, A.-H.I.; Pervez, H.; Surkatti, R. Recent developments in multifunctional coatings for solar panel applications: A review. Sol. Energy Mater. Sol. Cells 2019, 189, 75–102. [Google Scholar] [CrossRef]
- Wier, K.A.; McCarthy, T.J. Condensation on Ultrahydrophobic Surfaces and Its Effect on Droplet Mobility: Ultrahydrophobic Surfaces Are Not Always Water Repellant. Langmuir 2006, 22, 2433–2436. [Google Scholar] [CrossRef] [PubMed]
- Boreyko, J.B.; Chen, C.-H. Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces. Phys. Rev. Lett. 2009, 103, 184501. [Google Scholar] [CrossRef]
- Lee, H.; Alcaraz, M.L.; Rubner, M.F.; Cohen, R.E. Zwitter-Wettability and Antifogging Coatings with Frost-Resisting Capabilities. ACS Nano 2013, 7, 2172–2185. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Meyer, A.; Ma, L.; Ming, W. Acrylic coatings with surprising antifogging and frost-resisting properties. Chem. Comm. 2013, 49, 11764–11766. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Gilbert, J.B.; Angilè, F.E.; Yang, R.; Lee, D.; Rubner, M.F.; Cohen, R.E. Design and fabrication of zwitter-wettable nanostructured films. ACS Appl. Mater. Interfaces 2015, 7, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, X.; Tao, C.; Ren, L.; Zhao, Y.; Bai, S.; Yuan, X. Amphiphilic Antifogging/Anti-Icing Coatings Containing POSS-PDMAEMA-b-PSBMA. ACS Appl. Mater. Interfaces 2017, 9, 22959–22969. [Google Scholar] [CrossRef]
- Du, X.; Liu, X.; Chen, H.; He, J. Facile Fabrication of Raspberry-like Composite Nanoparticles and Their Application as Building Blocks for Constructing Superhydrophilic Coatings. J. Phys. Chem. C 2009, 113, 9063–9070. [Google Scholar] [CrossRef]
- Chevallier, P.; Turgeon, S.; Sarra-Bournet, C.; Turcotte, R.; Laroche, G. Characterization of Multilayer Anti-Fog Coatings. ACS Appl. Mater. Interfaces 2011, 3, 750–758. [Google Scholar] [CrossRef]
- Li, X.; He, J. In situ Assembly of Raspberry- and Mulberry-like Silica Nanospheres toward Antireflective and Antifogging Coatings. ACS Appl. Mater. Interfaces 2012, 4, 2204–2211. [Google Scholar] [CrossRef]
- Xu, L.; He, J. Antifogging and Antireflection Coatings Fabricated by Integrating Solid and Mesoporous Silica Nanoparticles without Any Post-Treatments. ACS Appl. Mater. Interfaces 2012, 4, 3293–3299. [Google Scholar] [CrossRef]
- Ezzat, M.; Huang, C.-J. Zwitterionic polymer brush coatings with excellent anti-fog and anti-frost properties. RSC Adv. 2016, 6, 61695–61702. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, J.; Wu, C.; Li, B.; Sun, C.; Huang, S.; Tian, X. Highly durable antifogging coatings resistant to long-term airborne pollution and intensive UV irradiation. Mater. Des. 2020, 194, 108956. [Google Scholar] [CrossRef]
- Fromel, M.; Sweeder, D.M.; Jang, S.; Williams, T.A.; Kim, S.H.; Pester, C.W. Superhydrophilic Polymer Brushes with High Durability and Anti-fogging Activity. ACS Appl. Polym. Mater. 2021, 3, 5291–5301. [Google Scholar] [CrossRef]
- Kim, Y.; Thuy, L.T.; Kim, Y.; Seong, M.; Cho, W.K.; Choi, J.S.; Kang, S.M. Coordination-Driven Surface Zwitteration for Antibacterial and Antifog Applications. Langmuir 2022, 38, 1550–1559. [Google Scholar] [CrossRef]
- Yang, H.; Jin, K.; Wang, H.; Fan, Z.; Zhang, T.; Liu, Z.; Cai, Z. Facile preparation of a high-transparency zwitterionic anti-fogging poly(SBMA-co-IA) coating with self-healing property. Prog. Org. Coat. 2022, 165, 106764. [Google Scholar] [CrossRef]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 338, 431–432. [Google Scholar] [CrossRef]
- Lee, D.; Rubner, M.F.; Cohen, R.E. All-Nanoparticle Thin-Film Coatings. Nano Lett. 2006, 6, 2305–2312. [Google Scholar] [CrossRef]
- Gan, W.Y.; Lam, S.W.; Chiang, K.; Amal, R.; Zhao, H.; Brungs, M.P. Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours. J. Mater. Chem. 2007, 17, 952–954. [Google Scholar] [CrossRef]
- Tricoli, A.; Righettoni, M.; Pratsinis, S.E. Anti-Fogging Nanofibrous SiO2 and Nanostructured SiO2−TiO2 Films Made by Rapid Flame Deposition and In Situ Annealing. Langmuir 2009, 25, 12578–12584. [Google Scholar] [CrossRef]
- Yang, F.; Wang, P.; Yang, X.; Cai, Z. Antifogging and anti-frosting coatings by Dip-layer-by-layer self-assembly of just triple-layer oppositely charged nanoparticles. Thin Solid Films 2017, 634, 85–95. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, T.; Ma, F.; Huang, L.-F.; Zeng, Z. Superhydrophilic Fe3+ Doped TiO2 Films with Long-Lasting Antifogging Performance. ACS Appl. Mater. Interfaces 2021, 13, 3377–3386. [Google Scholar] [CrossRef]
- Kwak, G.; Jung, S.; Yong, K. Multifunctional transparent ZnO nanorod films. Nanotechnology 2011, 22, 115705. [Google Scholar] [CrossRef]
- Cebeci, F.Ç.; Wu, Z.; Zhai, L.; Cohen, R.E.; Rubner, M.F. Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings. Langmuir 2006, 22, 2856–2862. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Shi, L.; Li, J.; Xin, Y.; Yang, T.; Guo, Z. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging. Appl. Phys. Lett. 2012, 101, 033701. [Google Scholar] [CrossRef]
- Zhou, G.; He, J.; Xu, L. Antifogging antireflective coatings on Fresnel lenses by integrating solid and mesoporous silica nanoparticles. Micropor. Mesopor. Mat. 2013, 176, 41–47. [Google Scholar] [CrossRef]
- Du, X.; Xing, Y.; Zhou, M.; Li, X.; Huang, H.; Meng, X.-M.; Wen, Y.; Zhang, X. Broadband antireflective superhydrophilic antifogging nano-coatings based on three-layer system. Micropor. Mesopor. Mat. 2018, 255, 84–93. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.H. Chemically Robust Antifog Nanocoating through Multilayer Deposition of Silica Composite Nanofilms. ACS Appl. Mater. Interfaces 2020, 12, 42109–42118. [Google Scholar] [CrossRef]
- Cao, L.; Hao, H.; Dutta, P.K. Fabrication of high-performance antifogging and antireflective coatings using faujasitic nanozeolites. Micropor. Mesopor. Mat. 2018, 263, 62–70. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Hsu, W.-J.; Wang, C.-Y.; Tsao, H.-K.; Kang, Y.-H.; Chen, J.-J.; Kang, D.-Y. Wetting Properties and Thin-Film Quality in the Wet Deposition of Zeolites. ACS Omega 2019, 4, 13488–13495. [Google Scholar]
- Hsu, W.-J.; Huang, P.-S.; Huang, Y.-C.; Hu, S.-W.; Tsao, H.-K.; Kang, D.-Y. Zeolite-Based Antifogging Coating via Direct Wet Deposition. Langmuir 2019, 35, 2538–2546. [Google Scholar] [CrossRef]
- Chang, T.-A.; Hsu, W.-J.; Hung, T.-H.; Hu, S.-W.; Tsao, H.-K.; Zou, C.; Lin, L.-C.; Kang, Y.-H.; Chen, J.-J.; Kang, D.-Y. Toward Long-Lasting Low-Haze Antifog Coatings through the Deposition of Zeolites. Ind. Eng. Chem. Res. 2020, 59, 13042–13050. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Zeng, Z.; Wang, G.; Liu, G.; Zhao, W.; Ren, T.; Xue, Q. Facile fabrication of antifogging, antireflective, and self-cleaning transparent silica thin coatings. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 149–157. [Google Scholar] [CrossRef]
- Drelich, J.; Chibowski, E.; Meng, D.D.; Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 7, 9804–9828. [Google Scholar] [CrossRef]
- Xu, F.; Li, X.; Li, Y.; Sun, J. Oil-Repellent Antifogging Films with Water-Enabled Functional and Structural Healing Ability. ACS Appl. Mater. Interfaces 2017, 9, 27955–27963. [Google Scholar] [CrossRef]
- Sato, T.; Dunderdale, G.J.; Hozumi, A. Large-Scale Formation of Fluorosurfactant-Doped Transparent Nanocomposite Films Showing Durable Antifogging, Oil-Repellent, and Self-healing Properties. Langmuir 2020, 36, 7439–7446. [Google Scholar] [CrossRef]
- Wong, T.-S.; Kang, S.H.; Tang, S.K.Y.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef]
- Villegas, M.; Zhang, Y.; Jarad, N.A.; Soleymani, L.; Didar, T.F. Liquid-Infused Surfaces: A Review of Theory, Design, and Applications. ACS Nano 2019, 13, 8517–8536. [Google Scholar] [CrossRef]
- Peppou-Chapman, S.; Hong, J.K.; Waterhouse, A.; Neto, C. Life and death of liquid-infused surfaces: A review on the choice, analysis and fate of the infused liquid layer. Chem. Soc. Rev. 2020, 49, 3688–3715. [Google Scholar] [CrossRef]
- Dai, X.; Sun, N.; Nielsen, S.O.; Stogin, B.B.; Wang, J.; Yang, S.; Wong, T.-S. Hydrophilic directional slippery rough surfaces for water harvesting. Sci. Adv. 2018, 4, eaaq0919. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, L.; Monga, D.; Stone, H.A.; Dai, X. Hydrophilic slippery surface enabled coarsening effect for rapid water harvesting. Cell Rep. Phys. Sci. 2021, 2, 100387. [Google Scholar] [CrossRef]
- Ozbay, S.; Yuceel, C.; Erbil, H.Y. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid. ACS Appl. Mater. Interfaces 2015, 7, 22067–22077. [Google Scholar] [CrossRef]
- Wylie, M.P.; Bell, S.E.J.; Nockemann, P.; Bell, R.; McCoy, C.P. Phosphonium Ionic Liquid-Infused Poly(vinyl chloride) Surfaces Possessing Potent Antifouling Properties. ACS Omega 2020, 5, 7771–7781. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Mammen, L.; Butt, H.-J.; Vollmer, D. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science 2012, 335, 67–70. [Google Scholar] [CrossRef] [PubMed]
- England, M.W.; Sato, T.; Yagihashi, M.; Hozumi, A.; Gorb, S.N.; Gorb, E.V. Surface roughness rather than surface chemistry essentially affects insect adhesion. Beilstein J. Nanotechnol. 2016, 7, 1471–1479. [Google Scholar] [CrossRef]
- Miranda, D.F.; Urata, C.; Masheder, B.; Dunderdale, G.J.; Yagihashi, M.; Hozumi, A. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity. APL Mater. 2014, 2, 056108. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, T.; Liu, K.; Jiang, L.; Kim, J.H.; Dou, S.X. Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures. Small 2014, 10, 3001–3006. [Google Scholar] [CrossRef]
- Lee, Y.; Chung, Y.-W.; Park, J.; Park, K.; Seo, Y.; Hong, S.-N.; Lee, S.H.; Jeon, H.; Seo, J. Lubricant-infused directly engraved nano-microstructures for mechanically durable endoscope lens with anti-biofouling and anti-fogging properties. Sci. Rep. 2020, 10, 17454. [Google Scholar] [CrossRef]
- Zobrist, B.; Weers, U.; Koop, T. Ice nucleation in aqueous solutions of poly[ethylene glycol] with different molar mass. J. Chem. Phys. 2003, 118, 10254–10261. [Google Scholar] [CrossRef]
- Chen, D.; Gelenter, M.D.; Hong, M.; Cohen, R.E.; McKinley, G.H. Icephobic Surfaces Induced by Interfacial Nonfrozen Water. ACS Appl. Mater. Interfaces 2017, 9, 4202–4214. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Xiao, S.; Håkonsen, V.; He, J.; Zhang, Z. Anti-icing Ionogel Surfaces: Inhibiting Ice Nucleation, Growth, and Adhesion. ACS Mater. Lett. 2020, 2, 616–623. [Google Scholar] [CrossRef]
Sample | θS (°) | θA/θR (°/°) | Δθ (°) | α (°) |
---|---|---|---|---|
[BHEDMA][MeSO3]-infused SNF-covered glass slide | N/A | N/A | N/A | N/A |
Bare glass slide | N/A | N/A | N/A | N/A |
SNF-covered glass slide | N/A | N/A | N/A | N/A |
[EMI][TFSI]-infused SNF-covered glass slide | 51 | 51/48 | 3 | 3 |
Krytox-infused SNF-covered glass slide | 114 | 115/112 | 3 | 4 |
FAS17-coated SNF-covered glass slide | 163 | 167/161 | 6 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, S.; Wassgren, J.; Sugie, S.; Hozumi, A. Application of High-Surface Tension and Hygroscopic Ionic Liquid-Infused Nanostructured SiO2 Surfaces for Reversible/Repeatable Anti-Fogging Treatment. Surfaces 2024, 7, 482-492. https://doi.org/10.3390/surfaces7030031
Nakamura S, Wassgren J, Sugie S, Hozumi A. Application of High-Surface Tension and Hygroscopic Ionic Liquid-Infused Nanostructured SiO2 Surfaces for Reversible/Repeatable Anti-Fogging Treatment. Surfaces. 2024; 7(3):482-492. https://doi.org/10.3390/surfaces7030031
Chicago/Turabian StyleNakamura, Satoshi, Jerred Wassgren, Sayaka Sugie, and Atsushi Hozumi. 2024. "Application of High-Surface Tension and Hygroscopic Ionic Liquid-Infused Nanostructured SiO2 Surfaces for Reversible/Repeatable Anti-Fogging Treatment" Surfaces 7, no. 3: 482-492. https://doi.org/10.3390/surfaces7030031
APA StyleNakamura, S., Wassgren, J., Sugie, S., & Hozumi, A. (2024). Application of High-Surface Tension and Hygroscopic Ionic Liquid-Infused Nanostructured SiO2 Surfaces for Reversible/Repeatable Anti-Fogging Treatment. Surfaces, 7(3), 482-492. https://doi.org/10.3390/surfaces7030031