A Study of the Features of Coating Deposition on a Carbide Substrate Using Preliminary Etching with Glow-Discharge Plasma
Abstract
:1. Introduction
- Ion bombardment with the generation of metal plasma by arc evaporators.
- Ion bombardment with the generation of gas plasma by a glow discharge.
2. Materials and Methods
2.1. Metal Ion Etching of Plasma Generated by Vacuum Evaporators (IB)
2.2. Etching by Gas Ions of a Self-Sustained Glow-Discharge Plasma (GD)
3. Results
3.1. Scratch Test Hardness
3.2. Cutting Test When Using Turning Steel 1045 (Cutting Speed vc = 300 and 350 m/min)
3.3. Character of Wear of Cutting Tools with Studied Coatings
3.3.1. Heating by Ion Bombardment with Plasma Generation by Arc Evaporators (IB)
3.3.2. The Heating of the Substrate Surface by a Glow Discharge (GD)
4. Discussion
- A diffusion layer in the substrate (up to 200 nm thick). The diffusion of chromium and, possibly, titanium is observed (identification of titanium diffusion is difficult due to its also being present in the composition of the substrate—TiC).
- A layer with a dominant titanium content (30–50 nm thick).
- A layer with a high cobalt content and the possible presence of elements from the equipment (in particular, iron and molybdenum). The composition of this layer is almost impossible to control.
5. Conclusions
- The use of heating when exposed to gas ions of a glow discharge provides a smaller spread in the temperature of the samples throughout the chamber volume compared to heating by ion bombardment with plasma generation by arc evaporators;
- The IB coating begins to fail at 36 N. When the maximum load of 40 N is reached, there are no signs of failure of the GD coating;
- The cutting test results for turning 1045 steel show that at the cutting speed vc = 300 m/min, the GD-coated tool shows slightly less active wear dynamics compared to the IB-coated tool. When the cutting speed increases to vc = 350 m/min, the difference in wear dynamics becomes more noticeable and obvious. After 7 min of cutting, the IB-coated tool reached the wear limit criterion (VBmax = 350 μm), while the GD-coated tool remained functional and had not reached the wear limit value;
- In the process of ion bombardment, a layer of complex structure and composition is formed at the boundary of the coating and substrate, which may include the following:
- o
- A diffusion layer in the substrate (up to 200 nm thick). The diffusion of chromium and possibly titanium is observed;
- o
- A layer with a dominant titanium content (30–50 nm thick);
- o
- A layer with a high cobalt content and the possible presence of elements of other elements (in particular iron and molybdenum). This layer is formed only when using heating and etching by ion bombardment with plasma generation by arc evaporators.
- The formation of a layer with a high molybdenum content may be associated with sputtering of cobalt atoms from the substrate by a flow of metal ions, followed by the reverse deposition of cobalt;
- A layer with a high cobalt content and the presence of other (contaminant) elements can negatively affect the overall adhesion strength of the coating and the substrate. This issue requires additional study.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frey, H.; Khan, H.R. Handbook of Thin Film Technology; Springer-Verlag: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ilyin, A.A.; Plihunov, V.V.; Petrov, L.M.; Zelenkov, V.V.; Ivanchuk, S.B.; Sokolov, I.V. Cleaning and Activation of the Surface of Products from Structural Metallic Materials in the Process of Vacuum Ion-Plasma Treatment. Technol. Light Alloys 2009, 2, 111–117. [Google Scholar]
- Luchkin, A.G.; Luchkin, G.S. Cleaning the Surface of Substrates for Coating by Vacuum-Plasma Methods. Bull. Kazan Technol. Univ. 2012, 15, 208–210. [Google Scholar]
- Oura, K.; Lifshitz, V.G.; Saranin, A.A.; Zotov, A.V.; Katayama, M. Introduction to Surface Physics; Nauka: Moscow, Russia, 2006. [Google Scholar]
- Tillmann, W.; Hagen, L.; Stangier, D.; Krabiell, M.; Elbers, M. Influence of etching-pretreatment on nano-grained WC-Co surfaces and properties of PVD/HVOF duplex coatings. Surf. Coat. Technol. 2019, 374, 32–43. [Google Scholar] [CrossRef]
- Pemmasani, S.P.; Valleti, K.; Gundakaram, R.C.; Rajulapati, K.V.; Mantripragada, R.; Koppoju, S.; Joshi, S.V. Effect of microstructure and phase constitution on mechanical properties of Ti1−xAlxN coatings. Appl. Surf. Sci. 2014, 313, 936–946. [Google Scholar] [CrossRef]
- Yang, J.; Odén, M.; Johansson-Jõesaar, M.P.; Esteve, J.; Llanes, L. Mechanical strength of ground WC-Co cemented carbides after coating deposition. Mater. Sci. Eng. A 2017, 689, 72–77. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Ananth, A.; Khan, J.; Srinivas, G. Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates. Vacuum 2012, 86, 1165–1173. [Google Scholar] [CrossRef]
- Buchwalder, A.; Zenker, R. Pre- and post-surface treatments using electron beam technology for load-related application of thermochemical and PVD hard coatings on soft substrate materials. Surf. Coat. Technol. 2019, 375, 920–932. [Google Scholar] [CrossRef]
- Komarovskaya, V.M.; Ivashchenko, S.A. Optimization of modes of ion treatment of the surface of non-metallic materials. Uprochnyayuscie Technol. I. Pokrytiya 2013, 3, 23–27. [Google Scholar]
- Zabrodin, I.G.; Zorina, M.V.; Kaskov, I.A.; Malyshev, I.V.; Mikhailenko, M.S.; Pestov, A.E.; Salashchenko, N.N.; Chernyshev, A.K.; Chkhalo, N.I. Ion-Beam Methods for High-Precision Processing of Optical Surfaces. Tech. Phys. 2020, 65, 1837–1845. [Google Scholar] [CrossRef]
- Kaufman, H.R.; Harper, J.M.E. Ion-assist applications of broad-beam ion sources. Proc. SPIE Int. Soc. Opt. Eng. 2004, 5527, 50–68. [Google Scholar]
- Talipov, N.K.; Voitsekhovsky, A.V. Influence of ion-beam etching modes on the process of radiation heating of CdxHg1−xTe. J. Appl. Phys. 2018, 4, 61–66. [Google Scholar]
- Stepanovsky, A.S. Ionic Processing of Materials. Ogaryov-Online Mashinostroenie Nauka Tech. 2013, 14, 1–3. [Google Scholar]
- Hovsepian, P.; Reinhard, C.; Ehiasarian, A.P. CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique. Surf. Coat. Technol. 2006, 201, 4105–4110. [Google Scholar] [CrossRef]
- Abdullin, I.S.; Khubathuzin, A.A. The use of low-pressure high-frequency plasma to obtain the isotropic properties of the metal. Kazan Bull. KSTU 2010, 11, 625–627. [Google Scholar]
- Kablov, E.N.; Muboyadzhyan, S.A. Ion etching and surface modification of critical machine parts in vacuum-arc plasma. Bull. MSTU Im. N.E. Bauman 2011, S2, 149–162. [Google Scholar]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Sotova, C. Investigation of the influence of the features of the deposition process on the structural features of microparticles in PVD coatings. Vacuum 2022, 202, 111144. [Google Scholar] [CrossRef]
- Lattemann, M.; Ehiasarian, A.P.; Bohlmark, J.; Persson, P.; Helmersson, U. Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel. Surf. Coat. Technol. 2006, 200, 6495–6499. [Google Scholar] [CrossRef]
- Mattox, M.D. A Short History of In Situ Cleaning in Vacuum for Physical Vapor Deposition (PVD). SVC Bull. Fall 2014, 50–52. [Google Scholar]
- Broitman, E.; Hultman, L. Adhesion improvement of carbon-based coatings through a high ionization deposition technique. J. Phys. Conf. Ser. 2012, 370, 012009. [Google Scholar] [CrossRef]
- Yurshev, V.I.; Serdyuk, A.I.; Mukatdarov, R.I.; Yurshev, I.V. Deposition of Coatings Under Pulsed Action of Glow Discharge. Met. Sci. Heat Treat. 2018, 59, 637–640. [Google Scholar] [CrossRef]
- Zadorozhnyi, V.G.; Rafalovich, D.M.; Roikh, I.L. Effect of Surface Treatment of Steel with a Glow Discharge on the Adhesion and Porosity of Vacuum Coatings of Polyfluorotrichloroethylene. Elektron. Obrab. Mater. 1977, 1, 43–45. [Google Scholar]
- Vetter, J.; Burgmer, W.; Perry, A.J. Arc-enhanced glow discharge in vacuum arc machines. Surf. Coat. Technol. 1993, 59, 152–155. [Google Scholar] [CrossRef]
- Berlin, E.; Dvinin, S.; Seidman, L. World of Materials and Technologies. In Vacuum Technology and Equipment for Deposition and Etching of Thin Films; Technosphere: Moscow, Russia, 2007. [Google Scholar]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Mahne, N.; Čekada, M.; Panjan, M. Correction: Surface Topography of PVD Hard Coatings. Coatings 2021, 11. Erratum in Coatings 2023, 13, 435. [Google Scholar] [CrossRef]
- Schönjahn, C.; Lewis, D.B.; Münz, W.-D.; Petrov, I. Shortlisted substrate ion etching in combined steered cathodic arc–ubm deposition system: Effects on interface architecture, adhesion, and tool performance. Surf. Eng. 2000, 16, 176–180. [Google Scholar] [CrossRef]
- Gilman, V.N.; Fashutdinov, A.I.; Balabanov, I.P. Experience in the application of nitriding in a glow discharge to increase the efficiency of gear processing by the method of grinding. IOP Conf. Ser. Mater. Sci. Eng. 2020, 915, 012014. [Google Scholar] [CrossRef]
- Tsujikawa, M.; Sone, T.; Egawa, M.; Ueda, N.; Higashi, K. Hardness profile improvement of plasma nitrided high speed steel by glow discharge heating. Int. Heat Treat. Surf. Eng. 2011, 5, 171–174. [Google Scholar] [CrossRef]
- Kashaev, N.; Stock, H.-R.; Mayr, P. Nitriding of Ti −6% Al −4% v alloy in the plasma of an intensified glow discharge. Met. Sci. Heat Treat. 2004, 46, 294–298. [Google Scholar] [CrossRef]
- Vetter, J.; Wallendorf, T. Plasma diagnostics of arc-enhanced glow discharge. Surf. Coat. Technol. 1995, 76–77, 322–327. [Google Scholar] [CrossRef]
- Ehiasarian, A.P.; Wen, J.G.; Petrov, I. Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. J. Appl. Phys. 2007, 101, 054301. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Andreev, N.; Bublikov, J.; Kutina, N. Investigation of the properties of the Cr,Mo-(Cr,Mo,Zr,Nb)N-(Cr,Mo,Zr,Nb,Al)N multilayer composite multicomponent coating with nanostructured wear-resistant layer. Wear 2021, 468–469, 203597. [Google Scholar] [CrossRef]
- Bora, B. Studies on the effect of finite geometrical asymmetry in dual capacitively coupled radio frequency plasma. Plasma Sources Sci. Technol. 2015, 24, 054002. [Google Scholar] [CrossRef]
- So, S.-Y. Analysis on DC glow discharge properties of Ar gas at the atmosphere pressure. Trans. Korean Inst. Electr. Eng. 2010, 59, 417–422. [Google Scholar]
- Yuan, X.; Raja, L.L. Computational study of capacitively coupled high-pressure glow discharges in helium. IEEE Trans. Plasma Sci. 2003, 31, 495–503. [Google Scholar] [CrossRef]
- Wang, Y.H.; Guo, F.; Ren, H.; Hu, S.Y.; Chen, Y.J.; Zhao, Y.H.; Gong, F.; Xie, Z.W. Enhancing wear resistance of TiN coating by gradient bias voltage and arc-enhanced glow discharge. Ceram. Int. 2022, 48, 8746–8750. [Google Scholar] [CrossRef]
- Xue, G.; Wang, Z.; Xiang, L.; Xiao, H.; Zhao, Y.; Wan, Y.; Ning, H.; Xie, Z. Enhancing hot corrosion performance of NiCoCrAlY/AlSiY coating by arc enhanced glow discharge. Mater. Lett. X 2022, 13, 100130. [Google Scholar] [CrossRef]
- Guo, X.; Liu, F.; Zhang, K.; Wang, C.; Piao, Z.; Sun, L. Controllable preparation of micro-textures on WC/Co substrate surface by an integrated laser-dry etching process for improving PVD coatings adhesion. Appl. Surf. Sci. 2020, 534, 147580. [Google Scholar] [CrossRef]
- Berish, R. Problems of Applied Physics. Sputtering Solids Ion Bombard. 1986, II, 482. [Google Scholar]
- Zhang, K.D.; Deng, J.X.; Guo, X.H.; Sun, L.N.; Lei, S.T. Study on the adhesion and tribological behavior of PVD TiAlN coatings with a multi-scale textured substrate surface. Int. J. Refract. Met. Hard Mater. 2018, 72, 292–305. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Čekada, M.; Panjan, M. Contamination of Substrate-Coating Interface Caused by Ion Etching. Coatings 2022, 12, 846. [Google Scholar] [CrossRef]
- Lopes Dias, N.F.; Meijer, A.L.; Jäckel, C.P.; Frisch, A.; Biermann, D.; Tillmann, W. Arc-enhanced glow discharge ion etching of WC-Co cemented carbide for improved PVD thin film adhesion and asymmetric cutting edge preparation of micro milling tools. Surf. Coat. Technol. 2024, 491, 131166. [Google Scholar] [CrossRef]
- Vereschaka, A.; Grigoriev, S.; Milovich, F.; Sitnikov, N.; Migranov, M.; Andreev, N.; Bublikov, J.; Sotova, C. Investigation of tribological and functional properties of Cr,Mo-(Cr,Mo)N-(Cr,Mo,Al)N multilayer composite coating. Tribol. Int. 2021, 155, 106804. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Vereschaka, A.A.; Sitnikov, N.N.; Milovich, F. Properties of (Cr,Al,Si)N-(DLC-Si) composite coatings deposited on a cutting ceramic substrate. Ceram. Int. 2020, 46, 18241–18255. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Milovich, F.; Andreev, N.; Bublikov, J. Investigation of wear mechanisms for the rake face of a cutting tool with a multilayer composite nanostructured Cr–CrN-(Ti,Cr,Al,Si)N coating in high-speed steel turning. Wear 2019, 438–439, 203069. [Google Scholar] [CrossRef]
- Volosova, M.; Grigoriev, S.; Metel, A.; Shein, A. The Role of Thin-Film Vacuum-Plasma Coatings and Their Influence on the Efficiency of Ceramic Cutting Inserts. Coatings 2018, 8, 287. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Grigoriev, S.N.; Volosova, M.A.; Batako, A.; Vereschaka, A.A.; Sitnikov, N.N.; Seleznev, A.E. Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools. Int. J. Adv. Manuf. Technol. 2017, 90, 27–43. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Milovich, F.; Andreev, N.; Sotova, C.; Kutina, N. Investigation of the influence of the thickness of nanolayers in wear-resistant layers of Ti-TiN-(Ti,Cr,Al)N coating on destruction in the cutting and wear of carbide cutting tools. Surf. Coat. Technol. 2020, 385, 125402. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Mustafaev, E. Specific features of the structure and properties of arc-PVD coatings depending on the spatial arrangement of the sample in the chamber. Vacuum 2022, 200, 111047. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Seleznev, A.; Sotova, C.; Bublikov, J. Influence of the yttrium cathode arc current on the yttrium content in the (Ti, Y, Al) N coating and the coating properties. Vacuum 2024, 222, 113028. [Google Scholar] [CrossRef]
- ANSI/ASME B94.55M-1985; American National Standard “Tool Life Testing With Single-Point Turning Tools”. ASME: New York, NY, USA, 1985.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoriev, S.; Volosova, M.; Bublikov, Y.; Sotova, C.; Milovich, F.; Seleznev, A.; Shmakov, I.; Vereschaka, A. A Study of the Features of Coating Deposition on a Carbide Substrate Using Preliminary Etching with Glow-Discharge Plasma. Surfaces 2024, 7, 920-937. https://doi.org/10.3390/surfaces7040060
Grigoriev S, Volosova M, Bublikov Y, Sotova C, Milovich F, Seleznev A, Shmakov I, Vereschaka A. A Study of the Features of Coating Deposition on a Carbide Substrate Using Preliminary Etching with Glow-Discharge Plasma. Surfaces. 2024; 7(4):920-937. https://doi.org/10.3390/surfaces7040060
Chicago/Turabian StyleGrigoriev, Sergey, Marina Volosova, Yuri Bublikov, Catherine Sotova, Filipp Milovich, Anton Seleznev, Ilya Shmakov, and Alexey Vereschaka. 2024. "A Study of the Features of Coating Deposition on a Carbide Substrate Using Preliminary Etching with Glow-Discharge Plasma" Surfaces 7, no. 4: 920-937. https://doi.org/10.3390/surfaces7040060
APA StyleGrigoriev, S., Volosova, M., Bublikov, Y., Sotova, C., Milovich, F., Seleznev, A., Shmakov, I., & Vereschaka, A. (2024). A Study of the Features of Coating Deposition on a Carbide Substrate Using Preliminary Etching with Glow-Discharge Plasma. Surfaces, 7(4), 920-937. https://doi.org/10.3390/surfaces7040060