Light in the Senior Home: Effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and Well-Being
Abstract
:1. Introduction
2. Results
2.1. Participant Demographics
2.2. Condition Effects
2.2.1. Actigraphy
2.2.2. Cognition
2.2.3. Well-Being
2.2.4. Lighting Feedback
2.3. Pooled Data: Individual Light Exposure
3. Discussion
4. Materials and Methods
4.1. Study Site and Participants
4.2. Study Design
Lighting Conditions
4.3. Materials and Procedures
4.3.1. Wrist Accelerometers
4.3.2. Cognitive Tests
- The Pattern Comparison and Processing Speed Test is a 3 min processing speed test. This test measures the speed of processing by asking participants to discern whether two side-by-side pictures are the same or not. The items are presented one pair at a time on the computer screen, and the participant is given 90 s to respond to as many items as possible (up to a maximum of 130 items). The participant’s raw score is the number of items answered correctly in a 90 s period, with a range of 0–130. Higher scores indicate a faster speed of processing. To evaluate simple improvement or decline over time, one can use the raw score obtained from each assessment. Slow processing speed has been associated with normal aging, with decreased processing speed being a significant contributor to age-related decline in other cognitive domains [82].
- The Flanker Inhibitory Control and Attention Test is a 3 min test to assess a participant’s attention and inhibitory control. Participants are required to indicate the left–right orientation of a centrally presented arrow while inhibiting attention to the potentially incongruent stimuli that surround it. In some trials, the orientation of the flanking stimuli is congruent with the orientation of the central stimulus, and in others, it is incongruent. Performance on the incongruent trials provides a measure of inhibitory control in the context of visual selective attention. Scoring is based on a combination of accuracy and reaction time. The score provides a way of gauging raw improvement or decline from time 1 to time 2 (or subsequent assessments). This computed score ranges from 0–10, but if the score is between 0 and 5, it indicates that the participant did not score high enough in accuracy (80 percent correct or less). A change in the participant’s score from time 1 to time 2 represents real change in the level of performance for that individual since the previous assessment.
- The Dimensional Change Card Sort Test is a 4 min test designed to assess cognitive flexibility/task switching. Two target pictures are presented that vary along two dimensions (e.g., shape and color). Participants are asked to match a series of bivalent test pictures (e.g., yellow balls and blue trucks) to the target pictures, first according to one dimension (e.g., color) and then, after a number of trials, according to the other dimension (e.g., shape). “Switch” trials are also employed, in which the participant must change the dimension being matched. It consists of four blocks (practice, pre-switch, post-switch, and mixed). Scoring is based on a combination of accuracy and reaction time. The computed score provides a way of gauging raw improvement or decline from time 1 to time 2. This computed score ranges from 0–10, but if the score is between 0 and 5, it indicates that the participant did not score high enough in accuracy (80 percent correct or less). A change in the participant’s score from time 1 to time 2 represents real change in the level of performance for that individual since the previous assessment.
4.3.3. Standardized Questionnaires
4.4. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SCN | suprachiasmatic nucleus |
µMCTQ | ultra-short version of the Munich ChronoType Questionnaire |
NIHTB-CB | National Institutes of Health Toolbox-Cognition Battery |
RA | relative amplitude |
IV | intradaily variability |
IS | interdaily stability |
CCT | correlated colour temperature |
CRI | colour rendering index |
References
- De Lepeleire, J.; Bouwen, A.; De Coninck, L.; Buntinx, F. Insufficient lighting in nursing homes. J. Am. Med. Dir. Assoc. 2007, 8, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.S.; Kripke, D.F.; Gillin, J.C.; Hrubovcak, J.C. Exposure to light in healthy elderly subjects and Alzheimer’s patients. Physiol. Behav. 1988, 42, 141–144. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Kripke, D.F. Now I lay me down to sleep: The problem of sleep fragmentation in elderly and demented residents of nursing homes. Bull. Clin. Neurosci. 1989, 54, 127–132. [Google Scholar]
- Ancoli-Israel, S.; Klauber, M.R.; Jones, D.W.; Kripke, D.F.; Martin, J.; Mason, W.; Pat-Horenczyk, R.; Fell, R. Variations in circadian rhythms of activity, sleep, and light exposure related to dementia in nursing-home patients. Sleep 1997, 20, 18–23. [Google Scholar]
- Roenneberg, T.; Kantermann, T.; Juda, M.; Vetter, C.; Allebrandt, K.V. Light and the human circadian clock. In Circadian Clocks; Springer: Berlin/Heidelberg, Germany, 2013; pp. 311–331. [Google Scholar] [CrossRef]
- Blume, C.; Garbazza, C.; Spitschan, M. Effects of light on human circadian rhythms, sleep and mood. Somnologie 2019, 23, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Foster, R.G.; Hankins, M.W. Circadian vision. Curr. Biol. 2007, 17, R746–R751. [Google Scholar] [CrossRef] [Green Version]
- Provencio, I.; Rodriguez, I.R.; Jiang, G.; Hayes, W.P.; Moreira, E.F.; Rollag, M.D. A novel human opsin in the inner retina. J. Neurosci. 2000, 20, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Hattar, S.; Liao, H.W.; Takao, M.; Berson, D.M.; Yau, K.W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 2002, 295, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef] [Green Version]
- Brainard, G.C.; Sliney, D.; Hanifin, J.P.; Glickman, G.; Byrne, B.; Greeson, J.M.; Jasser, S.; Gerner, E.; Rollag, M.D. Sensitivity of the human circadian system to short-wavelength (420-nm) light. J. Biol. Rhythm. 2008, 23, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Warman, V.L.; Dijk, D.J.; Warman, G.R.; Arendt, J.; Skene, D.J. Phase advancing human circadian rhythms with short wavelength light. Neurosci. Lett. 2003, 342, 37–40. [Google Scholar] [CrossRef]
- Revell, V.L.; Arendt, J.; Terman, M.; Skene, D.J. Short-wavelength sensitivity of the human circadian system to phase-advancing light. J. Biol. Rhythm. 2005, 20, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.R.; Lack, L.C. Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol. Int. 2001, 18, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.R.; Lack, L.C.; Kennaway, D.J. Differential effects of light wavelength in phase advancing the melatonin rhythm. J. Pineal Res. 2004, 36, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Duncan, M.J. Interacting influences of aging and Alzheimer’s disease on circadian rhythms. Eur. J. Neurosci. 2020, 51, 310–325. [Google Scholar] [CrossRef] [Green Version]
- Charman, W.N. Age, lens transmittance, and the possible effects of light on melatonin suppression. Ophthalmic Physiol. Opt. 2003, 23, 181–187. [Google Scholar] [CrossRef]
- Gaddy, J.R.; Rollag, M.D.; Brainard, G.C. Pupil size regulation of threshold of light-induced melatonin suppression. J. Clin. Endocrinol. Metab. 1993, 77, 1398–1401. [Google Scholar] [CrossRef]
- Hofman, M.A.; Swaab, D.F. Living by the clock: The circadian pacemaker in older people. Ageing Res. Rev. 2006, 5, 33–51. [Google Scholar] [CrossRef]
- Brainard, G.C.; Rollag, M.D.; Hanifin, J.P. Photic regulation of melatonin in humans: Ocular and neural signal transduction. J. Biol. Rhythm. 1997, 12, 537–546. [Google Scholar] [CrossRef]
- Revell, V.L.; Skene, D. Impact of age on human non-visual responses to light. Sleep Biol. Rhythm. 2010, 8, 84–94. [Google Scholar] [CrossRef]
- Van Someren, E.J.; Riemersma-Van Der Lek, R.F. Live to the rhythm, slave to the rhythm. Sleep Med. Rev. 2007, 11, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Tranah, G.J.; Blackwell, T.; Stone, K.L.; Ancoli-Israel, S.; Paudel, M.L.; Ensrud, K.E.; Cauley, J.A.; Redline, S.; Hillier, T.A.; Cummings, S.R.; et al. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann. Neurol. 2011, 70, 722–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers-Soeder, T.S.; Blackwell, T.; Yaffe, K.; Ancoli-Israel, S.; Redline, S.; Cauley, J.A.; Ensrud, K.E.; Paudel, M.; Barrett-Connor, E.; LeBlanc, E.; et al. Rest-activity rhythms and cognitive decline in older men: The osteoporotic fractures in men sleep study. J. Am. Geriatr. Soc. 2018, 66, 2136–2143. [Google Scholar] [CrossRef] [PubMed]
- Musiek, E.S.; Bhimasani, M.; Zangrilli, M.A.; Morris, J.C.; Holtzman, D.M.; Ju, Y.S. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol. 2018, 75, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Quante, M.; Godbole, S.; James, P.; Hipp, J.A.; Marinac, C.R.; Mariani, S.; Feliciano, E.M.C.; Glanz, K.; Laden, F.; et al. Variation in actigraphy-estimated rest-activity patterns by demographic factors. Chronobiol. Int. 2017, 34, 1042–1056. [Google Scholar] [CrossRef] [PubMed]
- Van Someren, E.J. Circadian and sleep disturbances in the elderly. Exp. Gerontol. 2000, 35, 1229–1237. [Google Scholar] [CrossRef]
- de Feijter, M.; Lysen, T.S.; Luik, A.I. 24-h activity rhythms and health in older adults. Curr. Sleep Med. Rep. 2020, 6, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Weissová, K.; Bartoš, A.; Sládek, M.; Nováková, M.; Sumová, A. Moderate changes in the circadian system of Alzheimer’s disease patients detected in their home environment. PLoS ONE 2016, 11, e0146200. [Google Scholar] [CrossRef]
- Van Someren, E.J.W.; Oosterman, J.M.; Van Harten, B.; Vogels, R.L.; Gouw, A.A.; Weinstein, H.C.; Poggesi, A.; Scheltens, P.; Scherder, E.J.A. Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk. Neurobiol. Learn. Mem. 2019, 160, 132–138. [Google Scholar] [CrossRef]
- Wams, E.J.; Wilcock, G.K.; Foster, R.G.; Wulff, K. Sleep-wake patterns and cognition of older adults with Amnestic Mild Cognitive Impairment (aMCI): A comparison with cognitively healthy adults and moderate Alzheimer’s disease patients. Curr. Alzheimer Res. 2017, 14, 1030–1041. [Google Scholar] [CrossRef]
- Luik, A.I.; Zuurbier, L.A.; Hofman, A.; Van Someren, E.J.; Tiemeier, H. Stability and fragmentation of the activity rhythm across the sleep-wake cycle: The importance of age, lifestyle, and mental health. Chronobiol. Int. 2013, 30, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Van Someren, E.J.; Kessler, A.; Mirmiran, M.; Swaab, D.F. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients. Biol. Psychiatry 1997, 41, 955–963. [Google Scholar] [CrossRef] [Green Version]
- Chong, M.S.; Tan, K.T.; Tay, L.; Wong, Y.M.; Ancoli-Israel, S. Bright light therapy as part of a multicomponent management program improves sleep and functional outcomes in delirious older hospitalized adults. Clin. Interv. Aging 2013, 8, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiro, M.G.; Plitnick, B.A.; Lok, A.; Jones, G.E.; Higgins, P.; Hornick, T.R.; Rea, M.S. Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer’s disease and related dementia living in long-term care facilities. Clin. Interv. Aging 2014, 9, 1527–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ancoli-Israel, S.; Gehrman, P.; Martin, J.L.; Shochat, T.; Marler, M.; Corey-Bloom, J.; Levi, L. Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer’s disease patients. Behav. Sleep Med. 2003, 1, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Sloane, P.D.; Williams, C.S.; Mitchell, C.M.; Preisser, J.S.; Wood, W.; Barrick, A.L.; Hickman, S.E.; Gill, K.S.; Connell, B.R.; Edinger, J.; et al. High-intensity environmental light in dementia: Effect on sleep and activity. J. Am. Geriatr. Soc. 2007, 55, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Mishima, K.; Hishikawa, Y.; Okawa, M. Randomized, dim light controlled, crossover test of morning bright light therapy for rest-activity rhythm disorders in patients with vascular dementia and dementia of Alzheimer’s type. Chronobiol. Int. 1998, 15, 647–654. [Google Scholar] [CrossRef]
- Riemersma-van der Lek, R.F.; Swaab, D.F.; Twisk, J.; Hol, E.M.; Hoogendijk, W.J.; Van Someren, E.J. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: A randomized controlled trial. JAMA 2008, 299, 2642–2655. [Google Scholar] [CrossRef]
- Hopkins, S.; Morgan, P.L.; Schlangen, L.J.M.; Williams, P.; Skene, D.J.; Middleton, B. Blue-enriched lighting for older people living in care homes: Effect on activity, actigraphic sleep, mood and alertness. Curr. Alzheimer Res. 2017, 14, 1053–1062. [Google Scholar] [CrossRef]
- Murphy, P.J.; Campbell, S.S. Physiology of the circadian system in animals and humans. J. Clin. Neurophysiol. 1996, 13, 2–16. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Plitnick, B.; Roohan, C.; Sahin, L.; Kalsher, M.; Rea, M.S. Effects of a tailored lighting intervention on sleep quality, rest-activity, mood, and behavior in older adults with Alzheimer disease and related dementias: A randomized clinical trial. J. Clin. Sleep Med. 2019, 15, 1757–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Münch, M.; Schmieder, M.; Bieler, K.; Goldbach, R.; Fuhrmann, T.; Zumstein, N.; Vonmoos, P.; Scartezzini, J.L.; Wirz-Justice, A.; Cajochen, C. Bright light delights: Effects of daily light exposure on emotions, restactivity cycles, sleep and melatonin secretion in severely demented patients. Curr. Alzheimer Res. 2017, 14, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S.; Martin, J.L.; Kripke, D.F.; Marler, M.; Klauber, M.R. Effect of light treatment on sleep and circadian rhythms in demented nursing home patients. J. Am. Geriatr. Soc. 2002, 50, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Dowling, G.A.; Hubbard, E.M.; Mastick, J.; Luxenberg, J.S.; Burr, R.L.; Van Someren, E.J. Effect of morning bright light treatment for rest-activity disruption in institutionalized patients with severe Alzheimer’s disease. Int. Psychogeriatr. 2005, 17, 221–236. [Google Scholar] [CrossRef]
- Shochat, T.; Martin, J.; Marler, M.; Ancoli-Israel, S. Illumination levels in nursing home patients: Effects on sleep and activity rhythms. J. Sleep Res. 2000, 9, 373–379. [Google Scholar] [CrossRef]
- Boubekri, M.; Cheung, I.N.; Reid, K.J.; Wang, C.H.; Zee, P.C. Impact of windows and daylight exposure on overall health and sleep quality of office workers: A case-control pilot study. J. Clin. Sleep Med. 2014, 10, 603–611. [Google Scholar] [CrossRef]
- Giménez, M.C.; Geerdinck, L.M.; Versteylen, M.; Leffers, P.; Meekes, G.J.; Herremans, H.; de Ruyter, B.; Bikker, J.W.; Kuijpers, P.M.; Schlangen, L.J. Patient room lighting influences on sleep, appraisal and mood in hospitalized people. J. Sleep Res. 2017, 26, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Lambert, G.W.; Reid, C.; Kaye, D.M.; Jennings, G.L.; Esler, M.D. Effect of sunlight and season on serotonin turnover in the brain. Lancet 2002, 360, 1840–1842. [Google Scholar] [CrossRef]
- Mishima, K.; Okawa, M.; Shimizu, T.; Hishikawa, Y. Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J. Clin. Endocrinol. Metab. 2001, 86, 129–134. [Google Scholar] [CrossRef]
- Bernhofer, E.I.; Higgins, P.A.; Daly, B.J.; Burant, C.J.; Hornick, T.R. Hospital lighting and its association with sleep, mood and pain in medical inpatients. J. Adv. Nurs. 2014, 70, 1164–1173. [Google Scholar] [CrossRef]
- Rahman, S.A.; St Hilaire, M.A.; Lockley, S.W. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep. Physiol. Behav. 2017, 177, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Figueiro, M.G.; Steverson, B.; Heerwagen, J.; Kampschroer, K.; Hunter, C.M.; Gonzales, K.; Plitnick, B.; Rea, M.S. The impact of daytime light exposures on sleep and mood in office workers. Sleep Health 2017, 3, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Lovell, B.B.; Ancoli-Israel, S.; Gevirtz, R. Effect of bright light treatment on agitated behavior in institutionalized elderly subjects. Psychiatry Res. 1995, 57, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Czeisler, C.A. Perspective: Casting light on sleep deficiency. Nature 2013, 497, S13. [Google Scholar] [CrossRef]
- Santhi, N.; Thorne, H.C.; van der Veen, D.R.; Johnsen, S.; Mills, S.L.; Hommes, V.; Schlangen, L.J.; Archer, S.N.; Dijk, D.J. The spectral composition of evening light and individual differences in the suppression of melatonin and delay of sleep in humans. J. Pineal Res. 2012, 53, 47–59. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Dijk, D.J.; Kronauer, R.; Brown, E.; Czeisler, C. Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. J. Physiol. 2000, 526 Pt 3, 695–702. [Google Scholar] [CrossRef]
- Roenneberg, T.; Kuehnle, T.; Juda, M.; Kantermann, T.; Allebrandt, K.; Gordijn, M.; Merrow, M. Epidemiology of the human circadian clock. Sleep Med. Rev. 2007, 11, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Hooghiemstra, A.M.; Eggermont, L.H.; Scheltens, P.; van der Flier, W.M.; Scherder, E.J. The rest-activity rhythm and physical activity in early-onset dementia. Alzheimer Dis. Assoc. Disord. 2015, 29, 45–49. [Google Scholar] [CrossRef]
- Moe, K.E.; Vitiello, M.V.; Larsen, L.H.; Prinz, P.N. Sleep/wake patterns in Alzheimer’s disease: Relationship with cognition and function. J. Sleep Res. 1995, 4, 15–20. [Google Scholar] [CrossRef]
- Musiek, E.S.; Holtzman, D.M. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 2016, 354, 1004–1008. [Google Scholar] [CrossRef] [Green Version]
- Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019, 18, 307–318. [Google Scholar] [CrossRef]
- Tranah, G.J.; Blackwell, T.; Ancoli-Israel, S.; Paudel, M.L.; Ensrud, K.E.; Cauley, J.A.; Redline, S.; Hillier, T.A.; Cummings, S.R.; Stone, K.L.; et al. Circadian activity rhythms and mortality: The study of osteoporotic fractures. J. Am. Geriatr. Soc. 2010, 58, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Weldemichael, D.A.; Grossberg, G.T. Circadian rhythm disturbances in patients with Alzheimer’s disease: A review. Int. J. Alzheimers Dis. 2010, 2010, 716453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nioi, A.; Roe, J.; Gow, A.; McNair, D.; Aspinall, P. Seasonal differences in light exposure and the associations with health and well-being in older adults: An exploratory study. HERD 2017, 10, 64–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiro, M.G.; Hamner, R.; Higgins, P.; Hornick, T.; Rea, M.S. Field measurements of light exposures and circadian disruption in two populations of older adults. J. Alzheimers Dis. 2012, 31, 711–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stothard, E.R.; McHill, A.W.; Depner, C.M.; Birks, B.R.; Moehlman, T.M.; Ritchie, H.K.; Guzzetti, J.R.; Chinoy, E.D.; LeBourgeois, M.K.; Axelsson, J.; et al. Circadian entrainment to the natural light-dark cycle across seasons and the weekend. Curr. Biol. 2017, 27, 508–513. [Google Scholar] [CrossRef] [Green Version]
- Kantermann, T.; Juda, M.; Merrow, M.; Roenneberg, T. The human circadian clock’s seasonal adjustment is disrupted by daylight saving time. Curr. Biol. 2007, 17, 1996–2000. [Google Scholar] [CrossRef] [Green Version]
- Figueiro, M.G. Light, sleep and circadian rhythms in older adults with Alzheimer’s disease and related dementias. Neurodegener. Dis. Manag. 2017, 7, 119–145. [Google Scholar] [CrossRef] [Green Version]
- Joyce, D.S.; Zele, A.J.; Feigl, B.; Adhikari, P. The accuracy of artificial and natural light measurements by actigraphs. J. Sleep Res. 2020, 29, e12963. [Google Scholar] [CrossRef] [Green Version]
- Figueiro, M.G.; Hamner, R.; Bierman, A.; Rea, M.S. Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res. Technol. 2013, 45, 421–434. [Google Scholar] [CrossRef]
- Jardim, A.C.; Pawley, M.D.; Cheeseman, J.F.; Guesgen, M.J.; Steele, C.T.; Warman, G.R. Validating the use of wrist-level light monitoring for in-hospital circadian studies. Chronobiol. Int. 2011, 28, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Spitschan, M.; Stefani, O.; Blattner, P.; Gronfier, C.; Lockley, S.W.; Lucas, R.J. How to report light exposure in human chronobiology and sleep research experiments. Clocks Sleep 2019, 1, 280–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CIE. CIE System for Metrology of Optical Radiation for ipRGC-Influences Responses to Light; CIE Central Bureau: Vienna, Austria, 2018. [Google Scholar]
- Lichstein, K.L.; Stone, K.C.; Donaldson, J.; Nau, S.D.; Soeffing, J.P.; Murray, D.; Lester, K.W.; Aguillard, R.N. Actigraphy validation with insomnia. Sleep 2006, 29, 232–239. [Google Scholar] [PubMed] [Green Version]
- Marino, M.; Li, Y.; Rueschman, M.N.; Winkelman, J.W.; Ellenbogen, J.M.; Solet, J.M.; Dulin, H.; Berkman, L.F.; Buxton, O.M. Measuring sleep: Accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep 2013, 36, 1747–1755. [Google Scholar] [CrossRef]
- Pigeon, W.R.; Taylor, M.; Bui, A.; Oleynk, C.; Walsh, P.; Bishop, T.M. Validation of the sleep-wake scoring of a new wrist-worn sleep monitoring device. J. Clin. Sleep Med. 2018, 14, 1057–1062. [Google Scholar] [CrossRef]
- Kushida, C.A.; Chang, A.; Gadkary, C.; Guilleminault, C.; Carrillo, O.; Dement, W.C. Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2001, 2, 389–396. [Google Scholar] [CrossRef]
- van Someren, E.J.; Hagebeuk, E.E.; Lijzenga, C.; Scheltens, P.; de Rooij, S.E.; Jonker, C.; Pot, A.M.; Mirmiran, M.; Swaab, D.F. Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol. Psychiatry 1996, 40, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Gershon, R.C.; Wagster, M.V.; Hendrie, H.C.; Fox, N.A.; Cook, K.F.; Nowinski, C.J. NIH toolbox for assessment of neurological and behavioral function. Neurology 2013, 80 (Suppl. 3), S2–S6. [Google Scholar] [CrossRef] [Green Version]
- Hackett, K.; Krikorian, R.; Giovannetti, T.; Melendez-Cabrero, J.; Rahman, A.; Caesar, E.E.; Chen, J.L.; Hristov, H.; Seifan, A.; Mosconi, L.; et al. Utility of the NIH Toolbox for assessment of prodromal Alzheimer’s disease and dementia. Alzheimers Dement. 2018, 10, 764–772. [Google Scholar] [CrossRef]
- Harada, C.N.; Natelson Love, M.C.; Triebel, K.L. Normal cognitive aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Ghotbi, N.; Pilz, L.K.; Winnebeck, E.C.; Vetter, C.; Zerbini, G.; Lenssen, D.; Frighetto, G.; Salamanca, M.; Costa, R.; Montagnese, S.; et al. The µMCTQ: An ultra-short version of the Munich ChronoType questionnaire. J. Biol. Rhythm. 2020, 35, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, J.I.; Yesavage, J.A. Geriatric Depression Scale (GDS): Recent evidence in the development of a shorter version. Clin. Gerontol. J. Aging Mental Health 1986, 5, 165–173. [Google Scholar]
- Christodoulou, C.; Schneider, S.; Junghaenel, D.U.; Broderick, J.E.; Stone, A.A. Measuring daily fatigue using a brief scale adapted from the Patient-Reported Outcomes Measurement Information System (PROMIS®). Qual. Life Res. 2014, 23, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
Total White Light Exposure (Lux-Minutes) | |||||
---|---|---|---|---|---|
Time of Day | Control Condition | Experimental Condition | Wilcoxon Signed Rank Test | ||
M ± SD | Median | M ± SD | Median | ||
6:00–12:00 | 37,113 ± 38,129 | 27,947 | 65,444 ± 114,04 | 14,247 | z = −0.22, p = 0.826 |
20:00–0:00 | 3127 ± 4385 | 978 | 1995 ± 2242 | 711 | z = −1.41, p = 0.158 |
22:00–6:00 | 1116 ± 2.551 | 202 | 789 ± 1328 | 231 | z = −0.94, p = 0.345 |
Maximum White Light Exposure (lux) | |||||
Time of day | Control Condition | Experimental Condition | Wilcoxon Signed Rank Test | ||
M ± SD | Median | M ± SD | Median | ||
6:00–12:00 | 4216 ± 4607 | 3383.65 | 5240 ± 8009 | 1717 | z = −0.22, p = 0.826 |
20:00–0:00 | 188 ± 222 | 90.45 | 176 ± 203 | 82 | z = −1.54, p = 0.124 |
22:00–6:00 | 79 ± 118 | 35.53 | 48 ± 82 | 19 | z = −2.48, p = 0.013 |
Sleep and Rest-Activity (n = 14) | Control Condition | Experimental Condition | Wilcoxon Signed Rank Test |
---|---|---|---|
24-h Sleep Duration (Minutes) | 444.68 | 430.24 | z = −0.23, p = 0.814 |
Sleep Duration (Minutes) | 406.50 | 407.24 | z = −0.53, p = 0.594 |
Sleep Latency (Minutes) | 20.88 | 15.66 | z = −0.34, p = 0.730 |
Wake After Sleep Onset (Minutes) | 77.11 | 81.11 | z = −0.28, p = 0.778 |
Sleep Efficiency | 77.78 | 76.41 | z = −0.09, p = 0.925 |
Acrophase | 13.13 | 13.23 | z = −0.53, p = 0.594 |
Relative Amplitude (RA) | 0.74 | 0.76 | z = -1.02, p = 0.308 |
Intradaily Variability (IV) | 1.00 | 1.10 | z = −0.59, p = 0.552 |
Interdaily Stability (IS) | 0.57 | 0.51 | z = −0.35, p = 0.972 |
Cognitive Batteries | |||
Pattern Comparison and Processing Speed Test (Raw score; n = 12) | 32 | 30 | z = −0.08, p = 0.937 |
Flanker Inhibitory Control and Attention Test (Computed Score; n = 9) | 7.14 | 7.14 | z = −1.12, p = 0.260 |
Dimensional Change Card Sort Test (Computed Score; n = 9) | 6.27 | 6.39 | z = −0.41, p = 0.678 |
Geriatric Depression Total Score (n = 13) | |||
None (0–4) | 9 | 8 | |
Mild (5–8) | 3 | 5 | |
Moderate (9–11) | 1 | 0 | |
Severe (12–15) | 1 | 0 | |
Well-Being | |||
Geriatric Depression Scale (n = 13) | 3.00 | 3.00 | z = −0.36, p = 0.720 |
Daily Fatigue Form (n = 13) | 3.38 | 3.28 | z = −1.68, p = 0.092 |
Sleep Quality (n = 12) | 2.00 | 1.00 | z = −0.54, p = 0.589 |
Lighting Feedback (n = 13) | |||
Bedroom | 2.00 | 2.00 | z = −0.21, p = 0.833 |
Kitchen | 2.00 | 2.00 | z = −0.21, p = 0.833 |
Living Room | 2.00 | 2.00 | z = −1.03, p = 0.302 |
Bathroom | 2.00 | 2.00 | z = −0.54, p = 0.590 |
Outcome Variables | Total White Light Exposure | ||
---|---|---|---|
6:00–12:00 | 20:00–0:00 | 22:00–6:00 | |
IV | −0.749 ** | −0.037 | −0.257 |
IS | 0.551 * | −0.183 | 0.176 |
RA | 0.666 ** | −0.029 | 0.187 |
Acrophase | 0.112 | 0.499 ° | 0.297 |
Nocturnal Sleep Duration | −0.279 | −0.657 ** | −0.371 |
Processing Speed | 0.503 ° | 0.415 | 0.147 |
Depression | 0.039 | −0.047 | 0.210 |
Fatigue | −0.075 | −0.462 ° | −0.002 |
Sleep Quality | 0.238 | 0.242 | 0.419 |
IV | IS | RA | Acroph. | SD | PS | Depr. | Fatigue | SQ | |
---|---|---|---|---|---|---|---|---|---|
IV | −0.579 * | −0.626 * | −0.095 | 0.332 | −0.534 * | −0.097 | −0.055 | −0.367 | |
IS | −0.579 * | 0.478 ° | −0.405 | 0.240 | 0.101 | 0.046 | 0.085 | 0.309 | |
RA | −0.626 * | 0.478 ° | −0.319 | 0.042 | 0.187 | 0.108 | 0.097 | 0.235 | |
Acroph. | −0.095 | −0.405 | −0.319 | −0.582 * | 0.209 | 0.379 | 0.102 | 0.353 | |
SD | 0.332 | 0.240 | 0.042 | −0.582 * | −0.670 ** | 0.111 | 0.130 | −0.041 | |
PS | −0.534 * | 0.101 | 0.187 | 0.209 | −0.670 ** | 0.202 | −0.133 | 0.244 | |
Depr. | −0.097 | 0.046 | −0.108 | 0.379 | 0.111 | −0.202 | 0.546 * | 0.323 | |
Fatigue | −0.055 | 0.085 | 0.097 | −0.102 | 0.130 | −0.133 | 0.546 * | 0.195 | |
SQ | −0.367 | 0.309 | 0.235 | 0.353 | −0.041 | 0.244 | 0.323 | 0.195 |
Sleep Variables (Actiware) | Definition |
---|---|
Nocturnal Rest Interval Duration | The time elapsed between the start time and the end time of Actiware (or manually, see Data Cleaning) scored Nocturnal Rest Interval, in minutes. |
Sleep Latency (SL) | The time required for sleep to start after initiating the intent to sleep. The time between the start of Nocturnal Rest Interval and the Nocturnal Sleep Interval start time, in minutes, and is controlled by the sleep interval detection algorithm |
Wake After Sleep Onset (WASO) | The total number of epochs between the start time and the end time of the Nocturnal Sleep Interval scored as wake by Actiware (or manually, see data cleaning) multiplied by the epoch length in minutes. |
Sleep Efficiency | The percentage of time spent in bed sleeping. Sleep Duration divided by Nocturnal Rest Interval Duration minus total invalid time (sleep/wake) of the Nocturnal Rest Interval multiplied by 100. |
Nocturnal Sleep Duration | The total number of epochs for the nocturnal interval scored as sleep by Actiware (or manually, see data cleaning) multiplied by the epoch length in minutes. |
24-h Sleep Duration | Added minutes of sleep during Actiware scored nocturnal and daytime Rest Intervals from 12:00–12:00 |
Invalid Time SW | The total number of epochs for the given interval for which the sleep/wake scoring algorithm did not have enough data to determine a sleep or wake score multiplied by the epoch length in minutes. |
Light Variables (Actiware) | |
Total White Light Exposure | The sum of all white light values for the given interval multiplied by the epoch length in minutes, expressed in lux-minutes. |
Maximum White Light Exposure | The largest white light intensity value for the given interval expressed in lux. |
Invalid Time L | The total number of epochs for the given interval for which the light value is invalid. This may occur under multiple circumstances including excluded intervals, device error, communication error, data corruption, time the logger is in the docking station, or time between data collection sessions. |
Rest–Activity Variables (Clocklab) | |
Activity Onset (AO) | The time of day corresponding to the onset of activity in a 24 h time series. |
Acrophase (AP) | The time of day corresponding to the peak of a sine wave fitted to 24 h time series of activity. |
Relative Amplitude (RA) | The ratio of the most active 10 h period to the least active 5 h period across the averaged 24 h profile, starting at 0:00. Values range from 0 to 1 with higher values indicating a higher amplitude sleep–wake cycle, with a consolidated period of low activity during sleep (L5) and a consolidated period of high activity during the day (M10), which is considered healthy in individuals. Relative amplitude reflects the difference between M10 activity and L5 activity and is calculated as follows: (M10 − L5)/(M10 + L5). |
Intradaily Variability (IV) | Fragmentation of the rhythm relative to its 24 h amplitude (score). It is a measure of circadian rhythm disturbance, as it quantifies the fragmentation of periods of activity from periods of rest within a 24 h period. IV scores range from 0 to 2 and are typically below 1. High Intradaily Variability may indicate daytime napping and/or nighttime arousals. |
Interdaily Stability (IS) | Is a measure of the strength of circadian rhythmicity, the degree of consistency of activity patterns from one day to the next. IS was computed per condition. IS represents the degree of consistency of activity patterns from 1 day to the next. Interdaily stability is the 24 h value from a chi square periodogram, normalized for the number of data points. Interdaily stability scores range from 0 to 1, and may typically be 0.6, with lower scores representing poor consistency of activity patterns. Quantifies the synchronization to the 24 h light-dark cycle. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juda, M.; Liu-Ambrose, T.; Feldman, F.; Suvagau, C.; Mistlberger, R.E. Light in the Senior Home: Effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and Well-Being. Clocks & Sleep 2020, 2, 557-576. https://doi.org/10.3390/clockssleep2040040
Juda M, Liu-Ambrose T, Feldman F, Suvagau C, Mistlberger RE. Light in the Senior Home: Effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and Well-Being. Clocks & Sleep. 2020; 2(4):557-576. https://doi.org/10.3390/clockssleep2040040
Chicago/Turabian StyleJuda, Myriam, Teresa Liu-Ambrose, Fabio Feldman, Cristian Suvagau, and Ralph E. Mistlberger. 2020. "Light in the Senior Home: Effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and Well-Being" Clocks & Sleep 2, no. 4: 557-576. https://doi.org/10.3390/clockssleep2040040
APA StyleJuda, M., Liu-Ambrose, T., Feldman, F., Suvagau, C., & Mistlberger, R. E. (2020). Light in the Senior Home: Effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and Well-Being. Clocks & Sleep, 2(4), 557-576. https://doi.org/10.3390/clockssleep2040040