Effectiveness of Enriched Milk with Ashwagandha Extract and Tryptophan for Improving Subjective Sleep Quality in Adults with Sleep Problems: A Randomized Double-Blind Controlled Trial
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of Participants
2.2. Sleep Quality
2.2.1. Visual Analogue Scale (VAS) Scores
2.2.2. Pittsburg Sleep Quality Index (PSQI) Scores
2.3. Severity of Insomnia
2.4. Epworth Sleepiness Scale
2.5. Morningness–Eveningness Questionnaire (MEQ)
2.6. Anxiety
2.7. Anthropometric Variables
2.8. Compliance and Safety
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Randomization and Intervention
4.3. Study Procedures
4.4. Study Variables
4.5. Study Endpoints
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Cunningham, T.J.; Croft, J.B. Trends in self-reported sleep duration among US adults from 1985 to 2012. Sleep 2015, 38, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, D.; Huang, Y.; Chen, Z.; Wang, R.; Dong, Q.; Wei, Q.; Liu, L. Sleep duration and health outcomes: An umbrella review. Sleep Breath 2022, 26, 1479–1501. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Tunhasiriwet, A.; Wang, Z.; Zhang, H.; Farrell, A.M.; Chirapongsathorn, S.; Sun, T.; Kitai, T.; Argulian, E. Association between short and long sleep durations and cardiovascular outcomes: A systematic review and meta-analysis. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Chattu, V.K.; Manzar, M.D.; Kumary, S.; Burman, D.; Spence, D.W.; Pandi-Perumal, S.R. The global problem of insufficient sleep and its serious public health implications. Healthcare 2018, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, M.M. Epidemiology of insomnia: What we know and what we still need to learn. Sleep Med. Rev. 2002, 6, 97–111. [Google Scholar] [CrossRef]
- Cox, R.C.; Olatunji, B.O. Sleep in the anxiety-related disorders: A meta-analysis of subjective and objective research. Sleep Med. Rev. 2020, 51, 101282. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.M.; Drake, C.L.; Harvey, A.G.; Krystal, A.D.; Manber, R.; Riemann, D.; Spiegelhalder, K. Insomnia disorder. Nat. Rev. Dis. Primers 2015, 1, 15026. [Google Scholar] [CrossRef]
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; DSM-IV; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Lie, J.D.; Tu, K.N.; Shen, D.D.; Wong, B.M. Pharmacological treatment of insomnia. Pharm. Ther. 2015, 40, 759–771. [Google Scholar]
- Madari, S.; Golebiowski, R.; Mansukhani, M.P.; Kolla, B.P. Pharmacological management of insomnia. Neurotherapeutics 2021, 18, 44–52. [Google Scholar] [CrossRef]
- Hrehová, L.; Mezian, K. Non-pharmacologic treatment of insomnia in primary care settings. Int. J. Clin. Pract. 2021, 75, e14084. [Google Scholar] [CrossRef] [PubMed]
- Cunnington, D.; Junge, M. Chronic insomnia: Diagnosis and non-pharmacological management. BMJ 2016, 355, i5819. [Google Scholar] [CrossRef]
- Cases, J.; Ibarra, A.; Feuillère, N.; Roller, M.; Sukkar, S.G. Pilot trial of Melissa officinalis L. leaf extract in the treatment of volunteers suffering from mild-to-moderate anxiety disorders and sleep disturbances. Med. J. Nutr. Metab. 2011, 4, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Lelli, D.; Cortese, L.; Pedone, C. Use of Plant-derived natural products in sleep disturbances. Adv. Exp. Med. Biol. 2021, 1308, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Bent, S.; Padula, A.; Moore, D.; Patterson, M.; Mehling, W. Valerian for sleep: A systematic review and meta-analysis. Am. J. Med. 2006, 119, 1005–1012. [Google Scholar] [CrossRef]
- Ngan, A.; Conduit, R. A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality. Phytother. Res. 2011, 25, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Feizi, F.; Namazi, N.; Rahimi, R.; Ayati, M.H. Medicinal plants for management of insomnia: A systematic review of animal and human studies. Galen Med. J. 2019, 8, e1085. [Google Scholar] [CrossRef]
- Bruni, O.; Ferini-Strambi, L.; Giacomoni, E.; Pellegrino, P. Herbal remedies and their possible effect on the GABAergic system and sleep. Nutrients 2021, 13, 530. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, P.; Malinowska, M.; Ignacyk, M.; Szustowski, P.; Nowak, J.; Pesta, K.; Szeląg, M.; Szklanny, D.; Judasz, E.; Kaczmarek, G.; et al. Ashwagandha (Withania somnifera)-Current research on the health-promoting activities: A narrative review. Pharmaceutics 2023, 15, 1057. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Banerjee, S.; Biswas, S.; Das, B.; Kar, A.; Katiyar, C.K. Withania somnifera (L.) Dunal-Modern perspectives of an ancient Rasayana from Ayurveda. J. Ethnopharmacol. 2021, 264, 113157. [Google Scholar] [CrossRef]
- Ramakanth, G.S.; Uday Kumar, C.; Kishan, P.V.; Usharani, P. A randomized, double blind placebo controlled study of efficacy and tolerability of Withaina somnifera extracts in knee joint pain. J. Ayurveda Integr. Med. 2016, 7, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, D.A.; Moreno, Y.; Gho, C.; Petro, J.L.; Odriozola-Martínez, A.; Kreider, R.B. Effects of Ashwagandha (Withania somnifera) on physical performance: Systematic review and bayesian meta-analysis. J. Funct. Morphol. Kinesiol. 2021, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L.; Smith, S.J. Ashwagandha (Withania somnifera) for the treatment and enhancement of mental and physical conditions: A systematic review of human trials. J Herb. Med 2021, 28, 100343. [Google Scholar] [CrossRef]
- Choudhary, D.; Bhattacharyya, S.; Bose, S. Efficacy and safety of Ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions. J. Diet. Suppl. 2017, 14, 599–612. [Google Scholar] [CrossRef]
- Ambiye, V.R.; Langade, D.; Dongre, S.; Aptikar, P.; Kulkarni, M.; Dongre, A. Clinical evaluation of the spermatogenic activity of the root extract of Ashwagandha (Withania somnifera) in oligospermic males: A pilot study. Evid.-Based Complement. Altern. Med. 2013, 2013, 571420. [Google Scholar] [CrossRef]
- Cheah, K.L.; Norhayati, M.N.; Yaacob, L.H.; Rahman, R.A. Effect of Ashwagandha (Withania somnifera) extract on sleep: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0257843. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, C.N.; Loh, W.W.; Kim, J.E. The impact of tryptophan supplementation on sleep quality: A systematic review, meta-analysis, and meta-regression. Nutr. Rev. 2022, 80, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, E. Effects of L-tryptophan on sleepiness and on sleep. J. Psychiatr. Res. 1982, 17, 107–113. [Google Scholar] [CrossRef]
- Bravo, R.; Matito, S.; Cubero, J.; Paredes, S.D.; Franco, L.; Rivero, M.; Rodríguez, A.B.; Barriga, C. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age 2013, 35, 1277–1285. [Google Scholar] [CrossRef]
- Komada, Y.; Okajima, I.; Kuwata, T. The effects of milk and dairy products on sleep: A systematic review. Int. J. Environ. Res. Public. Health 2020, 17, 9440. [Google Scholar] [CrossRef]
- Lenneis, A.; Das-Friebel, A.; Tang, N.K.Y.; Sanborn, A.N.; Lemola, S.; Singmann, H.; Wolke, D.; von Mühlenen, A.; Realo, A. The influence of sleep on subjective well-being: An experience sampling study. Emotion 2023, 24, 451–464. [Google Scholar] [CrossRef]
- Hachenberger, J.; Li, Y.M.; Lemola, S. Physical activity, sleep and affective wellbeing on the following day: An experience sampling study. J. Sleep Res. 2023, 32, e13723. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.; Irani, N.; Balkrishnan, R.; Benny, I.R. A randomized, double blind, placebo controlled study to evaluate the effects of ashwagandha (Withania somnifera) extract on sleep quality in healthy adults. Sleep Med. 2020, 72, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Langade, D.; Kanchi, S.; Salve, J.; Debnath, K.; Ambegaokar, D. Efficacy and safety of ashwagandha (Withania somnifera) root extract in insomnia and anxiety: A double-blind, randomized, placebo-controlled study. Cureus 2019, 11, e5797. [Google Scholar] [CrossRef] [PubMed]
- Kelgane, S.B.; Salve, J.; Sampara, P.; Debnath, K. Efficacy and tolerability of ashwagandha root extract in the elderly for improvement of general well-being and sleep: A prospective, randomized, double-blind, placebo-controlled study. Cureus 2020, 12, e7083. [Google Scholar] [CrossRef] [PubMed]
- Langade, D.; Thakare, V.; Kanchi, S.; Kelgane, S. Clinical evaluation of the pharmacological impact of ashwagandha root extract on sleep in healthy volunteers and insomnia patients: A double-blind, randomized, parallel-group, placebo-controlled study. J. Ethnopharmacol. 2021, 264, 113276. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Hong, K.B.; Suh, H.J.; Ahn, Y. Sleep-promoting activity of amylase-treated Ashwagandha (Withania somnifera L. Dunal) root extract via GABA receptors. J. Food Drug Anal. 2023, 31, 278–288. [Google Scholar] [CrossRef]
- Murthy, S.V.; Fathima, S.N.; Mote, R. Hydroalcoholic extract of ashwagandha improves sleep by modulating GABA/histamine receptors and EEG slow-wave pattern in in vitro-in vivo experimental models. Prev. Nutr. Food Sci. 2022, 27, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.; Kirby, J.B.; O’Connor, J.; Lindsay, K.G.; Hutchins, A.; Harris, M. The perceived impact of ashwagandha on stress, sleep quality, energy, and mental clarity for college students: Qualitative analysis of a double-blind randomized control trial. J. Med. Food 2022, 25, 1095–1101. [Google Scholar] [CrossRef]
- National Institutes of Health. Office of Dietary Supplements. Ashwagandha; Is It Helpful for Stress, Anxiety, or Sleep? A Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Ashwagandha-HealthProfessional/ (accessed on 2 July 2024).
- Hita-Contreras, F.; Martínez-López, E.; Latorre-Román, P.A.; Garrido, F.; Santos, M.A.; Martínez-Amat, A. Reliability and validity of the Spanish version of the Pittsburgh Sleep Quality Index (PSQI) in patients with fibromyalgia. Rheumatol. Int. 2014, 34, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Mendoza, J.; Rodriguez-Muñoz, A.; Vela-Bueno, A.; Olavarrieta-Bernardino, S.; Calhoun, S.L.; Bixler, E.O.; Vgontzas, A.N. The Spanish version of the Insomnia Severity Index: A confirmatory factor analysis. Sleep Med. 2012, 13, 207–210. [Google Scholar] [CrossRef]
- Chiner, E.; Arriero, J.M.; Signes-Costa, J.; Marco, J.; Fuentes, I. Validation of the Spanish version of the Epworth Sleepiness Scale in patients with a sleep apnea syndrome. Arch. Bronconeumol. 1999, 35, 422–427. [Google Scholar] [CrossRef]
- Adan, A.; Almirall, H. Adaptation and standardization of a Spanish version of the morningness-eveningness questionnaire: Individual differences. Personal. Individ. Differ. 1990, 11, 1123–1130. [Google Scholar] [CrossRef]
- Buela-Casal, G.; Guillén-Riquelme, A. Short form of the Spanish adaptation of the State-Trait Anxiety Inventory. Int. J. Clin. Health Psychol. 2017, 17, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Yagli, N.V.; Ulger, O. The effects of yoga on the quality of life and depression in elderly breast cancer patients. Complement. Ther. Clin. Pract. 2015, 21, 7–10. [Google Scholar] [CrossRef] [PubMed]
Variables | Control (n = 13) | Ashw 250 mg (n = 13) | Ashw 250 mg + TRP (n = 13) | Ashw 600 mg (n = 13) | Total (n = 52) |
---|---|---|---|---|---|
Gender, men/women | 4/9 | 2/11 | 6/7 | 4/9 | 16/36 |
Age, years | 26.5 ± 10.3 | 26.3 ± 10 | 26.9 ± 10.4 | 25.3 ± 9.3 | 26.7 ± 10.3 |
Weight, kg | 64.2 ± 13.6 | 69.8 ± 13.9 | 74.5 ± 10.9 | 70.3 ± 15.3 | 69.7 ± 13.6 |
BMI, kg/m2 | 23.2 ± 3.2 | 25.2 ± 4.1 | 24.5 ± 2.3 | 24.5 ± 3.8 | 24.4 ± 3.4 |
VAS score sleep quality | 3.1 ± 1.2 | 3.0 ± 1.2 | 2.8 ± 1.6 | 4.0 ± 2.0 | 3.2 ± 1.5 |
Study Groups | Visit 1 Baseline | Visit 2 Mid-Study (45 days) | Visit 3 Final (90 days) | Within-Group Differences Visits 1 vs. 3 p Value | Between-Group Differences p Value (η2) |
---|---|---|---|---|---|
Control | 3.1 ± 1.2 | 4.4 ± 1.2 | 5.0 ± 1.4 | 0.006 | 0.014 (0.15) |
Ashw 250 mg | 3.0 ± 1.2 | 6.2 ± 1.6 | 7.2 ± 1.6 # | <0.001 | |
Ashw 250 mg + TRP | 2.8 ± 1.6 | 5.8 ± 2.0 | 6.7 ± 2.1 # | <0.001 | |
Ashw 600 mg | 4.0 ± 2.0 | 6.6 ± 1.3 | 7.9 ± 0.9 ## | <0.001 |
Study Groups | Visit 1 Baseline | Visit 3 Final (90 days) | Within-Group Differences Visits 1 vs. 3 p Value | Between-Group Differences p Value (η2) |
---|---|---|---|---|
Overall score | ||||
Control | 9.9 ± 2.0 | 6.9 ± 2.3 | 0.001 | 0.241 (0.083) |
Ashw 250 mg | 10.8 ± 3.4 | 5.3 ± 2.3 | 0.001 | |
Ashw 250 mg + TRP | 10.1 ± 2.7 | 5.5 ± 1.9 | 0.001 | |
Ashw 600 mg | 10.1 ± 2.4 | 5.5 ± 1.8 | 0.001 | |
Sleep quality | ||||
Control | 2.0 ± 0.4 | 1.4 ± 0.8 | 0.007 | 0.226 (0.086) |
Ashw 250 mg | 2.2 ± 0.4 | 1.0 ± 0.7 | 0.001 | |
Ashw 250 mg + TRP | 2.2 ± 0.6 | 1.0 ± 0.7 | 0.001 | |
Ashw 600 mg | 2.1 ± 1.0 | 0.9 ± 0.5 | 0.001 | |
Sleep latency | ||||
Control | 2.2 ± 0.8 | 1.7 ± 1.0 | <0.05 | 0.382 (0.061) |
Ashw 250 mg | 2.2 ± 0.8 | 1.4 ± 0.8 | 0.005 | |
Ashw 250 mg + TRP | 2.3 ± 0.8 | 1.5 ± 0.9 | 0.009 | |
Ashw 600 mg | 2.5 ± 1.8 | 1.3 ± 0.9 | 0.001 | |
Sleep duration | ||||
Control | 1.5 ± 0.8 | 0.9 ± 0.8 | 0.013 | 0.450 (0.053) |
Ashw 250 mg | 2.2 ± 1.0 | 1.2 ± 0.7 | 0.001 | |
Ashw 250 mg + TRP | 1.8 ± 0.7 | 0.9 ± 0.7 | 0.009 | |
Ashw 600 mg | 2.1 ± 1.2 | 0.9 ± 0.6 | 0.001 | |
Sleep efficiency, % | ||||
Control | 78.4 ± 12.5 | 81.5 ± 10.3 | 0.493 | 0.939 (0.008) |
Ashw 250 mg | 72.8 ± 18.2 | 78.8 ± 8.1 | 0.194 | |
Ashw 250 mg + TRP | 79.6 ± 14.2 | 84.7 ± 5.7 | 0.266 | |
Ashw 600 mg | 74.6 ± 15.2 | 81.7 ± 10.5 | 0.126 | |
Disturbances, number | ||||
Control | 12.2 ± 4.3 | 9.2 ± 4.0 | 0.019 | 0.301 (0.073) |
Ashw 250 mg | 13.4 ± 5.2 | 7.1 ± 2.9 | 0.001 | |
Ashw 250 mg + TRP | 12.0 ± 6.4 | 7.0 ± 3.3 | 0.001 | |
Ashw 600 mg | 12.2 ± 2.3 | 6.9 ± 2.4 | 0.001 | |
Daytime dysfunction | ||||
Control | 1.8 ± 0.6 | 1.2 ± 0.7 | 0.007 | 0.558 (0.042) |
Ashw 250 mg | 1.9 ± 1.0 | 1.0 ± 0.6 | 0.001 | |
Ashw 250 mg + TRP | 2.0 ± 1.0 | 1.0 ± 0.7 | 0.001 | |
Ashw 600 mg | 2.1 ± 0.8 | 1.1 ± 0.6 | 0.001 |
Study Groups | Visit 1 Baseline | Visit 3 Final (90 days) | Within-Group Differences Visits 1 vs. 3 p Value | Between-Group Differences p Value (η2) |
---|---|---|---|---|
Control | 17.1 ± 4.2 | 14.4 ± 4.3 | 0.035 | 0.018 (0.188) |
Ashw 250 mg | 17.3 ± 4.6 | 10.2 ± 3.8 | 0.001 | |
Ashw 250 mg + TRP | 17.8 ± 3.7 | 11.0 ± 3.8 | 0.001 | |
Ashw 600 mg | 17.1 ± 3.1 | 9.0 ± 4.0 | 0.001 |
Study Groups | Visit 1 Baseline | Visit 3 Final (90 days) | Within-Group Differences Visits 1 vs. 3 p Value | Between-Group Differences p Value (η2) |
---|---|---|---|---|
Control | 8.5 ± 4.1 | 7.9 ± 3.8 | 0.550 | 0.050 (0.131) |
Ashw 250 mg | 13.4 ± 5.6 | 8.5 ± 3.0 # | 0.001 | |
Ashw 250 mg + TRP | 11.5 ± 5.2 | 7.7 ± 3.5 | 0.002 | |
Ashw 600 mg | 11.9 ± 4.8 | 8.9 ± 5.1 | 0.010 |
Study Groups | Visit 1 Baseline | Visit 3 Final (90 days) | Within-Group Differences Visits 1 vs. 3 p Value | Between-Group Differences p Value (η2) |
---|---|---|---|---|
Control | 42.1 ± 23.2 | 45.1 ± 11.8 | 0.142 | 0.907 (0.011) |
Ashw 250 mg | 48.1 ± 11.8 | 50.5 ± 10.7 | 0.226 | |
Ashw 250 mg + TRP | 44.5 ± 11.5 | 46.5 ± 10.1 | 0.324 | |
Ashw 600 mg | 46.7 ± 9.3 | 50.7 ± 11.2 | 0.050 |
Study Groups | Visit 1 Baseline | Visit 3 Final (90 days) | Within-Group Differences Visits 1 vs. 3 p Value | Between-Group Differences p Value (η2) |
---|---|---|---|---|
STAI-state | ||||
Control | 19.1 ± 7.6 | 14.5 ± 6.5 | 0.100 | 0.378 (0.062) |
Ashw 250 mg | 30.9 ± 11.3 | 19.9 ± 7.2 | 0.001 | |
Ashw 250 mg + TRP | 23.6 ± 15.0 | 14.9 ± 13.1 | 0.002 | |
Ashw 600 mg | 28.4 ± 12.4 | 18.9 ± 8.9 | 0.001 | |
STAI-trait | ||||
Control | 25.9 ± 8.9 | 19.9 ± 7.8 | 0.001 | 0.946 (0.008) |
Ashw 250 mg | 31.8 ± 11.4 | 24.9 ± 9.7 | 0.001 | |
Ashw 250 mg + TRP | 27.2 ± 13.5 | 19.9 ± 11.1 | 0.001 | |
Ashw 600 mg | 28.6 ± 8.4 | 22.5 ± 8.5 | 0.002 |
Study Groups | Visit 1 Baseline | Visit 3 Final (90 days) | Within-Group Differences Visits 1 vs. 3 p Value | Between-Group Differences p Value |
---|---|---|---|---|
Weight, kg | ||||
Control | 64.2 ± 13.6 | 64.5 ± 13.3 | 0.521 | 0.762 |
Ashw 250 mg | 69.8 ± 13.9 | 69.5 ± 13.9 | 0.479 | |
Ashw 250 mg + TRP | 74.5 ± 10.9 | 74.7 ± 11.9 | 0.705 | |
Ashw 600 mg | 70.3 ± 15.3 | 70.5 ± 16.2 | 0.610 | |
BMI, kg/m2 | ||||
Control | 23.2 ± 3.2 | 23.3 ± 3.3 | 0.439 | 0.718 |
Ashw 250 mg | 25.2 ± 4.1 | 25.1 ± 4.2 | 0.439 | |
Ashw 250 mg + TRP | 24.5 ± 2.4 | 24.5 ± 2.7 | 0.923 | |
Ashw 600 mg | 24.5 ± 3.8 | 24.6 ± 4.0 | 0.662 | |
Fat mass, % | ||||
Control | 22.9 ± 8.5 | 22.5 ± 8.1 | 0.237 | 0.816 |
Ashw 250 mg | 29.7 ± 7.0 | 29.6 ± 6.6 | 0.872 | |
Ashw 250 mg + TRP | 25.9 ± 8.2 | 25.6 ± 8.2 | 0.399 | |
Ashw 600 mg | 25.8 ± 6.9 | 25.8 ± 7.2 | 0.984 | |
Muscle mass, kg | ||||
Control | 46.8 ± 10.6 | 47.3 ± 10.6 | 0.159 | 0.671 |
Ashw 250 mg | 46.0 ± 6.8 | 45.9 ± 7.4 | 0.813 | |
Ashw 250 mg + TRP | 52.7 ± 11.0 | 53.0 ± 11.4 | 0.345 | |
Ashw 600 mg | 49.3 ± 11.3 | 49.5 ± 11.7 | 0.698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Piñero, S.; Muñoz-Carrillo, J.C.; Echepare-Taberna, J.; Muñoz-Cámara, M.; Herrera-Fernández, C.; Ávila-Gandía, V.; Heres Fernández Ladreda, M.; Menéndez Martínez, J.; López-Román, F.J. Effectiveness of Enriched Milk with Ashwagandha Extract and Tryptophan for Improving Subjective Sleep Quality in Adults with Sleep Problems: A Randomized Double-Blind Controlled Trial. Clocks & Sleep 2024, 6, 417-432. https://doi.org/10.3390/clockssleep6030028
Pérez-Piñero S, Muñoz-Carrillo JC, Echepare-Taberna J, Muñoz-Cámara M, Herrera-Fernández C, Ávila-Gandía V, Heres Fernández Ladreda M, Menéndez Martínez J, López-Román FJ. Effectiveness of Enriched Milk with Ashwagandha Extract and Tryptophan for Improving Subjective Sleep Quality in Adults with Sleep Problems: A Randomized Double-Blind Controlled Trial. Clocks & Sleep. 2024; 6(3):417-432. https://doi.org/10.3390/clockssleep6030028
Chicago/Turabian StylePérez-Piñero, Silvia, Juan Carlos Muñoz-Carrillo, Jon Echepare-Taberna, Macarena Muñoz-Cámara, Cristina Herrera-Fernández, Vicente Ávila-Gandía, María Heres Fernández Ladreda, Javier Menéndez Martínez, and Francisco Javier López-Román. 2024. "Effectiveness of Enriched Milk with Ashwagandha Extract and Tryptophan for Improving Subjective Sleep Quality in Adults with Sleep Problems: A Randomized Double-Blind Controlled Trial" Clocks & Sleep 6, no. 3: 417-432. https://doi.org/10.3390/clockssleep6030028
APA StylePérez-Piñero, S., Muñoz-Carrillo, J. C., Echepare-Taberna, J., Muñoz-Cámara, M., Herrera-Fernández, C., Ávila-Gandía, V., Heres Fernández Ladreda, M., Menéndez Martínez, J., & López-Román, F. J. (2024). Effectiveness of Enriched Milk with Ashwagandha Extract and Tryptophan for Improving Subjective Sleep Quality in Adults with Sleep Problems: A Randomized Double-Blind Controlled Trial. Clocks & Sleep, 6(3), 417-432. https://doi.org/10.3390/clockssleep6030028