The Impact of DAZZEON αSleep® Far-Infrared Blanket on Sleep, Blood Pressure, Vascular Health, Muscle Function, Inflammation, and Fatigue
Abstract
:1. Introduction
2. Results
2.1. Changes in Body Composition before and after Using the DAZZEON αSleep® Far-Infrared Blanket
2.2. Changes in Surface Temperature before and after Using the DAZZEON αSleep® Far-Infrared Blanket
2.3. Effects of the DAZZEON αSleep® Far-Infrared Blanket on Vascular Age and Arteriosclerosis
2.4. Effects of the DAZZEON αSleep® Far-Infrared Blanket on Muscle Elasticity and Hardness
2.5. Effects of the DAZZEON αSleep® Far-Infrared Blanket on Muscle Strength, Cardiopulmonary Endurance, and Agility
2.6. Effects of the DAZZEON αSleep® Far-Infrared Blanket on Blood Biochemistry
2.7. Effects of the DAZZEON αSleep® Far-Infrared Blanket on Complete Blood Count
2.8. Effects of the DAZZEON αSleep® Far-Infrared Blanket on Subjective Sleep Quality (Pittsburgh Sleep Quality Index, PSQI)
2.9. Effects of the DAZZEON αSleep® Far-Infrared Blanket on Objectively Sleep Quality (Recording via Wearable Devices)
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Intervention
4.3. Sleep Quality
4.4. Blood Pressure and Oxygen Saturation
4.5. Arterial Stiffness and Vascular Age
4.6. Surface Temperature
4.7. Muscle Elasticity and Hardness
4.8. Exercise Performance
4.9. Blood Tests
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Athonvarangkul, D.; Wang, K.; Deng, Y.; Inzucchi, S.E.; Mayerson, A. Improved extremity tissue oxygenation with short-term exposure to textiles embedded with far infrared light emitting thermoactive particles in patients with diabetes mellitus. Diabetes Vasc. Dis. Res. 2023, 20, 14791641231170282. [Google Scholar] [CrossRef]
- Silva, M.; Gáspari, A.; Barbieri, J.; Caruso, D.; Nogueira, J.; Andrade, A.; Moraes, A. A pilot study on the effects of far-infrared-emitting fabric on neuromuscular performance of knee extensor and male fertility. Lasers Med. Sci. 2022, 37, 3713–3722. [Google Scholar] [PubMed]
- Chen, T.C.; Huang, Y.C.; Chou, T.Y.; Hsu, S.T.; Chen, M.Y.; Nosaka, K. Effects of far-infrared radiation lamp therapy on recovery from muscle damage induced by eccentric exercise. Eur. J. Sport. Sci. 2023, 23, 1638–1646. [Google Scholar] [PubMed]
- Tseng, W.C.; Nosaka, K.; Chou, T.Y.; Howatson, G.; Chen, T.C. Effects of far-infrared radiation lamp therapy on recovery from a simulated soccer-match in elite female soccer players. Scand. J. Med. Sci. Sports 2024, 34, e14615. [Google Scholar] [CrossRef]
- Yeung, W.F.; Li, L. Improving Sleep with Far-Infrared-Emitting Pajamas: A Pilot Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2023, 20, 3870. [Google Scholar] [CrossRef]
- Horton, L.; Brady, J.; Kincaid, C.M.; Torres, A.E.; Lim, H.W. The effects of infrared radiation on the human skin. Photodermatol. Photoimmunol. Photomed. 2023, 39, 549–555. [Google Scholar]
- Leung, T.K.; Chen, C.H.; Tsai, S.Y.; Hsiao, G.; Lee, C.M. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility. Chin. J. Physiol. 2012, 55, 323–330. [Google Scholar] [PubMed]
- Vatansever, F.; Hamblin, M.R. Far infrared radiation (FIR): Its biological effects and medical applications. Photonics Lasers Med. 2012, 4, 255–266. [Google Scholar]
- Park, Y.J.; Lee, H.K.; Cho, J.H. Analysis of muscular elasticity according to infrared and ultrasound therapy by sonoelastography. J. Phys. Ther. Sci. 2018, 30, 1024–1029. [Google Scholar]
- Matsui, Y.; Ueda, T.; Koizumi, Y.; Kato, C.; Suzuki, Y. Crossover trial of the effects of a far-infrared heater that heats the feet with ceramic balls on autonomic nervous activity and mood states. Sci. Prog. 2023, 106, 368504231158452. [Google Scholar]
- Chen, C.H.; Chen, T.H.; Wu, M.Y.; Chou, T.C.; Chen, J.R.; Wei, M.J.; Lee, S.L.; Hong, L.Y.; Zheng, C.M.; Chiu, I.J.; et al. Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice. Sci. Rep. 2017, 7, 40442. [Google Scholar] [CrossRef]
- Choi, S.J.; Cho, E.H.; Jo, H.M.; Min, C.; Ji, Y.S.; Park, M.Y.; Kim, J.K.; Hwang, S.D. Clinical utility of far-infrared therapy for improvement of vascular access blood flow and pain control in hemodialysis patients. Kidney Res. Clin. Pract. 2016, 35, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Jin, J.; Chen, Y.; Wang, L.; Zhong, J.; Chen, Z.; Xu, L. Visceral fat might impact left ventricular remodeling through changes in arterial stiffness in type 2 diabetes: A cross-sectional study. Int. J. Cardiol. 2022, 368, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Takashima, N.; Turin, T.C.; Matsui, K.; Rumana, N.; Nakamura, Y.; Kadota, A.; Saito, Y.; Sugihara, H.; Morita, Y.; Ichikawa, M.; et al. The relationship of brachial-ankle pulse wave velocity to future cardiovascular disease events in the general Japanese population: The Takashima Study. J. Hum. Hypertens. 2014, 28, 323–327. [Google Scholar] [CrossRef]
- Wu, S.; Xu, L.; Wu, M.; Chen, S.; Wang, Y.; Tian, Y. Association between triglyceride-glucose index and risk of arterial stiffness: A cohort study. Cardiovasc. Diabetol. 2021, 20, 146. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.; Cho, D.H.; Park, Y.M.; Kang, D.H.; Jo, I. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochem. Biophys. Res. Commun. 2013, 436, 601–606. [Google Scholar] [CrossRef]
- Keszler, A.; Lindemer, B.; Weihrauch, D.; Jones, D.; Hogg, N.; Lohr, N.L. Red/near infrared light stimulates release of an endothelium dependent vasodilator and rescues vascular dysfunction in a diabetes model. Free Radic. Biol. Med. 2017, 113, 157–164. [Google Scholar] [CrossRef]
- Huang, R.; Li, Y.; Li, X.; Wang, Q.; Luo, C.; Liang, X.; Liu, L.; Wang, X.; Wu, Y. Study on the Protective Effect of Special Electromagnetic Field Treated Water and Far Infrared Rays on LPS-Induced ARDS Rats. Evid. Based Complement. Alternat Med. 2019, 2019, 5902701. [Google Scholar] [CrossRef]
- Chang, Y. The effect of far infrared radiation therapy on inflammation regulation in lipopolysaccharide-induced peritonitis in mice. SAGE Open Med. 2018, 6, 2050312118798941. [Google Scholar] [CrossRef]
- Salm, D.C.; Belmontem, L.A.O.; Emer, A.A.; Leonel, L.D.S.; de Brito, R.N.; da Rocha, C.C.; Martins, T.C.; Dos Reis, D.C.; Moro, A.R.P.; Mazzardo-Martins, L.; et al. Aquatic exercise and Far Infrared (FIR) modulates pain and blood cytokines in fibromyalgia patients: A double-blind, randomized, placebo-controlled pilot study. J. Neuroimmunol. 2019, 337, 577077. [Google Scholar] [CrossRef]
- Li, Q.; Peng, J.; Luo, Y.; Zhou, J.; Li, T.; Cao, L.; Peng, S.; Zuo, Z.; Wang, Z. Far infrared light irradiation enhances Aβ clearance via increased exocytotic microglial ATP and ameliorates cognitive deficit in Alzheimer’s disease-like mice. J. Neuroinflamm. 2022, 19, 145. [Google Scholar] [CrossRef]
- Fukui, K.; Kimura, S.; Kato, Y.; Kohno, M. Effects of far infrared light on Alzheimer’s disease-transgenic mice. PLoS ONE 2021, 16, e0253320. [Google Scholar] [CrossRef]
- Ko, C.M.; Then, C.K.; Kuo, Y.M.; Lin, Y.K.; Shen, S.C. Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. Int. J. Mol. Sci. 2023, 24, 15828. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.P.; Chen, S.C.; Liu, Y.H.; Chen, C.F.; Hour, T.C. Postconditioning with far-infrared irradiation increases heme oxygenase-1 expression and protects against ischemia/reperfusion injury in rat testis. Life Sci. 2013, 92, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.S.; Li, S.; Cheng, X.; Tan, X.C.; Huang, Y.L.; Dong, H.J.; Xue, R.; Zhang, Y.; Li, J.C.; Feng, X.X.; et al. Far-Infrared Therapy Based on Graphene Ameliorates High-Fat Diet-Induced Anxiety-Like Behavior in Obese Mice via Alleviating Intestinal Barrier Damage and Neuroinflammation. Neurochem. Res. 2024, 49, 1735–1750. [Google Scholar] [CrossRef]
- Honda, K.; Inoué, S. Sleep-enhancing effects of far-infrared radiation in rats. Int. J. Biometeorol. 1988, 32, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Liu, Y.P.; Liu, C.F. The effect on serotonin and MDA levels in depressed patients with insomnia when far-infrared rays are applied to acupoints. Am. J. Chin. Med. 2009, 37, 837–842. [Google Scholar] [CrossRef]
- Concheiro-Moscoso, P.; Groba, B.; Martínez-Martínez, F.J.; Miranda-Duro, M.D.C.; Nieto-Riveiro, L.; Pousada, T.; Pereira, J. Use of the Xiaomi Mi Band for sleep monitoring and its influence on the daily life of older people living in a nursing home. Digit. Health 2022, 8, 20552076221121162. [Google Scholar] [CrossRef]
- Concheiro-Moscoso, P.; Groba, B.; Alvarez-Estevez, D.; Miranda-Duro, M.D.C.; Pousada, T.; Nieto-Riveiro, L.; Mejuto-Muiño, F.J.; Pereira, J. Quality of Sleep Data Validation From the Xiaomi Mi Band 5 Against Polysomnography: Comparison Study. J. Med. Internet Res. 2023, 25, e42073. [Google Scholar] [CrossRef]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Before-bedtime passive body heating by warm shower or bath to improve sleep: A systematic review and meta-analysis. Sleep. Med. Rev. 2019, 46, 124–135. [Google Scholar] [CrossRef]
- Gordon, C.J. The mouse thermoregulatory system: Its impact on translating biomedical data to humans. Physiol. Behav. 2017, 179, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Raymann, R.J.; Swaab, D.F.; Van Someren, E.J. Skin deep: Enhanced sleep depth by cutaneous temperature manipulation. Brain 2008, 131 Pt 2, 500–513. [Google Scholar] [CrossRef]
- Harding, E.C.; Franks, N.P.; Wisden, W. The Temperature Dependence of Sleep. Front. Neurosci. 2019, 24, 336. [Google Scholar] [CrossRef]
- Kurashina, W.; Iijima, Y.; Sasanuma, H.; Saito, T.; Takeshita, K. Evaluation of muscle stiffness in adhesive capsulitis with Myoton PRO. JSES Int. 2022, 7, 25–29. [Google Scholar] [CrossRef]
- Lai, C.H.; Leung, T.K.; Peng, C.W.; Chang, K.H.; Lai, M.J.; Lai, W.F.; Chen, S.C. Effects of far-infrared irradiation on myofascial neck pain: A randomized, double-blind, placebo-controlled pilot study. J. Altern. Complement. Med. 2014, 20, 123–129. [Google Scholar] [CrossRef]
- Suwankanit, K.; Shimizu, M.; Suzuki, K.; Kaneda, M. Usefulness of Ultrasound Shear Wave Elastography for Detection of Quadriceps Contracture in Immobilized Rats. Animals 2023, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Homan, M.; Rath, S.U.L.; Green, V.L.S.; Hutson, J.; Myers, M.J.; Guggenheimer, J.D. Examining the Impact of Far-Infrared Technology on Quality of Life in Older Adults. Int. J. Aging Hum. Dev. 2024, 914150241231188. [Google Scholar] [CrossRef] [PubMed]
- Steff, N.; Badau, D.; Badau, A. Improving Agility and Reactive Agility in Basketball Players U14 and U16 by Implementing Fitlight Technology in the Sports Training Process. Appl. Sci. 2024, 14, 3597. [Google Scholar] [CrossRef]
- Boivin, D.B.; Shechter, A.; Boudreau, P.; Begum, E.A.; Ng Ying-Kin, N.M. Diurnal and circadian variation of sleep and alertness in men vs. naturally cycling women. Proc. Natl. Acad. Sci. USA 2016, 113, 10980–10985. [Google Scholar] [CrossRef]
- Lee, M.C.; Ho, C.S.; Hsu, Y.J.; Wu, M.F.; Huang, C.C. Effect of 8-week frequency-specific electrical muscle stimulation combined with resistance exercise training on muscle mass, strength, and body composition in men and women: A feasibility and safety study. PeerJ 2023, 11, e16303. [Google Scholar] [CrossRef]
- Li, F.; Chang, C.H.; Chung, Y.C.; Wu, H.J.; Kan, N.W.; ChangChien, W.S.; Ho, C.S.; Huang, C.C. Development and Validation of 3 Min Incremental Step-In-Place Test for Predicting Maximal Oxygen Uptake in Home Settings: A Submaximal Exercise Study to Assess Cardiorespiratory Fitness. Int. J. Environ. Res. Public Health 2021, 18, 10750. [Google Scholar] [CrossRef] [PubMed]
Body Composition | Pre | Post | ANOVA | ||||
---|---|---|---|---|---|---|---|
Placebo | αSleep® | Placebo | αSleep® | Group | Time | G × T | |
SpO2 (%) | 97.6 ± 0.9 a | 96.8 ± 1.5 a | 97.3 ± 1.1 a | 96.8 ± 1.2 a | F(1, 22) = 2.559 p = 0.124 | F(1, 22) = 0.198 p = 0.660 | F(1, 22) = 0.551 p = 0.466 |
Body weight (kg) | 72.2 ± 5.6 a | 77.7 ± 9.4 a | 71.8 ± 5.5 a | 77.7 ± 9.2 a | F(1, 22) = 3.361 p = 0.080 | F(1, 22) = 1.985 p = 0.173 | F(1, 22) = 2.593 p = 0.122 |
BMI (kg/m2) | 24.7 ± 1.7 a | 26.0 ± 3.3 a | 24.6 ± 1.6 a | 26.0 ± 3.2 a | F(1, 22) = 1.590 p = 0.221 | F(1, 22) = 1.827 p = 0.190 | F(1, 22) = 3.020 p = 0.096 |
Muscle mass (kg) | 30.8 ± 3.6 a | 32.5 ± 3.0 a | 30.7 ± 3.5 a | 32.5 ± 2.9 a | F(1, 22) = 1.691 p = 0.207 | F(1, 22) = 0.125 p = 0.727 | F(1, 22) = 0.499 p = 0.488 |
Fat mass (%) | 23.6 ± 5.7 a | 25.1 ± 5.6 a | 23.4 ± 5.4 a | 25.2 ± 5.4 a | F(1, 22) = 0.546 p = 0.468 | F(1, 22) = 0.071 p = 0.792 | F(1, 22) = 0.409 p = 0.529 |
Surface Temperature | Upper Body (°C) | Chest (°C) | Legs (°C) | |||
---|---|---|---|---|---|---|
Placebo | αSleep® | Placebo | αSleep® | Placebo | αSleep® | |
Day 0 | ||||||
Before | 35.7 ± 0.4 a | 35.6 ± 0.5 a | 35.0 ± 0.7 a | 34.9 ± 0.7 a | 33.8 ± 0.5 a | 34.1 ± 0.5 a |
After | 36.0 ± 0.4 a | 35.9 ± 0.5 a | 35.6 ± 0.3 a | 35.3 ± 0.6 a | 34.7 ± 0.5 a | 34.5 ± 0.8 a |
Day 14 | ||||||
Before | 35.9 ± 0.5 a | 35.7 ± 0.3 a | 34.8 ± 0.8 a | 34.5 ± 1.1 a | 33.9 ± 0.7 a | 33.7 ± 0.8 a |
After | 36.2 ± 0.3 a | 36.0 ± 0.3 a | 35.5 ± 0.3 b | 35.1 ± 0.6 a | 34.7 ± 0.6 a | 34.1 ± 0.8 a |
Group (A) | F(7, 104) = 5.274, p = 0.024 | F(7, 104) = 2.748, p = 0.100 | F(7, 104) = 2.829, p = 0.096 | |||
Time (B) | F(7, 104) = 3.647, p = 0.059 | F(7, 104) = 2.933, p = 0.090 | F(7, 104) = 1.376, p = 0.243 | |||
Measurement (C) | F(7, 104) = 13.679, p < 0.001 | F(7, 104) = 18.861, p < 0.001 | F(7, 104) = 15.553, p < 0.001 | |||
(A) × (B) | F(7, 104) = 0.562, p = 0.455 | F(7, 104) = 0.083, p = 0.774 | F(7, 104) = 1.007, p = 0.318 | |||
(A) × (C) | F(7, 104) = 0.047, p = 0.828 | F(7, 104) = 0.204, p = 0.652 | F(7, 104) = 3.122, p = 0.080 | |||
(B) × (C) | F(7, 104) = 0.005, p = 0.942 | F(7, 104) = 0.415, p = 0.521 | F(7, 104) = 0.058, p = 0.811 | |||
(A) × (B) × (C) | F(7, 104) = 0.015, p = 0.904 | F(7, 104) < 0.001, p = 0.989 | F(7, 104) = 0.045, p = 0.833 |
Arteriosclerosis Examination Instruction | Vascular Age (Years) | Right baPWV (cm/s) | Left baPWV (cm/s) | |||
---|---|---|---|---|---|---|
Placebo | αSleep® | Placebo | αSleep® | Placebo | αSleep® | |
Day 0 | ||||||
Before | 55 ± 11 a | 59 ± 11 a | 1324 ± 206 a | 1313 ± 263 a | 1297 ± 234 a | 1359 ± 230 a |
After | 55 ± 11 a | 58 ± 9 a | 1306 ± 208 a | 1285 ± 219 a | 1290 ± 232 a | 1302 ± 231 a |
Day 14 | ||||||
Before | 55 ± 11 a | 59 ± 11 a | 1311 ± 224 a | 1323 ± 212 a | 1267 ± 127 a | 1363 ± 251 a |
After | 56 ± 12 a | 58 ± 10 a | 1263 ± 211 b | 1261 ± 195 a | 1343 ± 194 a | 1234 ± 112 a |
Group (A) | F(7, 104) = 0.823, p = 0.366 | F(7, 104) = 0.008, p = 0.930 | F(7, 104) = 0.180, p = 0.672 | |||
Time (B) | F(7, 104) = 0.116, p = 0.734 | F(7, 104) = 0.035, p = 0.851 | F(7, 104) = 0.144, p = 0.705 | |||
Measurement (C) | F(7, 104) = 0.105, p = 0.746 | F(7, 104) = 0.078, p = 0.781 | F(7, 104) = 0.858, p = 0.356 | |||
(A) × (B) | F(7, 104) = 0.020, p = 0.875 | F(7, 104) = 0.729, p = 0.395 | F(7, 104) = 0.109, p = 0.741 | |||
(A) × (C) | F(7, 104) = 0.153, p = 0.942 | F(7, 104) = 0.375, p = 0.541 | F(7, 104) = 0.037, p = 0.848 | |||
(B) × (C) | F(7, 104) = 0.116, p = 0.734 | F(7, 104) = 0.103, p = 0.521 | F(7, 104) = 0.114, p = 0.736 | |||
(A) × (B) × (C) | F(7, 104) < 0.001, p = 0.993 | F(7, 104) = 0.244, p = 0.622 | F(7, 104) = 0.072, p = 0.789 |
Muscle Stiffness Test | Right Biceps Brachii | Left Biceps Brachii | Right Rectus Femoris | Left Rectus Femoris | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency (Hz) | Stiffness (N/m) | Decrement (N/m) | Frequency (Hz) | Stiffness (N/m) | Decrement | Frequency (Hz) | Stiffness (N/m) | Decrement | Frequency (Hz) | Stiffness (N/m) | Decrement | |
Day 0—before | ||||||||||||
Placebo | 15.20 ± 1.35 a | 239 ± 27 a | 1.50 ± 0.23 a | 15.12 ± 1.24 a | 240 ± 24 a | 1.43 ± 0.32 a | 15.93 ± 2.02 a | 297 ± 29 a | 1.88 ± 0.27 a | 15.18 ± 1.50 a | 286 ± 25 a | 1.95 ± 0.25 a |
αSleep® | 14.91 ± 1.47 a | 236 ± 23 a | 1.59 ± 0.18 a | 14.58 ± 1.57 a | 234 ± 18 a | 1.47 ± 0.20 a | 16.44 ± 1.07 a | 308 ± 19 a | 1.81 ± 0.22 a | 17.52 ± 1.26 b | 320 ± 32 b | 1.86 ± 0.30 a |
Day 0—after | ||||||||||||
Placebo | 15.09 ± 1.68 a | 242 ± 33 a | 1.56 ± 0.28 a | 15.74 ± 1.42 a | 256 ± 29 a | 1.45 ± 0.23 a | 15.87 ± 1.16 a | 302 ± 30 a | 1.85 ± 0.40 a | 15.64 ± 1.38 a | 295 ± 16 a | 1.97 ± 0.23 b |
αSleep® | 15.29 ± 1.81 a | 246 ± 32 a | 1.54 ± 0.23 a | 15.14 ± 1.54 a | 245 ± 22 a | 1.53 ± 0.35 a | 16.74 ± 1.05 a | 316 ± 21 a | 1.76 ± 0.24 a | 17.72 ± 1.59 b | 317 ± 23 b | 1.89 ± 0.41 a |
Day 14—before | ||||||||||||
Placebo | 15.30 ± 1.32 a | 244 ± 30 a | 1.38 ± 10.19 a | 15.49 ± 1.55 a | 245 ± 30 a | 1.41 ± 0.25 a | 15.40 ± 1.39 a | 283 ± 19 a | 1.86 ± 0.33 a | 15.55 ± 1.39 a | 284 ± 22 a | 1.85 ± 0.33 a |
αSleep® | 14.90 ± 1.53 a | 246 ± 26 a | 1.47 ± 0.29 a | 15.85 ± 1.28 a | 254 ± 27 a | 1.56 ± 0.41 a | 16.74 ± 1.80 a | 305 ± 29 b | 1.84 ± 0.17 a | 15.30 ± 1.18 a | 295 ± 27 a | 1.79 ± 0.21 a |
Day 14—after | ||||||||||||
Placebo | 14.93 ± 1.58 a | 248 ± 25 a | 1.61 ± 0.28 a | 14.67 ± 1.48 a | 235 ± 26 a | 1.48 ± 0.24 a | 15.50 ± 1.34 a | 292 ± 26 a | 1.67 ± 0.40 a | 15.30 ± 1.18 a | 289 ± 22 a | 1.83 ± 0.35 a |
αSleep® | 14.64 ± 0.92 a | 244 ± 20 a | 1.63 ± 0.33 a | 15.03 ± 1.13 | 248 ± 18 a | 1.71 ± 0.44 a | 16.53 ± 1.18 a | 308 ± 25 a | 1.70 ± 0.22 a | 17.10 ± 1.98 b | 305 ± 20 a | 1.83 ± 0.21 a |
Group (A) | F(7, 104) = 2.750, p = 0.100 | F(7, 104) = 1.061, p = 0.305 | F(7, 104) = 0.216, p = 0.643 | F(7, 104) = 1.319, p = 0.253 | F(7, 104) = 0.294, p = 0.589 | F(7, 104) = 2.774, p = 0.099 | F(7, 104) = 8.552, p = 0.004 | F(7, 104) = 4.705, p = 0.032 | F(7, 104) = 0.006, p = 0.938 | F(7, 104) = 21.505, p < 0.001 | F(7, 104) = 14.032, p < 0.001 | F(7, 104) = 2.349, p = 0.128 |
Time (B) | F(7, 104) = 0.686, p = 0.409 | F(7, 104) = 0.922, p = 0.339 | F(7, 104) = 0.236, p = 0.628 | F(7, 104) = 0.041, p = 0.839 | F(7, 104) = 0.014, p = 0.905 | F(7, 104) = 0.720, p = 0.398 | F(7, 104) = 0.792, p = 0.376 | F(7, 104) = 0.862, p = 0.355 | F(7, 104) = 1.123, p = 0.292 | F(7, 104) = 5.357, p = 0.023 | F(7, 104) = 6.597, p = 0.012 | F(7, 104) = 2.033, p = 0.157 |
Measurement (C) | F(7, 104) = 0.330, p = 0.567 | F(7, 104) = 0.124, p = 0.725 | F(7, 104) = 3.014, p = 0.086 | F(7, 104) = 0.461, p = 0.499 | F(7, 104) = 0.320, p = 0.573 | F(7, 104) = 2.314, p = 0.131 | F(7, 104) = 0.052, p = 0.821 | F(7, 104) = 1.683, p = 0.197 | F(7, 104) = 1.179, p = 0.280 | F(7, 104) = 1.677, p = 0.198 | F(7, 104) = 1.569, p = 0.213 | F(7, 104) = 0.050, p = 0.823 |
(A) × (B) | F(7, 104) = 0.050, p = 0.824 | F(7, 104) = 0.129, p = 0.720 | F(7, 104) = 0.001, p = 0.981 | F(7, 104) = 4.456, p = 0.037 | F(7, 104) = 5.563, p = 0.020 | F(7, 104) = 0.854, p = 0.358 | F(7, 104) = 0.057, p = 0.812 | F(7, 104) = 0.002, p = 0.965 | F(7, 104) = 0.734, p = 0.394 | F(7, 104) = 1.789, p = 0.184 | F(7, 104) = 1.323, p = 0.253 | F(7, 104) = 0.605, p = 0.438 |
(A) × (C) | F(7, 104) = 0.610, p = 0.437 | F(7, 104) = 0.156, p = 0.694 | F(7, 104) = 0.249, p = 0.618 | F(7, 104) = 0.056, p = 0.814 | F(7, 104) = 0.004, p = 0.948 | F(7, 104) = 0.306, p = 0.581 | F(7, 104) = 0.178, p = 0.674 | F(7, 104) = 0.001, p = 0.971 | F(7, 104) = 0.087, p = 0.769 | F(7, 104) = 0.736, p = 0.393 | F(7, 104) = 0.296, p = 0.588 | F(7, 104) = 0.326, p = 0.569 |
(B) × (C) | F(7, 104) = 0.404, p = 0.527 | F(7, 104) = 0.190, p = 0.663 | F(7, 104) = 4.147, p = 0.044 | F(7, 104) = 4.899, p = 0.290 | F(7, 104) = 3.686, p = 0.058 | F(7, 104) = 0.688, p = 0.409 | F(7, 104) = 0.171, p = 0.680 | F(7, 104) = 0.042, p = 0.838 | F(7, 104) = 1.137, p = 0.289 | F(7, 104) = 0.320, p = 0.573 | F(7, 104) = 0.246, p = 0.621 | F(7, 104) = 0.318, p = 0.574 |
(A) × (B) × (C) | F(7, 104) = 0.718, p = 0.399 | F(7, 104) = 0.595, p = 0.442 | F(7, 104) = 0.029, p = 0.864 | F(7, 104) = 0.003, p = 0.958 | F(7, 104) = 0.128, p = 0.721 | F(7, 104) = 0.133, p = 0.716 | F(7, 104) = 0.348, p = 0.556 | F(7, 104) < 0.001, p = 0.987 | F(7, 104) = 0.234, p = 0.629 | F(7, 104) = 2.102, p = 0.150 | F(7, 104) = 1.033, p = 0.312 | F(7, 104) = 0.357, p = 0.551 |
Parameters | Pre | Post | ANOVA | ||||
---|---|---|---|---|---|---|---|
Placebo | αSleep® | Placebo | αSleep® | Group | Time | G × T | |
Glucose (mg/dL) | 94 ± 8 a | 99 ± 11 a | 94 ± 8 a | 98 ± 8 a | F(1, 22) = 1.295 p = 0.267 | F(1, 22) = 0.014 p = 0.908 | F(1, 22) = 1.352 p = 0.257 |
AST (U/L) | 26 ± 5 a | 28 ± 5 a | 25 ± 5 a | 29 ± 4 a | F(1, 22) = 3.728 p = 0.066 | F(1, 22) = 0.002 p = 0.965 | F(1, 22) = 0.240 p = 0.629 |
ALT (U/L) | 25 ± 7 a | 28 ± 7 a | 25 ± 5 a | 29 ± 5 a | F(1, 22) = 1.932 p = 0.178 | F(1, 22) = 0.165 p = 0.688 | F(1, 22) = 0.225 p = 0.640 |
TC (mg/dL) | 210 ± 19 a | 212 ± 12 a | 211 ± 16 a | 213 ± 9 a | F(1, 22) = 0.171 p = 0.683 | F(1, 22) = 0.535 p = 0.472 | F(1, 22) = 0.011 p = 0.918 |
TG (mg/dL) | 120 ± 28 a | 125 ± 31 a | 121 ± 26 a | 119 ± 31 a,* | F(1, 22) = 0.015 p = 0.903 | F(1, 22) = 1.913 p = 0.181 | F(1, 22) = 5.894 p = 0.024 |
HDL (mg/dL) | 55.1 ± 6.8 a | 50.9 ± 6.5 a | 54.7 ± 6.5 a | 53.1 ± 6.1 a,* | F(1, 22) = 1.293 p = 0.268 | F(1, 22) = 3.701 p = 0.067 | F(1, 22) = 7.538 p = 0.012 |
LDL (mg/dL) | 138.6 ± 14.3 a | 148.2 ± 9.2 a | 139.5 ± 14.4 a | 148.2 ± 5.0 a | F(1, 22) = 4.030 p = 0.057 | F(1, 22) = 0.247 p = 0.624 | F(1, 22) = 0.247 p = 0.624 |
IL-6 (pg/mL) | 1.42 ± 0.32 a | 1.28 ± 0.49 a | 1.36 ± 0.41 a | 1.15 ± 0.52 a | F(1, 22) = 1.509 p = 0.232 | F(1, 22) = 0.729 p = 0.402 | F(1, 22) = 0.103 p = 0.751 |
TNF-α (pg/mL) | 0.53 ± 0.10 a | 0.58 ± 0.11 a | 0.58 ± 0.17 a | 0.57 ± 0.11 a | F(1, 22) = 0.244 p = 0.626 | F(1, 22) = 0.310 p = 0.583 | F(1, 22) = 0.949 p = 0.340 |
Basic Information | Placebo | αSleep® |
---|---|---|
Age (year) | 54 ± 6 a | 54 ± 5 a |
Height (cm) | 170.9 ± 5.6 a | 173.0 ± 4.7 a |
Weight (kg) | 72.2 ± 5.6 a | 77.7 ± 9.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-C.; Ho, C.-S.; Hsu, Y.-J.; Kan, N.-W.; Fei, C.-Y.; Yang, H.-J.; Huang, C.-C. The Impact of DAZZEON αSleep® Far-Infrared Blanket on Sleep, Blood Pressure, Vascular Health, Muscle Function, Inflammation, and Fatigue. Clocks & Sleep 2024, 6, 499-516. https://doi.org/10.3390/clockssleep6030033
Lee M-C, Ho C-S, Hsu Y-J, Kan N-W, Fei C-Y, Yang H-J, Huang C-C. The Impact of DAZZEON αSleep® Far-Infrared Blanket on Sleep, Blood Pressure, Vascular Health, Muscle Function, Inflammation, and Fatigue. Clocks & Sleep. 2024; 6(3):499-516. https://doi.org/10.3390/clockssleep6030033
Chicago/Turabian StyleLee, Mon-Chien, Chin-Shan Ho, Yi-Ju Hsu, Nai-Wen Kan, Chen-Yin Fei, Hung-Jen Yang, and Chi-Chang Huang. 2024. "The Impact of DAZZEON αSleep® Far-Infrared Blanket on Sleep, Blood Pressure, Vascular Health, Muscle Function, Inflammation, and Fatigue" Clocks & Sleep 6, no. 3: 499-516. https://doi.org/10.3390/clockssleep6030033
APA StyleLee, M. -C., Ho, C. -S., Hsu, Y. -J., Kan, N. -W., Fei, C. -Y., Yang, H. -J., & Huang, C. -C. (2024). The Impact of DAZZEON αSleep® Far-Infrared Blanket on Sleep, Blood Pressure, Vascular Health, Muscle Function, Inflammation, and Fatigue. Clocks & Sleep, 6(3), 499-516. https://doi.org/10.3390/clockssleep6030033