Aromatic Metal Corrosion Inhibitors
Abstract
:1. Introduction
- The attraction between charged as well as neutral molecules and metal through electrostatic forces;
- The interaction of the metal with lone electron pairs in the molecule;
- Interactions of π electrons with metal;
- A combination of the first three possibilities.
- Sufficient solubility;
- Environmental compatibility;
- Nontoxicity;
- Cost and sustainability;
- Chemical stability in the particular environment.
1.1. Substituted Benzenes
1.2. Substituted Heteroatom-Containing Six-Membered Rings
1.3. Substituted Five-Membered Hetero-Atom Containing Rings
1.4. Natural Compounds, Pharmaceuticals, Drugs, Dyestuffs, and Mixtures
1.5. The State of Things
2. Concluding Remarks and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaesche, H. Die Korrosion der Metalle, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- El-Meligi, A.A. Corrosion preventive strategies as a crucial need for decreasing environmental pollution and saving economics. Rec. Pat. Corros. Sci. 2010, 2, 22–33. [Google Scholar] [CrossRef]
- Foroulis, Z.A. Corrosion and corrosion inhibition in the petroleum industry. Mater. Corros. 1982, 33, 121–131. [Google Scholar] [CrossRef]
- Kaesche, H. The Corrosion of Metals; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Kelly, R.G.; Scully, J.R.; Shoesmith, D.W.; Buchheit, R.G. Electrochemical Techniques in Corrosion Science and Engineering; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Groysman, A. Corrosion for Everybody; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Roberg, P.R. Corrosion Engineering Principles and Practice; McGraw Hill: New York, NY, USA, 2008. [Google Scholar]
- Revie, R.W.; Uhlig, H.H. (Eds.) Uhlig’s Corrosion Handbook; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Perez, N. Electrochemistry and Corrosion Science; Kluwer Academic Publisher: New York, NY, USA, 2004. [Google Scholar]
- Revie, R.W.; Uhlig, H.H. Corrosion and Corrosion Control; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Sastri, V.S. Green Corrosion Inhibitors; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Roberge, P.R. Corrosion Basics: An Introduction, 2nd ed.; NACE International: Houston, TX, USA, 2006. [Google Scholar]
- APV-Corrosion Handbook; APV: Getzville, NY, USA, 2008.
- Jones, D.A. Principles and Prevention of Corrosion; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Roberge, P.R. Corrosion Inspection and Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Talbot, D.; Talbot, J. Corrosion Science and Technology; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Weir, T.W.; Van De Ven, P. Review of organic acids as inhibitors in engine coolants. SAE Techn. Pap. 1996, 960641. [Google Scholar]
- Edwards, W.C. Toxicology of oil field wastes. Hazards to livestock associated with the petroleum industry. Vet. Clin. North America Food Anim. Pract. 1989, 5, 363–374. [Google Scholar] [CrossRef]
- Casanova, L.; Ceriani, F.; Messinese, E.; Paterlini, L.; Beretta, S.; Bolzoni, F.M.; Brenna, A.; Diamanti, M.V.; Ormellese, M.; Pedeferri, M. Recent Advances in the Use of Green Corrosion Inhibitors to Prevent Chloride-Induced Corrosion in Reinforced Concrete. Materials 2023, 16, 7462. [Google Scholar] [CrossRef]
- Shkoor, M.; Jalab, R.; Khaled, M.; Shawkat, T.S.; Korashy, H.M.; Saad, M.; Su, H.L.; Bani-Yaseen, A.D. Experimental and theoretical investigations of the effect of bis-phenylurea-based aliphatic amine derivative as an efficient green corrosion inhibitor for carbon steel in HCl solution. Heliyon 2023, 9, e20254. [Google Scholar] [CrossRef]
- Chafiq, M.; Chaouiki, A.; Lgaz, H.; Salghi, R.; Bhaskar, K.V.; Marzouki, R.; Bhat, K.S.; Ali, I.H.; Khan, M.I.; Chung, L.M. Inhibition performances of spirocyclopropane derivatives for mild steel protection in HCl. Mater. Chem. Phys. 2020, 243, 122582. [Google Scholar] [CrossRef]
- Anitha, R.; Chitra, S.; Hemapriya, V.; Chung, I.M.; Kim, S.H.; Prabakaran, M. Implications of eco-addition inhibitor to mitigate corrosion in reinforced steel embedded in concrete. Constr. Build. Mater. 2019, 213, 246–256. [Google Scholar] [CrossRef]
- Saurbier, K.; Schultze, J.W.; Geke, J. Temporary inhibitors of corrosion in wet atmosphere: Electrochemical investigations of the mechanism and efficiency. Electrochim. Acta 1994, 39, 1171–1178. [Google Scholar] [CrossRef]
- Rosenfeld, I.L.; Persiantseva, B.P.; Terentiev, P.B. Mechanism of Metal Protection by Volatile Inhibitors. Corrosion 1964, 20, 222–234. [Google Scholar] [CrossRef]
- Subramanian, A.; Natesan, M.; Muralidharan, V.S.; Balakrishnan, K.; Vasudevan, T. An overview: Vapor phase corrosion inhibitors. Corrosion 2000, 56, 144–155. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Jamal, D.; Bhardwaj, V. Protection of metals by new vapour phase corrosion inhibitors. Bull. Electrochem. 2004, 20, 459–463. [Google Scholar]
- Xin, Z.L.; Li, J.; Zhang, D.Q. Development of a novel volatile corrosion inhibitor paper without nitroso-group. Corr. Prot. 2009, 30, 43–45. [Google Scholar]
- Shkol’nikov, V.M.; Shekhter, Y.N.; Sidorova, N.N.; Fuks, I.G.; Antipova, K.M.; Koroleva, N.D. Chemical composition of lubricating oils in relation to protective properties. Chem. Technol. Fuels Oils 1973, 9, 264–267. [Google Scholar] [CrossRef]
- Shekhter, Y.N. Mechanism of action of oil-soluble corrosion inhibitors. Chem. Technol. Fuels Oils 1966, 2, 185–189. [Google Scholar] [CrossRef]
- Burant, A.; Selbig, W.; Furlong, E.T.; Higgins, C.P. Trace organic contaminants in urban runoff: Associations with urban land-use. Environm. Pollut. 2018, 242, 2068–2077. [Google Scholar] [CrossRef]
- Pritchard, J.C.; Mills Hawkins, K.; Cho, Y.M.; Spahr, S.; Struck, S.D.; Higgins, C.P.; Luthy, R.G. Black Carbon-Amended Engineered Media Filters for Improved Treatment of Stormwater Runoff. ACS Environ. Au 2023, 3, 34–46. [Google Scholar] [CrossRef]
- Fuchte, H.E.; Beck, N.; Bieg, E.; Bayer, V.J.; Achten, C.; Krauss, M.; Schäffer, A.; Smith, K.E.C. A look down the drain: Identification of dissolved and particle bound organic pollutants in urban runoff waters and sediments. Environm. Poll. 2022, 302, 119047. [Google Scholar] [CrossRef]
- Knudsen, B.L.; Hjelsvold, M.; Frost, T.K.; Eiken, M.B.; Grini, P.G.; Willumsen, C.F.; Torvik, H. Toward Zero Environmental Impact of the Produced Water. In Proceedings of the SPE Offshore Europe Conference and Exhibition, Aberdeen, UK, 2–5 September 2003; pp. 320–325. [Google Scholar]
- Ferraz, E.R.A.; De Oliveira, G.A.R.; De Oliveira, D.P. The impact of aromatic amines on the environment: Risks and damages. Front. Biosci. 2012, 4E, 914–923. [Google Scholar] [CrossRef]
- Makrides, A.C.; Hackerman, N. Inhibition of acid dissolution of metals. I. Some general observations. J. Phys. Chem. 1955, 59, 707–710. [Google Scholar] [CrossRef]
- Harvey, T.J.; Walsh, F.C.; Nahlé‚, A.H. A review of inhibitors for the corrosion of transition metals in aqueous acids. J. Mol. Liq. 2018, 266, 160–175. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I. Adsorptive passivation of iron by organic acid anions. Russ. J. Electrochem. 2004, 40, 1287–1291. [Google Scholar] [CrossRef]
- McCafferty, E. Mechanisms of corrosion control by inhibitors. Society of the Plastics Industry, Reinforced Plastics/Composites Institute. In Proceedings of the Annual Conference-Proceedings 1979, Meeting on Corrosion Control at Lehigh University, Bethlehem PY, USA, 13–15 November 1978; pp. 279–317. [Google Scholar]
- Society of the Plastics Industry. Reinforced Plastics/Composites Institute, Annual Conference—Proceedings; Leidheiser, H., Ed.; Science Press: Princeton, NJ, USA, 1979. [Google Scholar]
- Dehghani, A.; Berdimurodov, E.; Verma, C.; Verma, D.K.; Berdimuradov, K.; Quraishi, M.A.; Aliev, N. Constructing efficacy: A novel perspective on organic corrosion inhibitors and interfacial interactions. Chem. Pap. 2023, 78, 1367–1397. [Google Scholar] [CrossRef]
- Verma, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Quraishi, M.A. Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: A review. J. Mol. Liq. 2018, 251, 100–118. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Ebenso, E.E. A review on ammonia derivatives as corrosion inhibitors for metals and alloys. In Green Energy and Technology: Sustainable Ammonia Production; Inamuddin Boddula, R., Asiri, A.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 49–67. [Google Scholar]
- Verma, C.; Alfantazi, A.; Quraishi, M.A.; Rhee, K.Y. Significance of Hammett and Taft substituent constants on bonding potential of organic corrosion inhibitors: Tailoring of reactivity and performance. Coord. Chem. Rev. 2023, 495, 215385. [Google Scholar] [CrossRef]
- Schleyer, P.V.R.; Jiao, H. What is aromaticity? Pure Appl. Chem. 1996, 68, 209–218. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Singh, P.; Quraishi, M.A. Quinoxaline derivatives as efficient corrosion inhibitors: Current status, challenges and future perspectives. J. Mol. Liq. 2020, 320, 114387. [Google Scholar] [CrossRef]
- Carranza, M.S.; Reyes, Y.I.A.; Gonzales, E.C.; Arcon, D.P.; Franco, F.C., Jr. Electrochemical and quantum mechanical investigation of various small molecule organic compounds as corrosion inhibitors in mild steel. Heliyon 2021, 7, e07952. [Google Scholar] [CrossRef]
- Al-Taq, A.A.; Ali, S.A.; Nasr-El-Din, H.A. Inhibition performance of a new series of mono-/diamine-based corrosion inhibitors for HCl solutions. SPE J. 2009, 14, 627–633. [Google Scholar] [CrossRef]
- Halambek, J.; Grassino, A.N.; Cindrić, I. Inhibition performance of eugenol and linalool on aluminium corrosion: A comparative study. Int. J. Electrochem. Sci. 2020, 15, 857–867. [Google Scholar]
- Banerjee, G.; Malhotra, S.N. Contribution to adsorption of aromatic amines on mild steel surface from HCl solutions by impedance, UV, and Raman spectroscopy. Corrosion 1992, 48, 10–15. [Google Scholar] [CrossRef]
- Holze, R. Surface and Interface Analysis—An Electrochemists Toolbox; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Holze, R. Competition of anchoring groups in adsorption on gold electrodes—A comparative spectroelectrochemical study of 4-mercaptobenzonitrile and aromatic nitriles. J. Solid State Electr. 2013, 17, 1869–1879. [Google Scholar] [CrossRef]
- Uehara, J.; Aramaki, K. A Surface-Enhanced Raman Spectroscopy Study on Adsorption of Some Sulfur-Containing Corrosion Inhibitors on Iron in Hydrochloric Acid Solutions. J. Electrochem. Soc. 1991, 138, 3245–3251. [Google Scholar] [CrossRef]
- Durnie, W.H.; De Marco, R.; Jefferson, A.; Kinsella, B.J. In situ SERS study of the adsorption of inhibitors of carbon dioxide corrosion. Surf. Interface Anal. 2003, 35, 536–543. [Google Scholar] [CrossRef]
- Fockaert, L.I.; Würger, T.; Unbehau, R.; Boelen, B.; Meißner, R.H.; Lamaka, S.V.; Zheludkevich, M.L.; Terryn, H.; Mol, J.M.C. ATR-FTIR in Kretschmann configuration integrated with electrochemical cell as in situ interfacial sensitive tool to study corrosion inhibitors for magnesium substrates. Electrochim. Acta 2020, 345, 136166. [Google Scholar] [CrossRef]
- Telegdi, J.; Shaban, A.; Kálmán, E. EQCM study of copper and iron corrosion inhibition in presence of organic inhibitors and biocides. Electrochim. Acta 2000, 45, 3639–3647. [Google Scholar] [CrossRef]
- Kern, P.; Landolt, D. Adsorption of a bromine labeled carboxylic acid corrosion inhibitor on iron measured with EQCM, EIS and XPS. Corros. Sci. 2002, 44, 1809–1824. [Google Scholar] [CrossRef]
- Murmu, M.; Murmu, N.C.; Ghosh, M.; Banerjee, P. Density functional theory, Monte Carlo simulation and non-covalent interaction study for exploring the adsorption and corrosion inhibiting property of double azomethine functionalised organic molecules. J. Adhes. Sci. Technol. 2022, 36, 2732–2760. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Verma, C.; Quraishi, M.A. Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights. J. Molec. Struct. 2021, 1227, 129374. [Google Scholar] [CrossRef]
- Verma, C.; Alrefaee, S.H.; Rhee, K.Y.; Quraishi, M.A.; Ebenso, E.E. Thiol (-SH) substituent as functional motif for effective corrosion protection: A review on current advancements and future directions. J. Mol. Liq. 2021, 324, 115111. [Google Scholar] [CrossRef]
- Mercer, W.C. Investigation of carboxylic acids as corrosion inhibitors in engine coolant. ASTM Spec. Tech. Publ. 1993, 3, 44–62. [Google Scholar]
- Riggs, O.L., Jr.; Every, R.L. Study of Organic Inhibitors For Hydrochloric Acid Attack on Iron. Corrosion 1962, 18, 262–269. [Google Scholar] [CrossRef]
- Every, R.L.; Riggs, O.L., Jr. Organic inhibitors for carbon steel in hydrochloric acid. Mater. Prot. 1964, 3, 46–47. [Google Scholar]
- Cox, P.F.; Every, R.L.; Riggs, O.L. Study of Aromatic Amine Inhibitors By Nuclear Magnetic Resonance. Corrosion 1964, 20, 299–302. [Google Scholar] [CrossRef]
- Sutter, E.M.M.; Ammeloot, F.; Pouet, M.J.; Fiaud, C.; Couffignal, R. Heterocyclic compounds used as corrosion inhibitors: Correlation between 13C and 1H NMR spectroscopy and inhibition efficiency. Corros. Sci. 1999, 41, 105–115. [Google Scholar] [CrossRef]
- Behzadi, H.; Manzetti, S.; Dargahi, M.; Roonasi, P.; Khalilnia, Z. Application of calculated NMR parameters, aromaticity indices and wavefunction properties for evaluation of corrosion inhibition efficiency of pyrazine inhibitors. J. Mol. Struct. 2018, 1151, 34–40. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Balasubramanian, A.; Subramanian, L.; Muhammed, R.I.; Garg, R.; Eddy, N.O. Experimental and Theoretical Analysis on Mild Steel Corrosion Inhibition by Two Novel Compounds (FD and ACP) in Acidic Media. Port. Electrochim. Acta 2022, 41, 223–246. [Google Scholar] [CrossRef]
- Nandi, M.M.; Banerjee, R. Organic corrosion inhibitors for copper and brass—A review. J. Ind. Chem. Soc. 2014, 91, 977–989. [Google Scholar]
- Morad, M.S. An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions. Corros. Sci. 2000, 42, 1307–1326. [Google Scholar] [CrossRef]
- Zucchi, F.; Trabanelli, G.; Frignani, A.; Zucchini, M. The inhibition of stress corrosion cracking of stainless steels in chloride solutions. Corros. Sci. 1978, 18, 87–95. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Li, M.X.; Wang, T.; Wang, D.; Wang, C.; Zha, M.; Wang, H.Y. Recent progress in self-repairing coatings for corrosion protection on magnesium alloys and perspective of porous solids as novel carrier and barrier. J. Magnes. Alloys 2023, 11, 3585–3608. [Google Scholar] [CrossRef]
- Podest, J.J.; Piatti, R.C.V.; Arvia, A.J. The influence of corrosion inhibitors on the periodic oscillations of the current under controlled potential for mild steel in 0.75 M H2SO4. In Proceedings of the International Congress on Metallic Corrosion, Toronto, ON, Canada, 3–7 June 1984; Volume 1, pp. 359–362. [Google Scholar]
- Archer, W.L. Comparison of Chlorinated Solvent-Aluminum Reaction Inhibitors. Ind. Eng. Chem. Prod. Res. Dev. 1979, 18, 131–135. [Google Scholar] [CrossRef]
- Huang, D.; Hu, J.; Song, G.L.; Guo, X. Inhibition effect of inorganic and organic inhibitors on the corrosion of Mg-10Gd-3Y-0.5Zr alloy in an ethylene glycol solution at ambient and elevated temperatures. Electrochim. Acta 2011, 56, 10166–10178. [Google Scholar] [CrossRef]
- Michelhaugh, S.L.; Bhardwaj, C.; Cali, G.J.; Bravo, B.G.; Bothwell, M.E.; Berry, G.M.; Soriaga, M.P. The influence of chemisorbed organic monolayers on electrode surface oxidation. Corrosion 1991, 47, 322–328. [Google Scholar] [CrossRef]
- Bentiss, F.; Lagrenée, M. Heterocyclic compounds as corrosion inhibitors for mild steel in hydrochloric: Acid medium-correlation between electronic structure and inhibition efficiency. J. Mater. Environm. Sci. 2011, 2, 13–17. [Google Scholar]
- Lukovits, I.; Kosztolányi, T.; Kálmán, E.; Pálinkás, G. Corrosion inhibitors: Correlation between chemical structure and efficiency. In Proceedings of the NACE International Corrosion Conference Series CORROSION/99, San Antonio, TX, USA, 25–30 April 1999. [Google Scholar]
- Lukovits, I.; Kálmán, E.; Zucchi, F. Corrosion inhibitors—Correlation between electronic structure and efficiency. Corrosion 2001, 57, 3–8. [Google Scholar] [CrossRef]
- Kokalj, A.; Lozinsek, M.; Kapun, B.; Taheri, P.; Neupane, S.; Losada-Pérez, P.; Xie, C.; Stavber, S.; Crespo, D.; Renner, F.U.; et al. Simplistic correlations between molecular electronic properties and inhibition efficiencies: Do they really exist? Corros. Sci. 2021, 179, 108856. [Google Scholar] [CrossRef]
- Lukovits, I.; Shaban, A.; Kálmán, E. Corrosion Inhibitors: Quantitative Structure-Activity Relationships. Russ. J. Electrochem. 2003, 39, 177–181. [Google Scholar] [CrossRef]
- Horner, L.; Meisel, K. Corrosion Inhibitors 23 (1)—Does There Exist a Structure-Efficiency Relation in the Organic Inhibitors of Aluminium Corrosion? Werkst. Korros. 1978, 29, 654–664. [Google Scholar] [CrossRef]
- Abd El Rehim, S.S.; Hassan, H.H.; Amin, M.A. The corrosion inhibition study of sodium dodecyl benzene sulphonate to aluminium and its alloys in 1.0 M HCl solution. Mater. Chem. Phys. 2003, 78, 337–348. [Google Scholar] [CrossRef]
- Öztürk, S.; Yildirim, A. Synthesis of aromatic structured di-cationic surfactants used as inhibitors against corrosion of carbon steel in acidic medium. J. Turk. Chem. Soc. A 2018, 5, 819–828. [Google Scholar] [CrossRef]
- Pianka, H.; Falah, S.; Zanna, S.; Bezborodov, V.; Mikhalyonok, S.; Kuz’menok, N.; Chernik, A.; Xue, Y.; Taleb, A. Anticorrosion Efficiency of Inhibitor Coatings Based on Ammonium Cation with Different Substituents: The Influence of Wettability and Molecular Structure. Coatings 2021, 11, 1512. [Google Scholar] [CrossRef]
- Chernyad’ev, I.N.; Shein, A.B.; Nedugov, A.N. Study of organic derivatives of the VIa group elements as steel acid corrosion inhibitors. Prot. Met. 2005, 41, 437–442. [Google Scholar] [CrossRef]
- Chernyad’ev, I.N.; Shein, A.B.; Nedugov, A.N. Effects of arylthio-and arylseleno(methoxy)methanes on acid corrosion of CT3 steel. Prot. Met. 2007, 43, 264–268. [Google Scholar] [CrossRef]
- Madram, A.R.; Shokri, F.; Sovizi, M.R.; Kalhor, H. Aromatic carboxylic acids as corrosion inhibitors for aluminium in alkaline solution. Portug. Electrochim. Acta 2016, 34, 395–405. [Google Scholar] [CrossRef]
- Thirumalaikumar, M.; Jegannathan, S. Inhibition effects of nitrones on the corrosion of mild steel in organic acid media. Portug. Electrochim. Acta 2011, 29, 1–8. [Google Scholar] [CrossRef]
- Katharotiya, P.; Das, S.P. Synthesis, Characterization and Investigation of Chalcone as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid. Eur. Chem. Bull. 2021, 10, 199–204. [Google Scholar]
- de Souza, T.M.; Cordeiro, R.F.B.; Viana, G.M.; Aguiar, L.C.S.; de Senna, L.F.; Malta, L.F.B.; D’Elia, E. Inclusion compounds of dibenzylthiourea with hydroxypropylated-cyclodextrins for corrosion protection of carbon steel in acidic medium. J. Mol. Struct. 2016, 1125, 331–339. [Google Scholar] [CrossRef]
- Torres, V.V.; Rayol, V.A.; Magalhaes, M.; Viana, G.M.; Aguiar, L.C.S.; Machado, S.P.; Orofino, H.; D’Elia, E. Study of thioureas derivatives synthesized from a green route as corrosion inhibitors for mild steel in HCl solution. Corr. Sci. 2014, 79, 108–118. [Google Scholar] [CrossRef]
- Gopiraman, M.; Selvakumaran, N.; Kesavan, D.; Kim, I.S.; Karvembu, R. Chemical and physical interactions of 1-benzoyl-3,3disubstituted thiourea derivatives on mild steel surface: Corrosion inhibition in acidic media. Ind. Eng. Chem. Res. 2012, 51, 7910–7922. [Google Scholar] [CrossRef]
- Hamitouche, H.; Khelifa, A.; Kouache, A.; Moulay, S. Study of the inhibiting effect of a quaternary ammoniumsurfactants mixture synthesized from petroleum fraction (reformate) against the carbon steel corrosion in HCl 1 M. Res. Chem. Intermed. 2014, 40, 2859–2872. [Google Scholar] [CrossRef]
- Trofimov, V.A.; Spurkin, V.G.; Ablyazova, T.O.; Bocharov, A.A. New inhibitors of hydrogen sulfide corrosion for turbine oils. Khim. Tekhnol. Topl. Mas. 1997, 2, 14–15. [Google Scholar] [CrossRef]
- Babu, B.R.; Holze, R. Corrosion and hydrogen permeation inhibition for mild steel in HCl by isomers of organic compounds. Brit. Corr. J. 2000, 35, 204–209. [Google Scholar] [CrossRef]
- Hackermann, N.; Makrides, A.C. Action of polar organic inhibitors in acid dissolution of metals. Ind. Eng. Chem. 1954, 46, 523–527. [Google Scholar] [CrossRef]
- Holze, R. Potential- and pH-dependent adsorption of aniline on silver as evidenced with surface enhanced Raman spectroscopy. Electrochim. Acta 1987, 32, 1527–1532. [Google Scholar] [CrossRef]
- Holze, R. The adsorption of aniline on gold: A SERS study. J. Electroanal. Chem. 1988, 250, 143–157. [Google Scholar] [CrossRef]
- Mann, C.A.; Lauer, B.E.; Hultin, C.T. Organic Inhibitors of Corrosion: Aromatic Amines. Ind. Eng. Chem. 1936, 28, 1048–1051. [Google Scholar] [CrossRef]
- Blomgren, E.; Bockris, J. O’. The adsorption of aromatic amines at the interface: Mercury-aqueous acid solution. J. Phys. Chem. 1959, 63, 1475–1484. [Google Scholar] [CrossRef]
- Xie, X.; Holze, R. Experimental methods in corrosion research. ChemTexts 2018, 4, 5. [Google Scholar] [CrossRef]
- Xie, X.; Holze, R. Experimentelle Methoden in der Korrosionsforschung. Bunsen-Magazin 2018, 20, 100–117. [Google Scholar]
- Weber, E.; Richter, E.; Holze, R. o-Toluidine in electrochemistry—An overview. J. Solid State Electr. 2022, 26, 1097–1114. [Google Scholar] [CrossRef]
- Roscher, J.; Liu, D.; Holze, R. Concentration-dependent corrosion inhibition with electrochemical energy conversion systems by a disubstituted aromatic: A comparison of methods. Electrochem. Energy Technol. 2021, 7, 38–43. [Google Scholar]
- Roscher, J.; Liu, D.; Holze, R. A comparison of methods for corrosion inhibitor assessment: Mild steel protected by disubstituted aromatics. Mater. Corros. 2022, 73, 254–258. [Google Scholar] [CrossRef]
- Khaled, K.F.; Hackerman, N. Ortho-substituted anilines to inhibit copper corrosion in aerated 0.5 M hydrochloric acid. Electrochim. Acta 2004, 49, 485–495. [Google Scholar] [CrossRef]
- Khaled, K.F.; Hackerman, N. Investigation of the inhibitive effect of ortho-substituted anilines on corrosion of iron in 0.5 M H2SO4 solutions. Mater. Chem. Phys. 2003, 82, 949–960. [Google Scholar] [CrossRef]
- Talati, J.D.; Patel, G.A. Effect of substituted anilines on the corrosion of aluminium-manganese alloy in phosphoric acid. Br. Corros. J. 1976, 11, 47–51. [Google Scholar] [CrossRef]
- Talati, J.D.; Patel, G.A. Toluidines as corrosion inhibitors for 3S aluminium in trichloracetic acid. J. Electrochem. Soc. India 1978, 27, 87–90. [Google Scholar]
- Desai, M.N.; Shah, G.J. Aromatic Amines Inhibitors of the Corrosion of Aluminium-57 S in Hydrochloric Acid. Corros. Trait. Prot. Finit. 1972, 20, 391–396. [Google Scholar]
- Choudhary, R.S.; Singh, D.D.N.; Agarwal, V.V. Inhibitive action of some para-substituted aromatic amines towards corrosion of 1060 aluminium in nitric acid solution. J. Electrochem. Soc. India 1978, 27, 91–94. [Google Scholar]
- Desai, M.N.; Desai, Y.B.; Gandhi, M.H. Molecular structure of amines and their inhibitive action for the corrosion of Al-2S in HCl. Corros. Sci. 1971, 11, 397–402. [Google Scholar] [CrossRef]
- Desai, M.N.; Patel, R.P. Aromatic amines as corrosion inhibitors for aluminium 3S in hydrochloric acid. Anti-Corros. Methods Mater. 1972, 19, 12–14. [Google Scholar] [CrossRef]
- Desai, M.N. Corrosion Inhibitors for Aluminium Alloys. Mater. Corros. 1972, 23, 475–482. [Google Scholar] [CrossRef]
- Stupnišek-Lisac, E.; Brnada, A.; Mance, A.D. Secondary amines as copper corrosion inhibitors in acid media. Corros. Sci. 2000, 42, 243–257. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, N.; Qu, C.; Zhang, J.; Zhang, X. Comparison of the corrosion inhibitive effect of anaerobic and aerobic cigarette butts water extracts on N80 steel at 90 øc in hydrochloric acid solution. Ind. Eng. Chem. Res. 2010, 49, 12452–12460. [Google Scholar] [CrossRef]
- Hosseini, S.M.A.; Salari, M.; Jamalizadeh, E.; Jafari, A.H. Electrochemical and quantum chemical studies of aromatic amines on the steel corrosion in acid solution. Corrosion 2012, 68, 600–609. [Google Scholar] [CrossRef]
- Badran, B.M.; Abdel Fattah, A.A.; Abdul Azim, A.A. New corrosion inhibitors based on fatty materials-II. Epoxidized fatty materials modified with aromatic amines. Corros. Sci. 1982, 22, 525–536. [Google Scholar] [CrossRef]
- Mousaa, I.M. Gamma irradiation processed (epoxidized soybean fatty acids/p-substituted aromatic amines) adducts as corrosion inhibitors for UV-curable steel coatings. Prog. Organ. Coat. 2017, 111, 220–230. [Google Scholar] [CrossRef]
- El-Haddad, M.N.; Fouda, A.E.A.S. Corrosion inhibition effect and adsorption of aniline derivatives on QD36 steel surface in acidic solution. Prot. Met. Phys. Chem. Surf. 2013, 49, 753–762. [Google Scholar] [CrossRef]
- Rana, S.S.; Desai, M.N. Inhibition of corrosion of copper in nitric acid. Ind. J. Technol. 1967, 5, 393–395. [Google Scholar]
- Anejjar, A.; Salghi, R.; Id El Mouden, O.; Ebenso, E.E.; Zougagh, M.; Hammouti, B. Corrosion Inhibition of Carbon Steel in 1M HCl Solution by 2-amino-1-methylbenzene (2-methylaniline). Int. J. Electrochem. Sci. 2014, 9, 8380–8391. [Google Scholar] [CrossRef]
- Desai, M.N.; Desai, M.B. Aromatic amines as inhibitors of the corrosion of mild steel in hydrochloric acid solution. Trans. SAEST 1981, 16, 77–87. [Google Scholar]
- Quraishi, M.A.; Jamal, D. Dianils: New and effective corrosion inhibitors for oil-well steel (N-80) and mild steel in boiling hydrochloric acid. Corrosion 2000, 56, 156–160. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Jamal, D. The influence of some condensation products on corrosion inhibition of mild steel in acidic solutions. Anti-Corros. Methods Mater. 2000, 47, 233–240. [Google Scholar] [CrossRef]
- Dagdag, O.; Safi, Z.; Erramli, H.; Cherkaoui, O.; Wazzan, N.; Guo, L.; Verma, C.; Ebenso, E.E.; El Harfi, A. Adsorption and anticorrosive behavior of aromatic epoxy monomers on carbon steel corrosion in acidic solution: Computational studies and sustained experimental studies. RSC Adv. 2019, 9, 14782–14796. [Google Scholar] [CrossRef] [PubMed]
- Dagdag, O.; Safi, Z.; Qiang, Y.; Erramli, H.; Guo, L.; Verma, C.; Ebenso, E.E.; Kabir, A.; Wazzan, N.; El Harfi, A. Synthesis of Macromolecular Aromatic Epoxy Resins as Anticorrosive Materials: Computational Modeling Reinforced Experimental Studies. ACS Omega 2020, 5, 3151–3164. [Google Scholar] [CrossRef]
- Dagdag, O.; Safi, Z.; Hsissou, R.; Erramli, H.; El Bouchti, M.; Wazzan, N.; Guo, L.; Verma, C.; Ebenso, E.E.; El Harfi, A. Epoxy pre-polymers as new and effective materials for corrosion inhibition of carbon steel in acidic medium: Computational and experimental studies. Sci. Rep. 2019, 9, 11715. [Google Scholar] [CrossRef]
- Hsissou, R.; Dagdag, O.; Abbout, S.; Benhiba, F.; Berradi, M.; El Bouchti, M.; Berisha, A.; Hajjaji, N.; Elharfi, A. Novel derivative epoxy resin TGETET as a corrosion inhibition of E24 carbon steel in 1.0 M HCl solution. Experimental and computational (DFT and MD simulations) methods. J. Mol. Liq. 2019, 284, 182–192. [Google Scholar] [CrossRef]
- Dagdag, O.; Safi, Z.; Wazzan, N.; Erramli, H.; Guo, L.; Mkadmh, A.M.; Verma, C.; Ebenso, E.E.; El Gana, L.; El Harfi, A. Highly functionalized epoxy macromolecule as an anti-corrosive material for carbon steel: Computational (DFT, MDS), surface (SEM-EDS) and electrochemical (OCP, PDP, EIS)studies. J. Mol. Liq. 2020, 302, 112535. [Google Scholar] [CrossRef]
- Dagdag, O.; Safi, Z.; Erramli, H.; Wazzan, N.; Guo, L.; Verma, C.; Ebenso, E.E.; Kaya, S.; El Harfi, A. Epoxy prepolymer as a novel anti-corrosive material for carbon steel in acidic solution: Electrochemical, surface and computational studies. Mater. Today Commun. 2020, 22, 100800. [Google Scholar] [CrossRef]
- Dagdag, O.; Haldhar, R.; Kim, S.C.; Safi, Z.S.; Wazzan, N.; Mkadmh, A.M.; Berisha, A.; Berdimurodov, E.; Jodeh, S.; Nwanna, E.E.; et al. Synthesis, physicochemical properties, theoretical and electrochemical studies of tetraglycidyl methylenedianiline. J. Mol. Struct. 2022, 1265, 133508. [Google Scholar] [CrossRef]
- Hsissou, R.; Abbout, S.; Berisha, A.; Berradi, M.; Assouag, M.; Hajjaji, N.; Elharfi, A. Experimental, DFT and molecular dynamics simulation on the inhibition performance of the DGDCBA epoxy polymer against the corrosion of the E24 carbon steel in 1.0 M HCl solution. J. Mol. Struct. 2019, 1182, 340–351. [Google Scholar] [CrossRef]
- Boughoues, Y.; Benamira, M.; Messaadia, L.; Bouider, N.; Abdelaziz, S. Experimental and theoretical investigations of four amine derivatives as effective corrosion inhibitors for mild steel in HCl medium. RSC Adv. 2020, 10, 24145–24158. [Google Scholar] [CrossRef] [PubMed]
- Donya, A.P.; Pakter, M.K.; Shalimova, M.A.; Lambin, V.N. The effect of polar substituents in aniline and pyridine derivatives on the inhibition of steel corrosion in acids. Prot. Met. 2002, 38, 216–219. [Google Scholar] [CrossRef]
- Khusnitdinov, R.N.; Gataullin, R.R. Preparation of Metal Corrosion Inhibitors from Arylamines and Butadiene. Russ. J. Appl. Chem. 2022, 95, 575–581. [Google Scholar] [CrossRef]
- Mahida, M.B.; Chaudhari, H.G. Aromatic amines as corrosion inhibitors for zinc in hydrochloric acid. J. Chem. Pharm. Res. 2012, 4, 5195–5201. [Google Scholar]
- Desai, M.N.; Thakar, B.C.; Shah, D.K.; Gandhi, M.H. Cathodic protection of 70/30 brass in 2.0 M nitric acid in the presence. of organic corrosion inhibitors. Br. Corros. J. 1975, 10, 39–40. [Google Scholar] [CrossRef]
- Desai, M.N.; Shah, Y.C.; Gandhi, M.H. The structure of amines and their inhibitive action on the corrosion of 63Cu-37Zn in HNO3. Corros. Sci. 1969, 9, 65–70. [Google Scholar] [CrossRef]
- Desai, M.N.; Shah, V.K. Aromatic amines as corrosion inhibitors for 70/30 brass in nitric acid. Corros. Sci. 1972, 12, 725–730. [Google Scholar] [CrossRef]
- Desai, M.N.; Shah, Y.C.; Punjani, B.K. Inhibition of the corrosion of 63/37 brass in nitric acid. Br. Corros. J. 1969, 4, 309–314. [Google Scholar] [CrossRef]
- Brüschke, H.; Waller, F.; Ebert, K.H. Partial Current Density/Potential Curves of Nickel Electrodes in Air-Saturated Hydrochloric Acid in the Presence of Various Amines. Werkst. Korros. 1976, 27, 227–231. [Google Scholar] [CrossRef]
- Tandon, H.C.; Kumar, S.; Singh, L. AM1 and M3 Studies in Corrosion of Mild Steel in Presence of Ani(li)ne and its Derivatives. Asian J. Chem. 2003, 15, 1190–1192. [Google Scholar]
- Obot, I.B.; Madhankumar, A. Synergistic effect of iodide ion addition on the inhibition of mild steel corrosion in 1 M HCl by 3-amino-2-methylbenzylalcohol. Mater. Chem. Phys. 2016, 177, 266–275. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Kandil, N.G.; Ramadan, O.; Amer, N.M.; Mansour, R.; Khamis, E.A. Novel cationic surfactants from fatty acids and their corrosion inhibition efficiency for carbon steel pipelines in 1 M HCl. Egypt. J. Pet. 2011, 20, 47–57. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Kandile, N.G.; Amer, N.; Ramadan, O.; Khamis, E.A. Quaternary Ammonium Salts from Hydrolyzed Fatty Oil Based on Novel Tertiary Amines Used as Corrosion Inhibitors for Pipelines Carbon Steel at Acid Job in Petroleum Industry. J. Dispers. Sci. Technol. 2012, 33, 1307–1320. [Google Scholar] [CrossRef]
- De Almeida Rangel, H.; Merçon, F. Study of ultraviolet fluorescence emission in the quantification of corrosion inhibitor of the quaternary ammonium salt type in water. Quim. Nova 2012, 35, 1287–1293. [Google Scholar]
- Bacskai, R.; Schroeder, A.H.; Young, D.C. Hydrocarbon-soluble alkylaniline/formaldehyde oligomers as corrosion inhibitors. J. Appl. Polym. Sci. 1991, 42, 2435–2441. [Google Scholar] [CrossRef]
- Annand, R.R.; Hurd, R.M.; Hackerman, N. Adsorption of Monomeric and Polymeric Amino Corrosion Inhibitors on Steel. J. Electrochem. Soc. 1965, 112, 138–144. [Google Scholar] [CrossRef]
- Manivel, P.; Venkatachari, G. The inhibitive effect of poly(p-toluidine) on corrosion of iron in 1M HCl solutions. J. Appl. Polym. Sci. 2007, 104, 2595–2601. [Google Scholar] [CrossRef]
- Beck, F.; Schrötz, M. Thin polyheteroaromatic interlayers on commodity metals for corrosion protection. Mater. Sci. Forum 1998, 289–292, 1217–1228. [Google Scholar] [CrossRef]
- Madhusudhana, G.; Santhi, R.J. Synthesis, Characterization and Corrosion Behavior of Isomers of Conducting Poly-Toluidine on Mild Steel in Acid Medium. Int. J. Sci. Res. 2015, 4, 1645–1650. [Google Scholar]
- Ashraf Abdelfadeel, M.; Hussain, A.I.; El-Ziaty, A.K.; Morsi, S.M.M.; Khorshed, L.A.; Shaban, S.S. Effect of poly(Aniline-CoO-Toluidine) loaded on emulsion paints with different pigments on corrosion inhibition of mild steel. Egypt. J. Chem. 2021, 64, 2711–2721. [Google Scholar]
- Farahati, R.; Ghaffarinejad, A.; Rezania, H.J.; Mousavi-Khoshdel, S.M.; Behzadi, H. Sulfonated aromatic polyamide as water-soluble polymeric corrosion inhibitor of copper in HCl. Coll. Surf. A 2019, 578, 123626. [Google Scholar] [CrossRef]
- Unnisa, C.B.N.; Nirmala Devi, G.; Hemapriya, V.; Chitra, S.; Chung, I.M.; Kim, S.H.; Prabakaran, M. Linear polyesters as effective corrosion inhibitors for steel rebars in chloride induced alkaline medium—An electrochemical approach. Constr. Build. Mater. 2018, 165, 866–876. [Google Scholar] [CrossRef]
- Unnisa, C.N.; Chitra, S. Comparative study of adsorption of linear aliphatic/aromatic polyesters at metal/0.5 M H2SO4 interface. J. Environ. Chem. Eng. 2018, 6, 6714–6722. [Google Scholar] [CrossRef]
- Farag, A.A.; Ismail, A.S.; Migahed, M.A. Inhibition of carbon steel corrosion in acidic solution using some newly polyester derivatives. J. Mol. Liq. 2015, 211, 915–923. [Google Scholar] [CrossRef]
- Aly, K.I.; Abd El-Lateef, H.M.; Yehia, N.; Khodairy, A.; Sayed, M.M.; El-Remaily, A.E.A.A.A. Novel polyesters based on indazole moiety: Synthesis, characterization and applicability as efficient inhibitors for acidic X-65-steel corrosion. React. Funct. Polym. 2021, 166, 105001. [Google Scholar] [CrossRef]
- Odewunmi, N.A.; Mazumder, M.A.J.; Ali, S.A.; Alharbi, B.G. Hydroquinone Decorated with Alkyne, Quaternary Ammonium, and Hydrophobic Motifs to Mitigate Corrosion of X-60 Mild Steel in 15 wt.% HCl. Chem. Asian J. 2021, 16, 801–821. [Google Scholar] [CrossRef]
- Negm, N.A.; Mohamed, A.S. Surface and thermodynamic properties of diquaternary bola-form amphiphiles containing an aromatic spacer. J. Surfact. Deterg. 2004, 7, 23–30. [Google Scholar] [CrossRef]
- Sherif, E.M.; Park, S.M. Effects of 1,4-naphthoquinone on aluminum corrosion in 0.50 M sodium chloride solutions. Electrochim. Acta 2006, 51, 1313–1321. [Google Scholar] [CrossRef]
- Salman, M.; Ansari, K.R.; Srivastava, V.; Chauhan, D.S.; Haque, J.; Quraishi, M.A. Chromeno naphthyridines based heterocyclic compounds as novel acidizing corrosion inhibitors: Experimental, surface and computational study. J. Mol. Liq. 2021, 322, 114825. [Google Scholar] [CrossRef]
- Desai, M.N.; Shah, G.J.; Gandhi, M.H. Corrosion inhibitors for aluminium in hydrochloric acid. Anti-Corros. Methods Mater. 1972, 19, 12–15. [Google Scholar]
- Krishnan, M.; Subramanyan, N. The influence of some aldehydes on the corrosion and anodic behaviour of aluminium in sodium hydroxide solution. Corros. Sci. 1977, 17, 893–900. [Google Scholar] [CrossRef]
- Talati, J.D.; Joshi, N.H. Aldehydes as corrosion inhibitors for aluminium-manganese alloys in potassium hydroxide. Mater. Corros. 1978, 29, 461–468. [Google Scholar] [CrossRef]
- Desai, M.N.; Thakar, B.C.; Gandhi, M.H. Aromatic aldehyde as corrosion inhibitors for 70/30 brass in potassium persulphate. Ind. J. Technol. 1974, 12, 85–86. [Google Scholar]
- Badea, T.; Badea, G.E.; Cojocaru, A. The inhibition action of some aliphatic and aromatic aldehydes on mild steel corrosion in 1 M Hd solution. Effect of the inhibitor concentration and medium temperature. Rev. Roum. Chim. 2004, 49, 37–47. [Google Scholar]
- Salman, H.E.; Balakit, A.A.; Albo Hay Allah, M.A. Study of the corrosion inhibitive effect and adsorption process of two azo-aldehydes on carbon steel in 1 M H2SO4. IOP Conf. Ser. Mater. Sci. Engin. 2019, 571, 012078. [Google Scholar] [CrossRef]
- Desai, M.N.; Shah, G.V.; Pandya, M.M. Azomethines derived from substituted aromatic aldehydes as corrosion inhibitors for aluminium—56S in hydrochloric acid. Trans. SAEST 1981, 16, 221–231. [Google Scholar]
- Growcock, F.; Lopp, V.R. Film formation on steel in cinnamaldehyde-inhibited hydrochloric acid. Corrosion 1988, 44, 248–254. [Google Scholar] [CrossRef]
- Agarwal, P.; Landolt, D. Protection of steel by aromatic carboxylic acid corrosion inhibitors. Mater. Sci. Forum 1998, 289–292, 1229–1236. [Google Scholar] [CrossRef]
- Agarwal, P.; Landolt, D. Effect of anions on the efficiency of aromatic carboxylic acid corrosion inhibitors in near neutral media: Experimental investigation and theoretical modeling. Corros. Sci. 1998, 40, 673–691. [Google Scholar] [CrossRef]
- Aquino-Torres, E.; Camacho-Mendoza, R.L.; Gutierrez, E.; Rodriguez, J.A.; Feria, L.; Thangarasu, P.; Cruz-Borbolla, J. The influence of iodide in corrosion inhibition by organic compounds on carbon steel: Theoretical and experimental studies. Appl. Surf. Sci. 2020, 514, 145928. [Google Scholar] [CrossRef]
- Moussa, M.N.; El-Tagoury, M.M.; Radi, A.A.; Hassan, S.M. Carboxylic acids as corrosion inhibitors for aluminium in acidic and alkaline solutions. Anti-Corros. Methods Mater. 1990, 37, 4–8. [Google Scholar] [CrossRef]
- Hassan, S.M.; El-Tagoury, M.M.; Radi, A.A. Aromatic acid derivatives as corrosion inhibitors for aluminium in acidic and alkaline solutions. Anti-Corros. Methods Mater. 1990, 37, 8–11. [Google Scholar] [CrossRef]
- Talati, J.D.; Pandya, J.M. Anilines as corrosion inhibitors for an aluminium-copper alloy in phosphoric acid. Corros. Sci. 1976, 16, 603–612. [Google Scholar] [CrossRef]
- Patel, R.B.; Pandya, J.M.; Lal, K. Toluidines as corrosion inhibitors for aluminium-copper alloy in hydrochloric acid. Trans. SAEST 1982, 17, 321–324. [Google Scholar]
- Riggs, O.L., Jr.; Morrison, K.L.; Brunsell, D.A. Inhibitor development for titanium corrosion. Corrosion 1979, 35, 356–360. [Google Scholar] [CrossRef]
- Deyab, M.A. Corrosion inhibition of heat exchanger tubing material (titanium) in MSF desalination plants in acid cleaning solution using aromatic nitro compounds. Desalination 2018, 439, 73–79. [Google Scholar] [CrossRef]
- Orlov, S.N.; Bogachev, N.A.; Glukhoedov, N.A.; Mereshchenko, A.S.; Mikailova, R.A.; Skripkin, M.Y. Formation of oxide films on titanium alloys under the conditions of the primary circuit of light-water nuclear reactors (a review). Int. J. Corros. Scale Inhib. 2022, 11, 1026–1040. [Google Scholar]
- Abdallah, M.; Asghar, B.H.; Zaafarany, I.; Sobhi, M. Synthesis of some aromatic nitro compounds and its applications as inhibitors for corrosion of carbon steel in hydrochloric acid solution. Prot. Met. Phys. Chem. Surf. 2013, 49, 485–491. [Google Scholar] [CrossRef]
- Saha, S.K.; Banerjee, P. Introduction of newly synthesized Schiff base molecules as efficient corrosion inhibitors for mild steel in 1 M HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Mater. Chem. Front. 2018, 2, 1674–1691. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Lei, S.; Ma, H.; Yu, R.; Liu, D. Investigation on some Schiff bases as HCl corrosion inhibitors for copper. Corros. Sci. 1999, 41, 1273–1287. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Ajmal, M.; Shere, S. Investigation on some aromatic Schiffs bases as acid corrosion inhibitors for mild steel. Bull. Electrochem. 1996, 12, 523–525. [Google Scholar]
- Dutta, A.; Saha, S.K.; Banerjee, P.; Patra, A.K.; Sukul, D. Evaluating corrosion inhibition property of some Schiff bases for mild steel in 1 M HCl: Competitive effect of the heteroatom and stereochemical conformation of the molecule. RSC Adv. 2016, 6, 74833–74844. [Google Scholar] [CrossRef]
- Saha, S.K.; Dutta, A.; Ghosh, P.; Sukul, D.; Banerjee, P. Adsorption and corrosion inhibition effect of schiff base molecules on the mild steel surface in 1 M HCL medium: A combined experimental and theoretical approach. Phys. Chem. Chem. Phys. 2015, 17, 5679–5690. [Google Scholar] [CrossRef]
- Saha, S.K.; Dutta, A.; Ghosh, P.; Sukul, D.; Banerjee, P. Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: Experimental and theoretical approach. Phys. Chem. Chem. Phys. 2016, 18, 17898–17911. [Google Scholar] [CrossRef]
- Popov, Y.V.; Korchagina, K.; Chicherina, G.V. Synthesis and reactions of Schiff bases containing an m-phenoxyphenyl group: I. N-aryl-m-phenoxybenzylidene-amines and N-aryl-N’-(m-phenoxybenzylidene)hydrazines. Russ. J. Org. Chem. 2001, 37, 677–679. [Google Scholar]
- Shokry, H.; Yuasa, M.; Sekine, I.; Issa, R.M.; El-Baradie, H.Y.; Gomma, G.K. Corrosion inhibition of mild steel by Schiff base compounds in various aqueous solutions: Part 1. Corros. Sci. 1998, 40, 2173–2186. [Google Scholar] [CrossRef]
- Allah, M.A.A.H.; Balakit, A.A.; Salman, H.I.; Abdulridha, A.A.; Sert, Y. New Heterocyclic Compound as Carbon Steel Corrosion Inhibitor in 1 M H2SO4, High Efficiency at Low Concentration: Experimental and Theoretical Studies. J. Adhes. Sci. Technol. 2023, 37, 525–547. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Mathur, S.P. Effect of Schiff’s Bases as Corrosion Inhibitors on Mild Steel in Sulphuric Acid. E-J. Chem. 2007, 4, 408–414. [Google Scholar] [CrossRef]
- Oyeneyin, O.E.; Ojo, N.D.; Ipinloju, N.; James, A.C.; Agbaffa, E.B. Investigation of Corrosion Inhibition Potentials of Some Aminopyridine Schiff Bases Using Density Functional Theory and Monte Carlo Simulation. Chem. Africa 2022, 5, 319–332. [Google Scholar] [CrossRef]
- Madkour, L.H.; Zinhome, U.A. Inhibition effect of Schiff base compounds on the corrosion of iron in nitric acid and sodium hydroxide solutions. J. Corros. Sci. Eng. 2010, 13, 34. [Google Scholar]
- Madkour, L.H.; Elroby, S.K. Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic and alkaline media: A combined experimental and DFT studies. J. Corros. Sci. Eng. 2014, 17, 4. [Google Scholar]
- Leila, B.; Djahida, H.; Djamila, A.; Saida, M.; Salah, C. Inhibitive properties and Quantum chemical calculations of a new synthesized schiff base 1-[(3hydroxyphenylamino) methylene]-naphtalen-2-one for XC48 in hydrochloric acid solution. Int. J. Electrochem. Sci. 2018, 13, 6734–6755. [Google Scholar] [CrossRef]
- Murmu, M.; Saha, S.K.; Murmu, N.C.; Banerjee, P. Amine cured double Schiff base epoxy as efficient anticorrosive coating materials for protection of mild steel in 3.5% NaCl medium. J. Mol. Liq. 2019, 278, 521–535. [Google Scholar] [CrossRef]
- Salman, H.E.; Balakit, A.A.; Abdulridha, A.A.; Makki, S.Q. Synthesis of new aromatic azo-schiff compound as carbon steel corrosion inhibitor in 1 M H2SO4; High efficiency at low concentration. IOP Conf. Ser. Mater. Sci. Eng. 2019, 571, 012077. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Xie, B.; Lai, C.; He, J.; Feng, J.; Yang, Y.; Ji, R.; Liu, M. Two semi flexible nonplanar double Schiff bases as corrosion inhibitors for mild steel in HCl solution: Experimental and theoretical investigations. J. Environ. Chem. Eng. 2023, 11, 110077. [Google Scholar] [CrossRef]
- Elaraby, A.; Qasim, K.F.; Mohamed, S.K.; El-Sharkawy, E.A.; Abdelhamed, S. Di-imine Schiff base inhibitor for carbon steel corrosion in 1 M HCl: Electrochemical, surface and theoretical investigations. J. Environ. Chem. Eng. 2024, 12, 111861. [Google Scholar] [CrossRef]
- Shanmughan, S.K.; Krishnakutty, B.T.; Raphael, V.P.; Kakkasery, J.T. Anti-metal Deteriorating and Antiviral Potency of a Novel Polynuclear Schiff base, Derived from Anthrone. Orient. J. Chem. 2022, 38, 44–55. [Google Scholar] [CrossRef]
- Furtado, L.B.; Leoni, G.B.; Nascimento, R.C.; Santos, P.H.C.; Henrique, F.J.F.S.; Guimaraes, M.J.O.C.; Brasil, S.L.D.C. Experimental and Theoretical Studies of Tailor-made Schiff Bases as Corrosion Inhibitors for Carbon Steel in HCl. Mater. Res. 2023, 26, e20220398. [Google Scholar] [CrossRef]
- Satpati, S.; Suhasaria, A.; Ghosal, S.; Dey, S.; Sukul, D. Interaction of newly synthesized dipeptide Schiff bases with mild steel surface in aqueous HCl: Experimental and theoretical study on thermodynamics, adsorption and anti-corrosion characteristics. Mater. Chem. Phys. 2023, 296, 127200. [Google Scholar] [CrossRef]
- Enad, M.A.; Kadhim, M.Y.; Abdulnabi, A.S. Corrosion inhibition efficiency and adsorption of Azo schiff base chelate surfactant at carbon steel in hydrochloric acid interface. J. Glob. Pharma. Technol. 2020, 12, 651–656. [Google Scholar]
- Salman, H.E.; Balakit, A.A.; Abdulridha, A.A. New aromatic azo-schiff bases as carbon steel corrosion inhibitor in 1 M H2SO4. Orient. J. Chem. 2018, 34, 2471–2476. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Anthony, S.; Mathur, S.P. Schiff’s Bases as Inhibitors of Mild Steel Corrosion in Hydrochloric Acid. Russ. J. Electrochem. 2007, 43, 238–241. [Google Scholar] [CrossRef]
- Omar, I.H.; Zucchi, F.; Trabanelli, G. Schiff bases as corrosion inhibitors of copper and its alloys in acid media. Surf. Coat. Technol. 1986, 29, 141–151. [Google Scholar] [CrossRef]
- Hovey, R.J.; O’Connell, J.J.; Martell, A.E. Inner complex chelates. II.Analogs and polar substituted analogs of bisacetylacetoneethylenediimine and its metal chelates. J. Am. Chem. Soc. 1959, 81, 3189–3192. [Google Scholar] [CrossRef]
- Aljibori, H.S.; Abdulzahra, O.H.; Al Adily, A.J.; Al-Azzawi, W.K.; Al-Amiery, A.A.; Kadhum, A.A.H. Corrosion inhibition effects of concentration of 2-oxo-3-hydrazonoindoline in acidic solution, exposure period, and temperature. Int. J. Corros. Scale Inhib. 2023, 12, 438–457. [Google Scholar]
- Mary, R.N.; Nazareth, R.; Suchetan, P.A.; Potla, K. Schiff Bases Derived from Triazoles as Corrosion Inhibitors for Maraging Steel in Acid Mixtures: Experimental and Theoretical Studies. Polyc. Arom. Compds. 2023, 43, 2788–2809. [Google Scholar] [CrossRef]
- Sudha, P.; Menaka, S.; Elango, K.P. Effect of structure, solvent and temperature on the kinetics of corrosion of mild steel in acid medium. Trans. SAEST 2004, 39, 17–21. [Google Scholar]
- Elemike, E.E.; Onwudiwe, D.C.; Nwankwo, H.U.; Hosten, E.C. Synthesis, crystal structure, electrochemical and anti-corrosion studies of Schiff base derived from o-toluidine and o-chlorobenzaldehyde. J. Mol. Struct. 2017, 1136, 253–262. [Google Scholar] [CrossRef]
- Talati, J.D.; Desai, M.N.; Shah, N.K. Meta-Substituted aniline-N-salicylidenes as corrosion inhibitors of zinc in sulphuric acid. Mater. Chem. Phys. 2005, 93, 54–64. [Google Scholar] [CrossRef]
- Babashkina, M.G.; Panova, E.V.; Alkhimova, L.E.; Safin, D.A. Salen: Insight into the Crystal Structure, Hirshfeld Surface Analysis, Optical Properties, DFT, and Molecular Docking Studies. Polyc. Arom. Compds. 2023, 43, 5116–5138. [Google Scholar] [CrossRef]
- Gupta, N.K.; Verma, C.; Quraishi, M.; Mukherjee, A.K. Schiff’s bases derived from l-lysine and aromatic aldehydes as green corrosion inhibitors for mild steel: Experimental and theoretical studies. J. Mol. Liq. 2016, 215, 47–57. [Google Scholar] [CrossRef]
- Alharthi, N.H.; El-Hashemy, M.A.; Derafa, W.M.; Althobaiti, I.O.; Altaleb, H.A. Corrosion inhibition of mild steel by highly stable polydentate schiff base derived from 1, 3-propanediamine in aqueous acidic solution. J. Saudi Chem. Soc. 2022, 26, 101501. [Google Scholar] [CrossRef]
- Saha, S.K.; Murmu, M.; Murmu, N.C.; Banerjee, P. Synthesis, characterization and theoretical exploration of pyrene based Schiff base molecules as corrosion inhibitor. J. Mol. Struct. 2021, 1245, 131098. [Google Scholar] [CrossRef]
- Xhanari, K.; Finsgar, M. Organic corrosion inhibitors for aluminium and its alloys in acid solutions: A review. RSC Adv. 2016, 6, 62833–62857. [Google Scholar] [CrossRef]
- Lashgari, M.; Malek, A.M. Fundamental studies of aluminum corrosion in acidic and basic environments: Theoretical predictions and experimental observations. Electrochim. Acta 2010, 55, 5253–5257. [Google Scholar] [CrossRef]
- Patel, N.K.; Makwana, S.C.; Patel, K.C. Action of phenols on the corrosion of 3S aluminium in hydrochloric acid solutions. Mater. Corros. 1973, 24, 964–966. [Google Scholar] [CrossRef]
- Müller, B.; Förster, I. Corrosion Inhibition of Zinc Pigments in Aqueous Alkaline Media by Aromatic Hydroxy Compounds. Corrosion 1996, 52, 786–789. [Google Scholar] [CrossRef]
- Müller, B. Corrosion inhibition of aluminium pigment by disubstituted benzene derivatives. Werkst. Korr. 1999, 50, 213–218. [Google Scholar] [CrossRef]
- Müller, B.; Kubitzki, G.; Kinet, G. Aromatic 2-hydroxy-oximes as corrosion inhibitors for aluminium and zinc pigments. Corros. Sci. 1998, 40, 1469–1477. [Google Scholar] [CrossRef]
- Zohreh, S.; Wan, B.J.; Zain, S.M. Aluminium corrosion inhibition using benzene-1,2,4,5-tetracarboxylic dianhydride (PMDH). Anti-Corr. Methods Mater. 2010, 57, 21–27. [Google Scholar]
- Saleh, R.M.; Shams El Din, A.M. Efficiency of organic acids and their anions in retarding the dissolution of aluminium. Corros. Sci. 1972, 12, 689–697. [Google Scholar] [CrossRef]
- Zor, S.; Özkazanç, H.; Arslan, T.; Kandemirli, F. Inhibition effects of 4-phenyl-3-thiosemicarbazide on the corrosion of aluminum in 0.1 M HCl: Theoretical and experimental studies. Corrosion 2010, 66, 0450061–0450067. [Google Scholar] [CrossRef]
- El-Deeb, M.M.; Mohamed, S.M. Corrosion inhibition of aluminum with a 3-(10-sodium sulfonate decyloxy) aniline monomeric surfactant and its analog polymer in a 0.5M hydrochloric acid solution. J. Appl. Polym. Sci. 2011, 122, 3030–3037. [Google Scholar] [CrossRef]
- Elsharif, A.M.; Abubshait, S.A.; Abdulazeez, I.; Abubshait, H.A. Synthesis of a new class of corrosion inhibitors derived from natural fatty acid: 13-Docosenoic acid amide derivatives for oil and gas industry. Arab. J. Chem. 2020, 13, 5363–5376. [Google Scholar] [CrossRef]
- Grubač, Z.; Babić, R.; Metikoš-Huković, M. Application of substituted N-arylpyrroles in the corrosion protection of aluminium in hydrochloric acid. J. Appl. Electrochem. 2002, 32, 431–438. [Google Scholar] [CrossRef]
- Metikoš-Huković, M.; Babić, R.; Grubač, Z. The study of aluminium corrosion in acidic solution with nontoxic inhibitors. J. Appl. Electrochem. 2002, 32, 35–41. [Google Scholar] [CrossRef]
- Ayta, A.; Özmen, Ü.; Kabasakaloğlu, M. Investigation of some Schiff bases as acidic corrosion of alloy AA3102. Mater. Chem. Phys. 2005, 89, 176–181. [Google Scholar] [CrossRef]
- Fouda, A.E.A.S.; Al-Sarawy, A.A.; Radwan, M.S. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution. Annal. Chim. 2006, 96, 85–96. [Google Scholar] [CrossRef]
- Chafai, N.; Chafaa, S.; Benbouguerra, K.; Hellal, A.; Mehri, M. Synthesis, spectral analysis, anti-corrosive activity and theoretical study of an aromatic hydrazone derivative. J. Mol. Struct. 2019, 1181, 83–92. [Google Scholar] [CrossRef]
- Chaitra, T.K.; Mohana, K.N.; Tandon, H.C. Evaluation of newly synthesized hydrazones as mild steel corrosion inhibitors by adsorption, electrochemical, quantum chemical and morphological studies. Arab J. Basic Appl. Sci. 2018, 25, 45–55. [Google Scholar] [CrossRef]
- Lgaz, H.; Chung, I.M.; Albayati, M.R.; Chaouiki, A.; Salghi, R.; Mohamed, S.K. Improved corrosion resistance of mild steel in acidic solution by hydrazone derivatives: An experimental and computational study. Arab. J. Chem. 2020, 13, 2934–2954. [Google Scholar] [CrossRef]
- Kumari, P.P.; Shetty, P.; Rao, S.A. Electrochemical measurements for the corrosion inhibition of mild steel in 1ÿM hydrochloric acid by using an aromatic hydrazide derivative. Arab. J. Chem. 2017, 10, 653–663. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Sardar, R.; Jamal, D. Corrosion inhibition of mild steel in hydrochloric acid by some aromatic hydrazides. Mater. Chem. Phys. 2001, 71, 309–313. [Google Scholar] [CrossRef]
- Singh, A.K.; Thakur, S.; Pani, B.; Ebenso, E.E.; Quraishi, M.A.; Pandey, A.K. 2-Hydroxy-N-((Thiophene-2-yl)methylene)benzohydrazide: Ultrasound-Assisted Synthesis and Corrosion Inhibition Study. ACS Omega 2018, 3, 4695–4705. [Google Scholar] [CrossRef]
- Mohan, P.; Usha, R.; Kalaignan, G.P.; Muralidharan, V.S. Inhibition effect of benzohydrazide derivatives on corrosion behaviour of mild steel in 1 M HCl. J. Chem. 2013, 2013, 541691. [Google Scholar] [CrossRef]
- Poojary, N.G.; Kumari, P.; Rao, S.A. 4-Hydroxyl-N’-[(3-Hydroxy-4-Methoxyphenyl) Methylidene] Benzohydrazide] as Corrosion Inhibitor for Carbon Steel in Dilute H2SO4. J. Fail. Anal. Prev. 2021, 21, 1264–1273. [Google Scholar] [CrossRef]
- Fouda, A.S.; Mohamed, M.T.; Soltan, M.R. Role of Some Benzohydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solution. J. Electrochem. Sci. Technol. 2013, 4, 61–70. [Google Scholar] [CrossRef]
- Ichchou, I.; Larabi, L.; Rouabhi, H.; Harek, Y.; Fellah, A. Electrochemical evaluation and DFT calculations of aromatic sulfonohydrazides as corrosion inhibitors for XC38 carbon steel in acidic media. J. Mol. Struct. 2019, 1198, 126898. [Google Scholar] [CrossRef]
- El Ashry, E.S.H.; El Nemra, A.; Essawy, S.A.; Ragab, S. Corrosion inhibitors part 31: Quantum chemical studies on the efficiencies of some aromatic hydrazides and Schiff bases as corrosion inhibitors of steel in acidic medium. Arkivoc 2006, 2006, 205–220. [Google Scholar] [CrossRef]
- Hassan, A.; Numin, M.S.; Jumbri, K.; Kee, K.E.; Borhan, N.; Daud, N.M.R.N.M.; Nor, A.M.; Suhor, M.F.; Wahab, R.A. Density Functional Theory Studies on New Possible Biobased Gemini Corrosion Inhibitors Derived from Fatty Hydrazide Derivatives. ACS Omega 2023, 8, 23945–23952. [Google Scholar] [CrossRef] [PubMed]
- Tansuğ, G.; Kicir, N.; Demirkol, O.; Giray, E.S.; Tuken, T. Synthesis and application of phenylcarbamodithioate compound for steel protection. J. Adhes. Sci. Technol. 2016, 30, 1984–2000. [Google Scholar] [CrossRef]
- Trabanelli, G.; Zucchi, F.; Gullini, G.; Carassiti, V. Correlation of the structure and the inhibitive action of some sulphoxides. Br. Corros. J. 1969, 4, 212–215. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhang, S.; Miao, L.; Wei, M.; Wang, K. Corrosion inhibition of aromatic acids on Al-7075 anode for Al-air batteries with alkaline electrolyte. J. Power Sources 2022, 523, 231042. [Google Scholar] [CrossRef]
- Trabanelli, G. 1991 Whitney Award Lecture: Inhibitors—An Old Remedy for a New Challenge. Corrosion 1991, 47, 410–419. [Google Scholar] [CrossRef]
- Caprioli, F.; Martinelli, A.; Di Castro, V.; Decker, F. Effect of various terminal groups on long-term protective properties of aromatic SAMs on copper in acidic environment. J. Electroanal. Chem. 2013, 693, 86–94. [Google Scholar] [CrossRef]
- Blobner, F.; Abufager, P.N.; Han, R.; Bauer, J.; Duncan, D.A.; Maurer, R.J.; Reuter, K.; Feulner, P.; Allegretti, F. Thiolate-Bonded Self-Assembled Monolayers on Ni(111): Bonding Strength, Structure, and Stability. J. Phys. Chem. C 2015, 119, 15455–15468. [Google Scholar] [CrossRef]
- Maege, I.; Jaehne, E.; Henke, A.; Adler, H.J.P.; Bram, C.; Jung, C.; Stratmann, M. Ultrathin organic layers for corrosion protection. Macromol. Symp. 1998, 126, 7–24. [Google Scholar] [CrossRef]
- Felhösi, I.; Kálmán, E.; Póczik, P. Corrosion protection by self-assembly. Russ. J. Electrochem. 2002, 38, 230–237. [Google Scholar] [CrossRef]
- Samide, A.; Bibicu, I.; Rogalski, M.; Preda, M. A study of the corrosion inhibition of carbon-steel in diluted ammonia media using 2-mercapto-benzothiazol (MBT). Acta Chim. Slov. 2004, 51, 127–136. [Google Scholar]
- Wu, S.; Chen, Z.; Qiu, Y.; Guo, X. Corrosion Protection of Copper by Self-Assembled Monolayers Modified in Aqueous Micellar Solution. J. Electrochem. Soc. 2012, 159, C277–C282. [Google Scholar] [CrossRef]
- Antonijevic, M.M.; Petrovic, M.B. Copper corrosion inhibitors. A review. Int. J. Electrochem. Sci. 2008, 3, 1–28. [Google Scholar] [CrossRef]
- Caprioli, F.; Decker, F.; Marrani, A.G.; Beccari, M.; Di Castro, V. Copper protection by self-assembled monolayers of aromatic thiols in alkaline solutions. Phys. Chem. Chem. Phys. 2010, 12, 9230–9238. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, F.; Martinelli, A.; Gazzoli, D.; Di Castro, V.; Decker, F. Enhanced protective properties and structural order of self-assembled monolayers of aromatic thiols on copper in contact with acidic aqueous solution. J. Phys. Chem. C 2012, 116, 4628–4636. [Google Scholar] [CrossRef]
- Caprioli, F.; Decker, F.; Di Castro, V. Durable Cu corrosion inhibition in acidic solution by SAMs of Benzenethiol. J. Electroanal. Chem. 2011, 657, 192–195. [Google Scholar] [CrossRef]
- Lai, Y.; Gao, Y.; Yao, X.; Zhang, C.; Wen, L.; Jin, Y. Inhibition and adsorption behavior of thiophenol derivatives on copper corrosion in saline medium. J. Adh. Sci. Technol. 2022, 36, 875–894. [Google Scholar] [CrossRef]
- Ruan, L.; Zhang, Z.; Huang, X.; Lyu, Y.; Wen, Y.; Shang, W.; Wu, L. Evaluation of Corrosion Inhibition of Two Schiff Bases Self-Assembled Films on Carbon Steel in 0.5 M HCl. Int. J. Electrochem. Sci. 2017, 12, 103–115. [Google Scholar] [CrossRef]
- Behpour, M.; Mohammadi, N. Investigation of inhibition properties of aromatic thiol self-assembled monolayer for corrosion protection. Corros. Sci. 2012, 65, 331–339. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Z.; Tong, R.; Wang, Q. Effect of Schiff bases structure on corrosion inhibition efficiency of copper. J. Chin. Soc. Corr. Prot. 2007, 27, 156–161. [Google Scholar]
- Huang, H.; Fu, Y.; Li, F.; Wang, Z.; Zhang, S.; Wang, X.; Wang, Z.; Li, H.; Gao, F. Orderly self-assembly of new ionic copolymers for efficiently protecting copper in aggressive sulfuric acid solution. Chem. Eng. J. 2020, 384, 123293. [Google Scholar] [CrossRef]
- Hou, B.S.; Zhang, Q.; Li, Y.Y.; Zhu, G.Y.; Lei, Y.; Wang, X.; Liu, H.F.; Zhang, G.A. In-depth insight into the inhibition mechanism of pyrimidine derivatives on the corrosion of carbon steel in CO2-containing environment based on experiments and theoretical calculations. Corros. Sci. 2021, 181, 109236. [Google Scholar] [CrossRef]
- Troquet, M.; Labbe, J.P.; Pagetti, J. The mechanism of the inhibition of zinc corrosion in 1N HCl solution by tetraphenylphosphonium bromide. Corros. Sci. 1981, 21, 101–117. [Google Scholar] [CrossRef]
- He, Z.; Li, J. Inhibitive effect of aromatic phosphonium salts on corrosion of aluminium in aluminium perchlorate solution. J. Chin. Soc. Corr. Prot. 1996, 16, 239–240. [Google Scholar]
- Szklarska-Smialowska, Z.; Dus, B. Effect of some organic phosphorus compounds on the corrosion of low carbon steel in hydrochloric acid solutions. Corrosion 1967, 23, 130–141. [Google Scholar] [CrossRef]
- Dus, B.; Szklarska-Smialowska, Z. Effect of some phosphoroorganic compounds on te corrosion rate of varios metals in acid solutions. Corrosion 1972, 28, 105–113. [Google Scholar] [CrossRef]
- Zhao, W.; Xia, M.; Lei, W.; Wang, F. Quantum chemistry studies of organophosphorus corrosion inhibitors. J. Chin. Soc. Corros. Prot. 2002, 22, 217–220. [Google Scholar]
- Shein, A.B.; Nedugov, A.N. Examination of trialkyl-substituted sulfonium, selenonium, and telluronium salts as inhibitors of acid corrosion of iron and steel. Prot. Met. 2000, 36, 240–243. [Google Scholar] [CrossRef]
- Verma, C.; Abdellattif, M.H.; Alfantazi, A.; Quraishi, M.A. N-heterocycle compounds as aqueous phase corrosion inhibitors: A robust, effective and economic substitute. J. Mol. Liq. 2021, 340, 117211. [Google Scholar] [CrossRef]
- Abd El-Maksoud, S.A.; Fouda, A.S. Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater. Chem. Phys. 2005, 93, 84–90. [Google Scholar] [CrossRef]
- Lashkari, M.; Arshadi, M.R. DFT studies of pyridine corrosion inhibitors in electrical double layer: Solvent, substrate, and electric field effects. Chem. Phys. 2004, 299, 131–137. [Google Scholar] [CrossRef]
- Hau, N.N.; Huong, D.Q. Effect of aromatic rings on mild steel corrosion inhibition ability of nitrogen heteroatom-containing compounds: Experimental and theoretical investigation. J. Mol. Struct. 2023, 1277, 134884. [Google Scholar] [CrossRef]
- Selvaraj, K.; Sponton, M.E.; Arumugam, H.; Kannaiyan, S.K.; Ayyavu, C.; Casarino, A.F.; Estenoz, D.A.; Al-Lohedan, H.; Kumar, M.; Balu, R.; et al. Synthesis of new quinoline derivatives based on mono-functional polybenzoxazines for oil-water separation, anti-corrosion and antibacterial applications. Compos. Interfaces 2024, 31, 665–682. [Google Scholar] [CrossRef]
- Granese, S.L.; Rosales, B.M.; Oviedo, C.; Zerbino, J.O. The inhibition action of heterocyclic nitrogen organic compounds on Fe and steel in HCl media. Corros. Sci. 1992, 33, 1439–1453. [Google Scholar] [CrossRef]
- Frignani, A.; Zucchit, F.; Monticelli, C. Inhibition of iron corrosion in different acid media by N-Decyl-Pyridinium derivatives. Brit. Corros. J. 1983, 18, 19–24. [Google Scholar] [CrossRef]
- Schmitt, G.; Bedbur, K. Investigations on structural and electronic effects in acid inhibitors by AC impedance. Mater. Corros. 1985, 36, 273–278, Published first in: Proc.9th Int. Congr. Metal. Corros. 1984, 112–119. [Google Scholar] [CrossRef]
- Özcan, M.; Toffoli, D.; Üstünel, H.; Dehri, İ. Insights into surface-adsorbate interactions in corrosion inhibition processes at the molecular level. Corros. Sci. 2014, 80, 482–486. [Google Scholar] [CrossRef]
- Mahmoud, N.F.H.; El-Sewedy, A. Multicomponent Reactions, Solvent-Free Synthesis of 2-Amino-4-aryl-6-substituted Pyridine-3,5-dicarbonitrile Derivatives, and Corrosion Inhibitors Evaluation. J. Chem. 2018, 2018, 7958739. [Google Scholar] [CrossRef]
- Anwer, K.E.; Farag, A.A.; Mohamed, E.A.; Azmy, E.M.; Sayed, G.H. Corrosion inhibition performance and computational studies of pyridine and pyran derivatives for API X-65 steel in 6 M H2SO4. J. Ind. Eng. Chem. 2021, 97, 523–538. [Google Scholar] [CrossRef]
- Mendoza-Huizar, L.H.; Rios-Reyes, C.H.; Palomar-Pardavé‚, M.E. A semiempirical PM6 study of some aminopyrimidine derivatives and their interaction with an iron surface. ECS Trans. 2009, 20, 507–517. [Google Scholar] [CrossRef]
- Onyeachu, I.; Quraishi, M.A.; Obot, I.B.; Haque, J. Newly synthesized pyrimidine compound as CO2 corrosion inhibitor for steel in highly aggressive simulated oilfield brine. J. Adhes. Sci. Technol. 2019, 33, 1226–1247. [Google Scholar] [CrossRef]
- Hmamou, D.B.; Zarrouk, A.; Salghi, R.; Zarrok, H.; Ebenso, E.E.; Hammouti, B.; Kabanda, M.M.; Benchat, N.; Benali, O. Experimental and theoretical studies of the adsorption and corrosion inhibition of 6-phenylpyridazine-3(2H)-thione on Carbon Steel in 2.0 M H3PO4 solution. Int. J. Electrochem. Sci. 2014, 9, 120–138. [Google Scholar] [CrossRef]
- Iravani, D.; Esmaeili, N.; Guo, L.; Akbarinezhad, E. Experimental and computational study of aromatic ring effects on corrosion inhibition in the H2S media. Mater. Today Commun. 2023, 35, 105559. [Google Scholar] [CrossRef]
- Pruthviraj, R.D.; Prakash, C.H. Aromatic quinoxaline as corrosion inhibitor for Zn-Al alloy in 3% NaCl solution. Int. J. Chem. Sci. 2012, 10, 1096–1100. [Google Scholar]
- Saoudi, N.; Bellaouchou, A.; Guenbour, A.; Ben Bachir, A.; Essassi, E.M.; El Achouri, M. Aromatic quinoxaline as corrosion inhibitor for bronze in aqueous chloride solution. Bull. Mater. Sci. 2010, 33, 313–318. [Google Scholar] [CrossRef]
- Skrypnik, Y.G.; Doroshenko, T.F.; Lyashchuk, S.N. Electronic and steric effects in inhibitive action of pyridine on acid corrosion. Zash. Metal. 1991, 27, 243–247. [Google Scholar]
- Eddy, N.O.; Ita, B.I. Theoretical and experimental studies on the inhibition potentials of aromatic oxaldehydes for the corrosion of mild steel in 0.1 M HCl. J. Mol. Model. 2011, 17, 633–647. [Google Scholar] [CrossRef]
- El-Mekabaty, A.; Habib, O.M.O. Synthesis and evaluation of some novel additives as antioxidants and corrosion inhibitors for petroleum fractions. Petrol. Sci. 2014, 11, 161–173. [Google Scholar] [CrossRef]
- Mehdiyeva, G.M. 8-Allyl-1,3-benzoxazines as Hydrogen Sulfide Corrosion Inhibitors and Biocides in Crude Oil Extraction. Pet. Chem. 2023, 63, 394–402. [Google Scholar] [CrossRef]
- Babić-Samardžija, K.; Khaled, K.F.; Hackerman, N. N-heterocyclic amines and derivatives as corrosion inhibitors for iron in perchloric acid. Anti-Corros. Methods Mater. 2005, 52, 11–21. [Google Scholar] [CrossRef]
- Singaravelu, P.; Bhadusha, N.; Dharmalingam, V. Inhibitive Effect of Organic Inhibitors on the Corrosion of Mild Steel in Acidic Medium. Int. J. Life Sci. Pharma Res. 2022, 12, L40–L50. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Li, W.; Guo, L.; Xu, S.; Feng, L.; Madkour, L.H. Experimental and theoretical investigations of some pyrazolo-pyrimidine derivatives as corrosion inhibitors on copper in sulfuric acid solution. Appl. Surf. Sci. 2018, 459, 612–620. [Google Scholar] [CrossRef]
- Salehzadeh, J.; Nasiri, F. A versatile solvent-free synthesis of novel pyrazolone-1,3-dithiolan and pyrazolone-1,3-dithiole hybrids. Res. Chem. Intermed. 2023, 49, 4621–4637. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D. Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid. Appl. Surf. Sci. 2005, 239, 154–164. [Google Scholar] [CrossRef]
- Ayta, A.; Bilgiç, S.; Gece, G.; Ancin, N.; Öztas, S.G. Experimental and theoretical study of the inhibition effects of some Schiff bases as corrosion inhibitors of aluminium in HCl. Mater. Corros. 2012, 63, 729–734. [Google Scholar] [CrossRef]
- Şafak, S.; Duran, B.; Yurt, A.; Türkoğlu, G. Schiff bases as corrosion inhibitor for aluminium in HCl solution. Corros. Sci. 2012, 54, 251–259. [Google Scholar] [CrossRef]
- Al-Labban, H.M.Y.; Sejjad, F.A.A.; Sahap, E.H. Corrosion inhibitory influences of synthetic schiff base on aluminum in hydrochloric acid. Int. J. Pharm. Res. 2020, 12, 1304–1309. [Google Scholar]
- Gomma, G.K.; Wahdan, M.H. Schiff bases as corrosion inhibitors for aluminium in hydrochloric acid solution. Mater. Chem. Phys. 1995, 39, 209–213. [Google Scholar] [CrossRef]
- Fakrudeen, S.P.; Raju, V.B. Electrochemical Behaviour of AA6061 Alloy in 1M Hydrochloric Acid using Schiff Base Compounds as Corrosion Inhibitors. J. Mater. Environ. Sci. 2013, 4, 326–337. [Google Scholar]
- Muniandy, M.T.; Abdul Rahim, A.; Osman, H.; Mohd Shah, A.; Yahya, S.; Bothi Raja, P. Investigation of Some Schiff Bases as Corrosion Inhibitors for Aluminium Alloy in 0.5 M Hydrochloric Acid Solutions. Surf. Rev. Lett. 2011, 18, 127–133. [Google Scholar] [CrossRef]
- Bansiwal, A.; Anthony, P.; Mathur, S.P. Inhibitive effect of some Schiff bases on corrosion of aluminium in hydrochloric acid solutions. Br. Corr. J. 2000, 35, 301–303. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Shabani, B.; Aligholipour, B.; Seifzadeh, D. The effect of some Schiff bases on the corrosion of aluminum in hydrochloric acid solution. Appl. Surf. Sci. 2006, 252, 4039–4047. [Google Scholar] [CrossRef]
- Yurt, A.; Aykin, Ö. Diphenolic Schiff bases as corrosion inhibitors for aluminium in 0.1M HCl: Potentiodynamic polarisation and EQCM investigations. Corros. Sci. 2011, 53, 3725–3732. [Google Scholar] [CrossRef]
- Yurt, A.; Ulutas, S.; Dal, H. Electrochemical and theoretical investigation on the corrosion of aluminium in acidic solution containing some Schiff bases. Appl. Surf. Sci. 2006, 253, 919–925. [Google Scholar] [CrossRef]
- Bautista García, J.E.; Imbert Palafox, J.L.; Veloz Rodríguez, M.A.; Vázquez García, R.Á.; Gómez Gómez, J.V. Bacterial biodegradability of inhibitors of chiral imine type corrosion and catabolic prediction. Rev. Int. Contam. Amb. 2015, 31, 415–426. [Google Scholar]
- Rbaa, M.; Galai, M.; Ouakki, M.; Hsissou, R.; Berisha, A.; Kaya, S.; Berdimurodov, E.; Lakhrissi, B.; Zarrouk, A. Synthesis of new halogenated compounds based on 8-hydroxyquinoline derivatives for the inhibition of acid corrosion: Theoretical and experimental investigations. Mater. Today Commun. 2022, 33, 104654. [Google Scholar] [CrossRef]
- Al-Abdallah, M.M.; Al-Talib, M.; Tashtoush, H. Inhibiting effect of substituted 1,3,5-oxadiazinium salts on the dissolution of copper in nitric acid. Ind. J. Technol. 1989, 27, 168–170. [Google Scholar]
- Kurbanov, F.K.; Nasimov, E.; Kuchkarov, A.B.; Sadykov, K.M. Investigation of The Inhibitor Properties of N-Propargyl Derivatives of Aromatic Amines in Hydrochloric Acid. Prot. Met. 1976, 12, 392–393. [Google Scholar]
- Ebenso, E.E.; Kabanda, M.M.; Murulana, L.C.; Singh, A.K.; Shukla, S.K. Electrochemical and quantum chemical investigation of some azine and thiazine dyes as potential corrosion inhibitors for mild steel in hydrochloric acid solution. Ind. Engin. Chem. Res. 2012, 51, 12940–12958. [Google Scholar] [CrossRef]
- Obot, I.B.; Kaya, S.; Kaya, C.; Tüzün, B. Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches. Res. Chem. Intermed. 2016, 42, 4963–4983. [Google Scholar] [CrossRef]
- Shukla, S.K.; Singh, A.K.; Quraishi, M.A. Triazines: Efficient corrosion inhibitors for mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 2012, 7, 3371–3389. [Google Scholar] [CrossRef]
- Obot, I.B.; Onyeachu, I.B.; Umoren, S.A. Pyrazines as Potential Corrosion Inhibitors for Industrial Metals and Alloys: A Review. J. Bio. Tribo. Corr. 2018, 4, 18. [Google Scholar] [CrossRef]
- Hassan, N.; Holze, R. A comparative electrochemical study of electrosorbed 2- and 4-mercaptopyridines and their application as corrosion inhibitors at C60 steel. J. Chem. Sci. 2009, 121, 693–701. [Google Scholar] [CrossRef]
- Fouda, A.S.; Alsawy, T.F.; Ahmed, E.S.; Abou-Elmagd, B.S. Performance of some thiophene derivatives as corrosion inhibitors for 304 stainless steel in aqueous solutions. Res. Chem. Intermed. 2013, 39, 2641–2661. [Google Scholar] [CrossRef]
- Fernine, Y.; Arrousse, N.; Haldhar, R.; Raorane, C.J.; Ech-Chihbi, E.; Kim, S.C.; El Hajjaji, F.; Alami, A.; Ebn Touhami, M.; Taleb, M. Novel thiophene derivatives as eco-friendly corrosion inhibitors for mild steel in 1 M HCl solution: Characterization, electrochemical and computational (DFT and MC simulations) methods. J. Environ. Eng. 2022, 10, 108891. [Google Scholar] [CrossRef]
- Tantawy, A.H.; Soliman, K.A.; Abd El-Lateef, H.M. Experimental and computational approaches of sustainable quaternary bisammonium fluorosurfactants for corrosion inhibition as protective films at mild steel/H2SO4 interface. Coll. Surf. A 2021, 614, 126141. [Google Scholar] [CrossRef]
- Pandimuthu, G.; Muthukrishnan, P.; Rameshkumar, S.; Paramasivaganesh, K.; Sankar, A. Charge Transfer Resistance and Adsorption performance of a New Pyrrole derivative on Mild steel in Acidic media: Antibacterial studies. Orient. J. Chem. 2021, 37, 779–790. [Google Scholar] [CrossRef]
- Caldona, E.B.; Zhang, M.; Liang, G.; Hollis, T.K.; Webster, C.E.; Smith, D.W., Jr.; Wipf, D.O. Corrosion inhibition of mild steel in acidic medium by simple azole-based aromatic compounds. J. Electroanal. Chem. 2021, 880, 114858. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z. Experimental studies of structure and inhibition efficiency of imidazoline derivatives. J. Chin. Soc. Corros. Prot. 2001, 21, 116–121. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Sardar, R. Aromatic triazoles as corrosion inhibitors for mild steel in acidic environments. Corrosion 2002, 58, 748–755. [Google Scholar] [CrossRef]
- Deng, Q.; Jeschke, S.; Jakeria, M.R.; White, P.; Hirth, S.; Eiden, P.; Gorges, J.N.; Chen, X.B.; Keil, P.; Cole, I. Synergistically and sustainably performed inhibitors for galvanised steel against aqueous corrosion. Corr. Sci. 2023, 213, 110984. [Google Scholar] [CrossRef]
- Popova, A.; Christov, M.; Zwetanova, A. Effect of the molecular structure on the inhibitor properties of azoles on mild steel corrosion in 1 M hydrochloric acid. Corros. Sci. 2007, 49, 2131–2143. [Google Scholar] [CrossRef]
- Nwankwo, H.U.; Olasunkanmi, L.O.; Ebenso, E.E. Electrochemical and Computational Studies of Some Carbazole Derivatives as Inhibitors of Mild Steel Corrosion in Abiotic and Biotic Environments. J. Bio. Tribo. Corros. 2018, 4, 13. [Google Scholar] [CrossRef]
- Prethaler, A.; Vogl, T.; Mori, G.; Havlik, W.; Zehethofer, G.; Hönig, S.; Rosenberg, E. Efficiency of two gas and gas condensate inhibitors in a laboratory two phase flow. In Proceedings of the EUROCORR 2013—European Corrosion Congress 2013, Porto, Portugal, 1–5 September 2013. [Google Scholar]
- Holze, R. New Series, Group IV: Physical Chemistry, Volume 9: Electrochemistry, Subvolume B: Ionic Conductivities of Liquid Systems, Part 1: Molten Salts and Ionic Liquids. In Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology; Martienssen, W., Lechner, M.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zeng, X.; Zheng, X.; Guo, L.; Xu, Q.; Huang, H.; Tan, B. Three imidazole ionic liquids as green and eco-friendly corrosion inhibitors for mild steel in sulfuric acid medium. J. Mol. Liq. 2021, 324, 115063. [Google Scholar] [CrossRef]
- Mazumder, M.A.J.; Ali, S.A.; Al-Muallem, H.A. 2-(P-alkoxyphenyl)-2-imidazolines and Their Use as Corrosion Inhibitors. US Patent 20160347988A1, 1 December 2016. [Google Scholar]
- Hou, Y.; Zhu, L.; He, K.; Yang, Z.; Ma, S.; Lei, J. Synthesis of three imidazole derivatives and corrosion inhibition performance for copper. J. Mol. Liq. 2022, 348, 118432. [Google Scholar] [CrossRef]
- Daoudi, W.; El Ibrahimi, B.; Dagdag, O.; Berdimurodov, E.; Guo, L.; Ebenso, E.E.; Oussaid, A.; El Aatiaoui, A. New chlorophenyl-imidazole derivative as a novel corrosion inhibitor in the gas and oil industry. J. Phys. Chem. Sol. 2023, 179, 111409. [Google Scholar] [CrossRef]
- Martin, J.A.; Valone, F.W. The Existence of Imidazoline Corrosion Inhibitors. Corrosion 1985, 41, 281–287. [Google Scholar] [CrossRef]
- Nahlé, A.; Al-Tuniji, R.; Abu-Abdoun, I.; Abdel-Rahman, I. Corrosion inhibition of 1,4-di (1-vinyl-3-methylimidazolium) benzene dibromide on mild steel in HCL solution. Portug. Electrochim. Acta 2016, 34, 197–211. [Google Scholar] [CrossRef]
- Xiong, S.; Wu, H.; Liu, Z.; Wang, Y.; Lin, W. Study on corrosion behavior of new corrosion inhibitor imidazole derivatives for mild steel in oil-in-water emulsion. Surf. Interface Anal. 2021, 53, 418–431. [Google Scholar] [CrossRef]
- Srivastava, V.; Salman, M.; Chauhan, D.S.; Abdel-Azeim, S.; Quraishi, M.A. (E)-2-styryl-1H-benzo[d]imidazole as novel green corrosion inhibitor for carbon steel: Experimental and computational approach. J. Mol. Liq. 2021, 324, 115010. [Google Scholar] [CrossRef]
- Zuriaga-Monroy, C.; Oviedo-Roa, R.; Montiel-Sánchez, L.E.; Vega-Paz, A.; Marín-Cruz, J.; Martínez-Magadán, J.M. Theoretical Study of the Aliphatic-Chain Length’s Electronic Effect on the Corrosion Inhibition Activity of Methylimidazole-Based Ionic Liquids. Ind. Engin. Chem. Res. 2016, 55, 3506–3516. [Google Scholar] [CrossRef]
- Jovancicevic, V.; Ramachandran, S.; Prince, P. Inhibition of Carbon Dioxide Corrosion of Mild Steel by Imidazolines and Their Precursors. Corrosion 1999, 55, 449–455. [Google Scholar] [CrossRef]
- Braga, T.G.; Martín, R.L.; McMahon, J.A.; Oude Alink, B.A.; Outlaw, B.T. Combinations of Imidazolines and Wetting Agents as Environmentally Acceptable Corrosion Inhibitors. U.S. Patent US6338819 B1, 16 February 1999. [Google Scholar]
- Ismail, A.; Irshad, H.M.; Zeino, A.; Toor, I.H. Electrochemical Corrosion Performance of Aromatic Functionalized Imidazole Inhibitor Under Hydrodynamic Conditions on API X65 Carbon Steel in 1ÿM HCl Solution. Arab. J. Sci. Engin. 2019, 44, 5877–5888. [Google Scholar] [CrossRef]
- Bhargava, G.; Ramanarayanan, T.A.; Gouzman, I.; Bernasek, S.L. Corrosion inhibitor—Iron interactions: A study combining surface science and electrochemistry. ECS Trans. 2006, 1, 195–206. [Google Scholar] [CrossRef]
- Bhargava, G.; Ramanarayanan, T.A.; Gouzman, I.; Abelev, E.; Bemasek, S.L. Inhibition of iron corrosion by imidazole: An electrochemical and surface science study. Corrosion 2009, 65, 308–317. [Google Scholar] [CrossRef]
- Prashanth, M.K.; Kumar, C.B.P.; Prathibha, B.S.; Raghu, M.S.; Kumar, K.Y.; Jagadeesha, M.B.; Mohana, K.N.; Krishna, H. Effect of OH, NH2 and OCH3 groups on the corrosion inhibition efficacy of three new 2,4,5-trisubstituted imidazole derivatives on mild steel in acidic solutions: Experimental, surface and DFT explorations. J. Mol. Liq. 2021, 329, 115587. [Google Scholar] [CrossRef]
- Costa, S.N.; Almeida-Neto, F.W.Q.; Campos, O.S.; Fonseca, T.S.; de Mattos, M.C.; Freire, V.N.; Homem-de-Mello, P.; Marinho, E.S.; Monteiro, N.K.V.; Correia, A.N.; et al. Carbon steel corrosion inhibition in acid medium by imidazole-based molecules: Experimental and molecular modelling approaches. J. Mol. Liq. 2021, 326, 115330. [Google Scholar] [CrossRef]
- Cao, J.; Guo, C.; Guo, X.; Chen, Z. Inhibition behavior of synthesized ZIF-8 derivative for copper in sodium chloride solution. J. Mol. Liq. 2020, 311, 113277. [Google Scholar] [CrossRef]
- Obot, I.B. Theoretical design of new benzimidazole derivatives as steel corrosion inhibitors in CO2 corrosive environment: DFT and Monte Carlo approaches. In European Corrosion Congress, EUROCORR 2015; Austrian Society for Metallurgy and Materials: Graz, Austria, 2015; Volume 1, pp. 390–401. [Google Scholar]
- Popova, A.K.; Machkova, M.S.; Djambova, A.G.; Zwetanova, A.; Raicheva, S.N. Relationship between chemical structure parameters and inhibitor efficiency of some azoles. Bulg. Chem. Commun. 2008, 40, 300–305. [Google Scholar]
- Chervinskii, A.Y.; Shein, A.B.; Vdovichenko, A.N.; Morozova, T.L.; Kapkan, L.M. Inhibition of acid steel corrosion by substituted benzimidazoles. Prot. Met. 1991, 26, 517–519. [Google Scholar]
- Chen, M.; Cheng, Y.; Xu, H.; Wu, J.; Xue, M.; Zhang, X. Molecular structure of imidazoline inhibitor and quantum chemical analysis of corrosion inhibition performance of Zn atom. E3S Web Conf. 2020, 213, 01027. [Google Scholar] [CrossRef]
- Xhanari, K.; Finsgar, M. The first electrochemical and surface analysis of 2-aminobenzimidazole as a corrosion inhibitor for copper in chloride solution. New J. Chem. 2017, 41, 7151–7161. [Google Scholar] [CrossRef]
- Neupane, S.; Losada-Pérez, P.; Tiringer, U.; Taheri, P.; Desta, D.; Xie, C.; Crespo, D.; Mol, A.; Milosev, I.; Kokalj, A.; et al. Study of Mercaptobenzimidazoles As Inhibitors for Copper Corrosion: Down to the Molecular Scale. J. Electrochem. Soc. 2021, 168, 051504. [Google Scholar] [CrossRef]
- Babić-Samardžija, K.; Lupu, C.; Hackerman, N.; Barron, A.R.; Luttge, A. Inhibitive properties and surface morphology of a group of heterocyclic diazoles as inhibitors for acidic iron corrosion. Langmuir 2005, 21, 12187–12196. [Google Scholar] [CrossRef] [PubMed]
- Quraishi, M.A.; Sardar, R. Corrosion inhibition of mild steel in acid solutions by some aromatic oxadiazoles. Mater. Chem. Phys. 2003, 78, 425–431. [Google Scholar] [CrossRef]
- Xiong, S.; Sun, J.; Xu, Y.; Yan, X. Adsorption behavior of tautomeric forms of 2-aminino-5-mercato-1,3,4-thiadizole as corrosion inhibitor on copper surface. Anti-Corros. Meth. Mater. 2016, 63, 452–460. [Google Scholar] [CrossRef]
- Zhang, Q.; Hua, Y. Corrosion inhibition of aluminum in hydrochloric acid solution by alkylimidazolium ionic liquids. Mater. Chem. Phys. 2010, 119, 57–64. [Google Scholar] [CrossRef]
- El-Haddad, M.N.; Fouda, A.S. Electroanalytical, quantum and surface characterization studies on imidazole derivatives as corrosion inhibitors for aluminum in acidic media. J. Mol. Liq. 2015, 209, 480–486. [Google Scholar] [CrossRef]
- El-Shafei, A.A.; El-Maksoud, S.A.A.; Fouda, A.S. The role of indole and its derivatives in the pitting corrosion of Al in neutral chloride solution. Corros. Sci. 2004, 46, 579–590. [Google Scholar] [CrossRef]
- Farghaly, T.A.A.; Fawzy, A.; Alsharief, H.H.H.; Alqarni, N.; Bahir, A.A.; Riyadh, S.M.M.; Khalil, K.D.D. Investigation of inhibition efficiencies of Novel bis-oxindole and bis(spiro(triazole-oxindole)) for the corrosion of copper in sulfuric acid medium. Polyc. Arom. Compds. 2024, 44, 1258–1272. [Google Scholar] [CrossRef]
- Verma, D.K.; Sahu, R.; Berdimurodov, E.; Verma, C.; Quraishi, M.A.; Jain, V.K.; Berdimuradov, K. Isatin as a new core in the development of corrosion inhibitors: A comprehensive review. J. Mol. Struct. 2023, 1294, 136313. [Google Scholar] [CrossRef]
- Fernando, I.R.; Daskalakis, N.; Demadis, K.D.; Mezei, G. Cation effect on the inorganic-organic layered structure of pyrazole-4-sulfonate networks and inhibitory effects on copper corrosion. New J. Chem. 2010, 34, 221–235. [Google Scholar] [CrossRef]
- Fernando, I.R.; Jianrattanasawat, S.; Daskalakis, N.; Demadis, K.D.; Mezei, G. Mapping the supramolecular chemistry of pyrazole-4-sulfonate: Layered inorganic-organic networks with Zn2+, Cd2+, Ag+, Na+ and NH4+, and their use in copper anticorrosion protective films. Cryst. Eng. Comm. 2012, 14, 908–919. [Google Scholar] [CrossRef]
- Khaled, K.F.; Amin, M.A. Electrochemical and molecular dynamics simulation studies on the corrosion inhibition of aluminum in molar hydrochloric acid using some imidazole derivatives. J. Appl. Electrochem. 2009, 39, 2553–2568. [Google Scholar] [CrossRef]
- Fouda, A.S.; Abdel-Latif, E.; Helal, H.M.; El-Hossiany, A. Synthesis and Characterization of Some Novel Thiazole Derivatives and Their Applications as Corrosion Inhibitors for Zinc in 1 M Hydrochloric Acid Solution. Russ. J. Electrochem. 2021, 57, 159–171. [Google Scholar] [CrossRef]
- Traisnel, M.; Kadia, L.E.; Bentiss, F.; Lagrenée, M.; Vezin, H. 3,5-Bis(n-Methoxyphenyl)-4-Amino-1,2,4-Triazoles as inhibitors of corrosion of mild steel in acidic media. In Proceedings of the EUROCORR 2004—European Corrosion Conference: Long Term Prediction and Modelling of Corrosion, Nice, France, 12–16 September 2004. [Google Scholar]
- Abdennabi, A.M.S.; Abdulhadi, A.I.; Abu-Orabi, S.T.; Saricimen, H. The inhibition action of 1(benzyl)1-H-4,5-dibenzoyl1,2,3-triazole on mild steel in hydrochloric acid media. Corros. Sci. 1996, 38, 1791–1800. [Google Scholar] [CrossRef]
- Liu, L.; Pan, X.; Zhang, Q.; Qian, J. Corrosion inhibition and olecular structure of thiadiazole derivatives in sulfur-ethanol system. CIESC J. 2014, 65, 4039–4048. [Google Scholar]
- Abdennabi, A.M.S.; Abdulhadi, A.I.; Abu-Orabi, S. Relationship between the molecular structure and the inhibition performance of triazole compounds using electrochemical methods. Anti-Corros. Methods Mater. 1998, 45, 103–108. [Google Scholar] [CrossRef]
- Domínguez-Crespo, M.A.; Zepeda-Vallejo, L.G.; Torres-Huerta, A.M.; Brachetti-Sibaja, S.B.; Palma-Ramírez, D.; Rodríguez-Salazar, A.E.; Ontiveros-de la Torre, D.E. New Triazole and Isoxazole Compounds as Corrosion Inhibitors for Cu-Ni (90/10) Alloy and Galvanized Steel Substrates. Metall. Mater. Trans. A 2020, 51, 1822–1845. [Google Scholar] [CrossRef]
- Rao, N.; Johnson, D.A.; Lu, F.F.; Nghiem, N.P. Elucidation of components of aromatic triazole demand in cooling water systems and development of more environmentally friendly yellow metal corrosion inhibitor. J. Cooling Tower Inst. 1997, 18, 30–34, 36–38, 40–42, 44–45. [Google Scholar]
- Huntscha, S.; Hofstetter, T.B.; Schymanski, E.L.; Spahr, S.; Hollender, J. Biotransformation of benzotriazoles: Insights from transformation product identification and compound-specific isotope analysis. Environ. Sci. Technol. 2014, 48, 4435–4443. [Google Scholar] [CrossRef]
- Postigo, C.; Barceló, D. Synthetic organic compounds and their transformation products in groundwater: Occurrence, fate and mitigation. Sci. Tot. Environm. 2015, 503–504, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, N.; Maruthamuthu, S.; Palaniswamy, N. Water-soluble inhibitor on microbiologically influenced corrosion in diesel pipeline. Coll. Surf. B 2006, 53, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Rajasekar, A.; Maruthamuthu, S.; Palaniswamy, N.; Rajendran, A. Biodegradation of corrosion inhibitors and their influence on petroleum product pipeline. Microbiol. Res. 2007, 162, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, N.; Maruthamuthu, S.; Mohanan, S.; Palaniswamy, N. Influence of an oil soluble inhibitor on microbiologically influenced corrosion in a diesel transporting pipeline. Biofouling 2007, 23, 395–404. [Google Scholar] [CrossRef]
- Korpics, C.J. Aromatic triazoles as corrosion inhibitors of copper and copper alloys. Anti-Corros. Meth. Mater. 1974, 21, 11–13. [Google Scholar] [CrossRef]
- Rawat, N.S.; Udayabhanu, G.; Arora, R.K. Studies on the effect of chloride ions on the inhibition of mild steel corrosion by some nitrogeneous aromatic compounds in sulfuric acid medium. Trans. SAEST 1985, 20, 63–66. [Google Scholar]
- Fent, K.; Chew, G.; Li, J.; Gomez, E. Benzotriazole UV-stabilizers and benzotriazole: Antiandrogenic activity in vitro and activation of aryl hydrocarbon receptor pathway in zebrafish eleuthero-embryos. Sci. Tot. Environ. 2014, 482–483, 125–136. [Google Scholar] [CrossRef]
- Wu, L.; Suchana, S.; Flick, R.; Kuemmel, S.; Richnow, H.; Passeport, E. Carbon, hydrogen and nitrogen stable isotope fractionation allow characterizing the reaction mechanisms of 1H-benzotriazole aqueous phototransformation. Water Res 2021, 203, 117519. [Google Scholar] [CrossRef]
- Wu, J.S.; Nobe, K. Effects of substituted benzotriazoles on the electrochemical behavior of copper in H2SO4. Corrosion 1981, 37, 223–225. [Google Scholar] [CrossRef]
- Loto, R.T. Anti-corrosion performance of 1,3-Benzothiazole on 410 Martensitic stainless steel in H2SO4. Surf. Rev. Lett. 2017, 24, 1750121. [Google Scholar] [CrossRef]
- Khaled, K.F.; El-Maghraby, A. Experimental, Monte Carlo and molecular dynamics simulations to investigate corrosion inhibition of mild steel in hydrochloric acid solutions. Arab. J. Chem. 2014, 7, 319–326. [Google Scholar] [CrossRef]
- Al-Bghdadi, S.B.; Hanoon, M.M.; Odah, J.F.; Shaker, L.M.; Al-Amiery, A.A. Benzylidene as Efficient Corrosion Inhibition of Mild Steel in Acidic Solution. Proceedings 2019, 41, 27. [Google Scholar] [CrossRef]
- Gece, G.; Bilgiç, S. Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corros. Sci. 2009, 51, 1876–1878. [Google Scholar] [CrossRef]
- Şahin, M.; Bilgiç, S.; Yılmaz, H. The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums. Appl. Surf. Sci. 2002, 195, 1–7. [Google Scholar] [CrossRef]
- Şahin, M.; Bilgiç, S. The inhibition effects of some heterocyclic nitrogenous compounds on the corrosion of the steel in CO2-saturated NaCl solutions. Anti-Corros. Meth. Mater. 2003, 50, 34–39. [Google Scholar] [CrossRef]
- Pham, T.L.M.; Phung, T.K.; Thang, H.V. DFT insights into the adsorption mechanism of five-membered aromatic heterocycles containing N, O, or S on Fe(110) surface. Appl. Surf. Sci. 2022, 583, 152524. [Google Scholar] [CrossRef]
- Shen, M.; Furman, A.; Kharshan, R. Investigation of bio-based aromatic acids as corrosion inhibitor. In Proceedings of the NACE —International Corrosion Conference Series, Dallas, TX, USA, 15–19 March 2015. [Google Scholar]
- Billiet, H.A.H. Amines from environmental sources. J. Chromatog. Library 1992, 51, B583–B595. [Google Scholar]
- Varvara, S.; Bostan, R.; Bobis, O.; Gaina, L.; Popa, F.; Mena, V.; Souto, R.M. Propolis as a green corrosion inhibitor for bronze in weakly acidic solution. Appl. Surf. Sci. 2017, 426, 1100–1112. [Google Scholar] [CrossRef]
- Ganash, A.A.; Alshelaly, A.H. Extensive electrochemical study and surface examinations combined with DFT theoretical approaches of Zoffa extracts as green corrosion inhibitors for ASTM/A36 steels in acidic solutions. J. Adhes. Sci. Technol. 2022, 36, 1247–1278. [Google Scholar] [CrossRef]
- Shen, M.; Furman, A.; Kharshan, R. Investigation of bio-based aromatic acids as corrosion inhibitors. Mater. Perf. 2016, 55, 52–57. [Google Scholar]
- Chandler, C.; Kharshan, M.; Furman, A. Sugar Beets Against Corrosion. Corros. Rev. 2002, 20, 379. [Google Scholar] [CrossRef]
- El-Etre, A.Y. Inhibition of acid corrosion of aluminum using vanillin. Corros. Sci. 2001, 43, 1031–1039. [Google Scholar] [CrossRef]
- Furtado, L.B.; Nascimento, R.C.; Henrique, F.J.F.S.; Guimaraes, M.J.O.C.; Rocha, J.C.; Ponciano, J.A.C.; Seidl, P.R. Effects of temperature, concentration and synergism on green Schiff bases synthesized from vanillin in applications as corrosion inhibitors for carbon steel in well stimulation. J. Petr. Sci. Eng. 2022, 213, 110401. [Google Scholar] [CrossRef]
- Hadisaputra, S.; Abhi Purwoko, A.; Hamdiani, S.; Nuryono, N. Which anthocyanin is the best corrosion inhibitor? IOP Conf. Ser. Mater. Sci. Engin. 2019, 509, 012129. [Google Scholar] [CrossRef]
- Oni, A. Mild-steel corrosion and inhibition by aromatic amino acid in hot H2SO4. Corr. Prev. Contr. 1992, 39, 128–130. [Google Scholar]
- Zeng, N.; Zhao, H.; Luo, C.; Liu, Y.; Wang, C.; Ma, T. Roles and mechanistic analysis of adenine as a green inhibitor in chemical mechanical polishing. J. Appl. Electrochem. 2021, 51, 1479–1489. [Google Scholar] [CrossRef]
- Abd-El-Nabey, B.A.; Khalil, N.; Mohamed, A. Inhibition by amino acids of the corrosion of steel in acid. Surf. Technol. 1985, 24, 383–389. [Google Scholar] [CrossRef]
- Loto, R.T.; Loto, C.A. Data on evaluation of the corrosion inhibition effect of l-alpha-aminoisocaproate on high carbon steel corrosion in Dilute Acid Media. Medziagotyra 2019, 25, 422–426. [Google Scholar] [CrossRef]
- Purnima; Goyal, S.; Luxami, V. Corrosion inhibition mechanism of aromatic amino acids for steel in alkaline pore solution simulating carbonated concrete environment. Mater. Corros. 2024, 75, 39–60. [Google Scholar] [CrossRef]
- Fu, J.J.; Li, S.N.; Wang, Y.; Liu, X.D.; Lu, L.D. Computational and electrochemical studies on the inhibition of corrosion of mild steel by l-Cysteine and its derivatives. J. Mater. Sci. 2011, 46, 3550–3559. [Google Scholar] [CrossRef]
- Eddy, N.O. Experimental and theoretical studies on some amino acids and their potential activity as inhibitors for the corrosion of mild steel, part 2. J. Adv. Res. 2011, 2, 35–47. [Google Scholar] [CrossRef]
- Shehu, N.U.; Gaya, U.I.; Muhammad, A.A. Influence of side chain on the inhibition of aluminium corrosion in HCl by α-amino acids. Appl. Sci. Engin. Prog. 2019, 12, 186–197. [Google Scholar] [CrossRef]
- Saurbier, K.; Mendorf, V.; Schultze, J.W.; Geke, J.; Penninger, J.; Roßmaier, H. Toluylalanine as an inhibitor of atmospheric corrosion. Corros. Sci. 1992, 33, 1351–1359. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Fu, H.; Li, T. Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl. Electrochim. Acta 2009, 54, 4089–4098. [Google Scholar] [CrossRef]
- Haruna, K.; Saleh, T.A. Dopamine functionalized graphene oxide (DGO) as a corrosion inhibitor against X60 carbon steel corrosion in a simulated acidizing environ ment; An electrochemical, weight loss, SERS, and computational study. Surf. Interf. 2024, 44, 103688. [Google Scholar] [CrossRef]
- Al-Mazaideh, G.M.; Abu-Sbeih, K.A.; Khalil, S.M. Computational Calculations of Chitosan Fragments as Corrosion Inhibitors of Metals. J. Chem. Biol. Phys. Sci. 2017, 7, 398–409. [Google Scholar]
- Umoren, S.U.; Eduok, U.M. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydr. Polym. 2016, 140, 314–341. [Google Scholar] [CrossRef]
- Alsabagh, A.M.; Elsabee, M.Z.; Moustafa, Y.M.; Elfky, A.; Morsi, R.E. Corrosion inhibition efficiency of some hydrophobically modified chitosan surfactants in relation to their surface active properties. Egypt. J. Pet. 2014, 23, 349–359. [Google Scholar] [CrossRef]
- Al-Mazaideh, G.M.; Al-Quran, S.A. Inhibitive action of Chamomile extract on the corrosion of Iron: Density Functional Theory. Mor. J. Chem. 2018, 6, 195–202. [Google Scholar]
- Saranya, J.; Vagdevi, K.; Jyothirmai, N.; Anusuya, N.; Benhiba, F.; Warad, I.; Zarrouk, A. Application of quercetin as a green inhibitor to prevent mild steel corrosion in the petroleum industry: Experimental and modelling techniques. Chem. Data Coll. 2024, 50, 101125. [Google Scholar] [CrossRef]
- Baildya, N.; Ghosh, N.N.; Chattopadhyay, A.P. Anti-corrosive properties of quercetin and its derivatives on Fe(111) surface: A quantum chemical approach. SN Appl. Sci. 2019, 1, 735. [Google Scholar] [CrossRef]
- Sukul, D.; Pal, A.; Saha, S.K.; Satpati, S.; Adhikari, U.; Banerjee, P. Newly synthesized quercetin derivatives as corrosion inhibitors for mild steel in 1 M HCl: Combined experimental and theoretical investigation. Phys. Chem. Chem. Phys. 2018, 20, 6562–6574. [Google Scholar] [CrossRef] [PubMed]
- Al-Mazeideh, G.M. Carbohydrates as Green Corrosion Inhibitors of Copper: Ab initio Study. Jord. J. Chem. 2017, 12, 189–200. [Google Scholar]
- Ong, C.C.; Karim, K.A. Inhibitory effect of red onion skin extract on the corrosion of mild steel in acidic medium. Chem. Eng. Trans. 2017, 56, 913–918. [Google Scholar]
- Fouda, A.S.; Rashwan, S.M.; Abo-Mosallam, H.A. Fennel seed extract as green corrosion inhibitor for 304 stainless steel in hydrochloric acid solutions. Desalin. Water Treat. 2014, 52, 5175–5186. [Google Scholar] [CrossRef]
- Fouda, A.E.A.S.; Nazeer, A.A.; El-Khateeb, A.Y.; Fakih, M. Cinnamon plant extract as corrosion inhibitor for steel used in waste water treatment plants and its biological effect on escherichia coli. J. Kor. Chem. Soc. 2014, 58, 359–365. [Google Scholar] [CrossRef]
- Loto, R.T. Corrosion Inhibition Performance of the Synergistic Effect of Rosmarinus officinalis and 5-Bromovanillin on 1018 Carbon Steel in Dilute Acid Media. J. Fail. Anal. Prev. 2017, 17, 1031–1043. [Google Scholar] [CrossRef]
- Loto, R.T. Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions. Res. Phys. 2018, 8, 172–179. [Google Scholar] [CrossRef]
- Loto, R.T. Inhibition studies of the synergistic effect of Rosemary oil and zinc oxide on S41003 ferritic steel corrosion in dilute sulphuric and hydrochloric acid solutions. Orient. J. Chem. 2018, 34, 240–254. [Google Scholar] [CrossRef]
- Loto, R.T.; Oghenerukewe, E. Inhibition studies of Rosmarinus officinalis on the pitting corrosion resistance 439LL ferritic stainless steel in dilute sulphuric acid. Orient. J. Chem. 2016, 32, 2813–2832. [Google Scholar] [CrossRef]
- Santos, A.M.; Aquino, I.P.; Cotting, F.; Aoki, I.V.; de Melo, H.G.; Capelossi, V.R. Evaluation of Palm Kernel Cake Powder (Elaeis guineensis Jacq.) as Corrosion Inhibitor for Carbon Steel in Acidic Media. Met. Mater. Int. 2021, 27, 1519–1530. [Google Scholar] [CrossRef]
- Dai, J.; An, X. Corrosion inhibition properties of Camellia chrysantha flower extract for Q235 in 1 M HCl solution. Int. J. Electrochem. Sci. 2023, 18, 100080. [Google Scholar] [CrossRef]
- Zaher, A.; Aslam, R.; Lee, H.S.; Khafouri, A.; Boufellous, M.; Alrashdi, A.; El Aoufir, Y.; Lgaz, H.; Ouhssine, M. A combined computational & electrochemical exploration of the Ammi visnaga L. extract as a green corrosion inhibitor for carbon steel in HCl solution. Arab. J. Chem. 2022, 15, 103573. [Google Scholar]
- Eddy, N.O.; Odoemelam, S.A.; Ogoko, E.C.; Ukpe, R.A.; Garg, R.; Anand, B. Experimental and quantum chemical studies of synergistic enhancement of the corrosion inhibition efficiency of ethanol extract of Carica papaya peel for aluminum in solution of HCl. Res. Chem. 2022, 4, 100290. [Google Scholar] [CrossRef]
- Royani, A.; Aigbodion, V.S.; Hanafi, M.; Mubarak, N.M.; Verma, C.; Alfantazi, A.; Manaf, A. Enhancing the corrosion inhibition performance of Tinospora cordifolia extract using different fractions of methanol solvent on carbon steel corrosion in a seawater-simulated solution. Appl. Surf. Sci. Adv. 2023, 18, 100465. [Google Scholar] [CrossRef]
- Vaszilcsin, C.G.; Putz, M.V.; Dan, M.L.; Medeleanu, M. Myricetin as Corrosion Inhibitor for Metals in Alcoholic Solutions. In Studia Universitatis Babes-Bolya; Studia UBB Chemie: Cluj-Napoca, Romania, 2023; Volume 68, pp. 23–36. [Google Scholar]
- Bathily, M.; Cisse, K.; Youssefi, Y.; Ou-ani, O.; Oucheikh, L.; Ngom, B.; Znini, M.; Gassama, D.; Costa, J. Evaluation of the Inhibiting Power of Essential Oil Extracted from Cloves (Syzygium Aromaticum) on Corrosion of Steel C24 In Medium HCl 1M. Anal. Bioanal. Electrochem. 2023, 15, 891–913. [Google Scholar]
- Abdelaali, B.; El Menyiy, N.; El Omari, N.; Benali, T.; Guaouguaou, F.E.; Salhi, N.; Naceiri Mrabti, H.; Bouyahya, A. Phytochemistry, Toxicology, and Pharmacological Properties of Origanum elongatum. Evid. Based Complement Altern. Med. 2021, 2021, 6658593. [Google Scholar] [CrossRef]
- Boutaoui, N.; Acila, M.; Boulahbel, H.; Achouri, B.; Zaiter, L.; Benayache, F.; Benayache, S.; D’ Agostino, I.; Campestre, C.; Locatelli, M. Assessment of The Green Corrosion Inhibition Performances of Thymus Algeriensis Microwave-Assisted Extracts on Mild Steel in Acid Solution. Anal. Bioanal. Electrochem. 2023, 15, 938–955. [Google Scholar]
- Coiai, S.; Campanella, B.; Paulert, R.; Cicogna, F.; Bramanti, E.; Lazzeri, A.; Pistelli, L.; Coltelli, M.B. Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. Appl. Sci. 2021, 11, 9249. [Google Scholar] [CrossRef]
- Hachelef, H.; Mehdaoui, R.; Hachama, K.; Amara, M.; Khelifa, A.; Benmoussat, A.; Hadj Meliani, M.; Suleiman, R.K. Evaluation of Inhibition Efficiency of Thymus Extract as a Corrosion Inhibitor of Aluminum Alloy 5083 in an Ethylene Glycol/NaCl Corrosive Medium. Corros. Sci. Technol. 2023, 22, 314–321. [Google Scholar]
- Bathily, M.; Ngom, B.; Mbengue, M.; Gassama, D. Evaluation of the inhibitory action of essential oil from Eucalyptus globulus leaves on the corrosion of mild carbon steel in 1M HCl medium. Ovidius Univ. Annal. Chem. 2023, 34, 1–7. [Google Scholar] [CrossRef]
- El-Housseiny, S.; Abdel-Gaber, A.M.; Rahal, H.T.; Beqai, F.T. Eco-friendly corrosion inhibitor for mild steel in acidic media. Int. J. Corros. Scale Inhib. 2022, 11, 1516–1538. [Google Scholar]
- Torres Hernandez, J.R.; Del Angel Meraz, E.; Corvo Perez, E.F. Tradescantia spathacea: New green corrosion inhibitor for SAE 1010 steel in acid medium. Int. J. Corros. Scale Inhib. 2023, 12, 61–83. [Google Scholar]
- Sidine, M.O.; Lahbib, H.; Hadou, A.; Ba, M.; Benmessaoud, M.; Ben Amor, Y.; Ould, B. Elemine Usage of Grewia bicolor Juss leaves extract as green corrosion inhibitor for Steel XC40 in sulfuric acid medium. Int. J. Corros. Scale Inhib. 2023, 12, 961–983. [Google Scholar]
- Wan Nik, W.B.; Ravindran, K.; Al-Amiery, A.A.; Izionworu, V.O.; Fayomi, O.S.I.; Berdimurodov, E.; Daoudi, W.; Zulkifli, F.; Dhande, D.Y. Piper betle extract as an eco-friendly corrosion inhibitor for aluminium alloy in hydrochloric acid media. Int. J. Corros. Scale Inhib. 2023, 12, 948–960. [Google Scholar]
- Rahal, H.T.; Abdel-Gaber, A.M.; El Khatib, L.W.; El-Housseiny, S. Evaluation of Fragaria ananassa and Cucurbita pepo L Leaf Extracts as natural green corrosion inhibitors for copper in 0.5 M hydrochloric acid solution. Int. J. Corros. Scale Inhib. 2023, 12, 1417–1440. [Google Scholar]
- El Nemr, A.; Elhebshi, A.; Ashour, I.; El-Deab, M.S.; Barghout, N.A.; Eddy, N.O.; Ragab, S. Camphor tree bark extract as green corrosion inhibitor of LCS in 0.5 M H2SO4 with and without salt effect. J. Chin. Chem. Soc. 2024, 71, 174–196. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, S.; Hao, L.; Du, H.; Pan, R.; Huang, G.; Liu, H. Cucumber (Cucumis sativus L.) Leaf Extract as a Green Corrosion Inhibitor for Carbon Steel in Acidic Solution: Electrochemical, Functional and Molecular Analysis. Molecules 2022, 27, 3826. [Google Scholar] [CrossRef]
- Temitayo, O.O.; Vawe, H.; Johnson, J.; Ezekiel, A.; Ilesanmi, O. Investigation on Corrosion Inhibition of Hura Crepitans for 2101 Duplex Stainless Steel in an Acidic Environment. Adv. Sci. Technol. Res. 2022, 16, 56–63. [Google Scholar]
- Hynes, N.R.J.; Vignesh, N.J.; Barile, C.; Velu, P.S.; Baskaran, T.; Jappes, J.T.W.; Al-Khashman, O.A.; Brykov, M.; Ene, A. Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract. Polymers 2022, 14, 1700. [Google Scholar] [CrossRef]
- Beniaich, G.; Beniken, M.; Salim, R.; Arrousse, N.; Ech-chihbi, E.; Rais, Z.; Sadiq, A.; Nafidi, H.A.; Bin Jardan, Y.A.; Bourhia, M. Anticorrosive Effects of Essential Oils Obtained from White Wormwood and Arar Plants. Separations 2023, 10, 396. [Google Scholar] [CrossRef]
- Zhao, C.; Lin, B.; Zhou, X.; Zhu, J.; Duan, T.; Xu, Y. Corrosion Inhibition and Adsorption Behavior of Musa Basjoo Siebold Leaves Extract on Mild Steel in H3PO4 Solution: Experimental and Theoretical Studies. Prot. Met. Phys. Chem. Surf. 2023, 59, 1010–1027. [Google Scholar] [CrossRef]
- Mohammed, N.J.; Othman, N.K.; Al-Gburi, A.J.A.; Yusop, R.M. Date Palm Seed Extract for Mild Steel Corrosion Prevention in HCl Medium. Separations 2023, 10, 54. [Google Scholar] [CrossRef]
- Enabulele, D.O.; Bamigboye, G.O.; Solomon, M.M.; Durodola, B. Exploration of the Corrosion Inhibition Potential of Cashew Nutshell on Thermo-Mechanically Treated Steel in Seawater. Arab. J. Sci. Eng. 2023, 48, 223–237. [Google Scholar] [CrossRef]
- Abbasi, S.; Ghaffari, N.; Safa, M. Ferdosi Sumac Extract for Effective Aluminum Corrosion Inhibition in HCl Solution. J. Mater. Engin. Perf. 2023, 1–17. [Google Scholar] [CrossRef]
- Acidi, A.; Sedik, A.; Rizi, A.; Bouasla, R.; Rachedi, K.O.; Berredjem, M.; Delimi, A.; Abdennouri, A.; Ferkous, H.; Yadav, K.K.; et al. Examination of the main chemical components of essential oil of Syzygium aromaticum as a corrosion inhibitor on the mild steel in 0.5 M HCl medium. J. Mol. Liq. 2023, 391, 123423. [Google Scholar] [CrossRef]
- Lin, B.; Shao, J.; Zhao, C.; Zhou, X.; He, F.; Xu, Y. Passiflora edulis Sims peel extract as a renewable corrosion inhibitor for mild steel in phosphoric acid solution. J. Mol. Liq. 2023, 375, 121296. [Google Scholar] [CrossRef]
- Abdellattif, M.H.; Alrefaee, S.H.; Dagdag, O.; Verma, C.; Quraishi, M.A. Calotropis procera extract as an environmental friendly corrosion Inhibitor: Computational demonstrations. J. Mol. Liq. 2021, 337, 116954. [Google Scholar] [CrossRef]
- Golafshani, M.G.; Tavakoli, H.; Hosseini, S.A.; Akbari, M. MD and DFT computational simulations of Caffeoylquinic derivatives as a bio-corrosion inhibitor from quince extract with experimental investigation of corrosion protection on mild steel in 1M H2SO4. J. Mol. Struct. 2023, 1275, 134701. [Google Scholar] [CrossRef]
- Eddy, N.O.; Awe, F.; Ebenso, E.E. Adsorption and inhibitive properties of ethanol extracts of leaves of Solanum melongena for the corrosion of mild steel in 0.1 M HCl. Int. J. Electrochem. Sci. 2010, 5, 1996–2011. [Google Scholar] [CrossRef]
- Eddy, N.O.; Odiongenyi, A.O.; Ameh, P.O.; Ebenso, E.E. Corrosion inhibition potential of Daniella oliverri gum exudate for mild steel in acidic medium. Int. J. Electrochem. Sci. 2012, 7, 7425–7439. [Google Scholar] [CrossRef]
- Znini, M.; Bouklah, M.; Majidi, L.; Kharchouf, S.; Aouniti, A.; Bouyanzer, A.; Hammouti, B.; Costa, J.; Al-Deyab, S.S. Chemical composition and inhibitory effect of Mentha spicata essential oil on the corrosion of steel in molar hydrochloric acid. Int. J. Electrochem. Sci. 2011, 6, 691–704. [Google Scholar] [CrossRef]
- Barbouchi, M.; Benzidia, B.; Idrissi, M.E.; Choukrad, M. Pistacia lentiscus l. Essential oils as a green corrosion inhibitors for iron in neutral chloride media. Anal. Bioanal. Electrochem. 2019, 11, 333–348. [Google Scholar]
- Suleiman, I.Y.; Yaro, S.A.; Abdulwahab, M.; Salihu, S.A.; Ogheneme, O.C. Phytochemical and spectroanalytical characterizations of some plants extract as green corrosion inhibitors. J. Mater. Environ. Sci. 2017, 8, 3423–3432. [Google Scholar]
- Salvador, C.; Carlos, B.; Alvaro, R. Inhibitory effect of extracts of Amella radican on corrosion of carbon steel sheets in HCl solution. J. Eng. Appl. Sci. 2017, 12, 5247–5252. [Google Scholar]
- Nnaji, N.J.N.; Obi-Egbedi, N.O.; Okoye, C.O.B. Cashew nut testa tannin: Assessing its effects on the corrosion of aluminium in HCL. Portug. Electrochim. Acta 2014, 32, 157–182. [Google Scholar] [CrossRef]
- Okewale, A.; Omoruwuo, F. Neem leaf extract as a corrosion inhibitor on mild steel in acidic solution. Int. J. Eng. Res. Africa 2018, 35, 208–220. [Google Scholar] [CrossRef]
- Rosli, N.R.; Yusuf, S.M.; Sauki, A.; Razali, W.M.R.W. Musa sapientum (Banana) peels as green corrosion inhibitor for mild steel. Key Eng. Mater. 2019, 797, 230–239. [Google Scholar] [CrossRef]
- Fekkar, G.; Yousfi, F.; Elmsellem, H.; Aiboudi, M.; Ramdani, M.; Abdel-Rahman, I.; Hammouti, B.; Bouyazza, L. Eco-friendly chamaerops humilis l. Fruit extract corrosion inhibitor for mild steel in 1 M HCL. Int. J. Corros. Scale Inhib. 2020, 9, 446–459. [Google Scholar]
- Boumezzourh, A.; Ouknin, M.; Chibane, E.; Costa, J.; Bouyanzer, A.; Hammouti, B.; Majidi, L. Inhibition of tinplate corrosion in 0.5 M H2C2O4 medium by Mentha pulegium essential oil. Int. J. Corros. Scale Inhib. 2020, 9, 152–170. [Google Scholar]
- Haldhar, R.; Prasad, D.; Saxena, A.; Kaur, A. Corrosion resistance of mild steel in 0.5 M H2SO4 solution by plant extract of Alkana tinctoria: Experimental and theoretical studies. Eur. Phys. J. Plus 2018, 133, 356. [Google Scholar] [CrossRef]
- Mousaa, I.M. Preparation and comparative study of eco-friendly anticorrosion inhibitors based on aliphatic and aromatic compounds for electron beam curable steel coatings. Anti-Corros. Meth. Mater. 2020, 67, 367–377. [Google Scholar] [CrossRef]
- Thomas, A.; Prajila, M.; Shainy, K.M.; Joseph, A. A green approach to corrosion inhibition of mild steel in hydrochloric acid using fruit rind extract of Garcinia indica (Binda). J. Mol. Liq. 2020, 312, 113369. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Saxena, A.; Kumar, R. Experimental and theoretical studies of Ficus religiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. Sustain. Chem. Pharm. 2018, 9, 95–105. [Google Scholar] [CrossRef]
- Vasyliev, G.; Vorobiova, V. Rape grist extract (Brassica napus) as a green corrosion inhibitor for water systems. Mater. Today. Proc. 2019, 6, 178–186. [Google Scholar] [CrossRef]
- Agi, A.; Junin, R.; Zakariah, M.I.; Bukkapattanam, T.B. Effect of Temperature and Acid Concentration on Rhizophora mucronata Tannin as a Corrosion Inhibitor. J. Bio. Tribo. Corros. 2018, 4, 5. [Google Scholar] [CrossRef]
- Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M. Electronic/atomic level fundamental theoretical evaluations combined with electrochemical/surface examinations of Tamarindus indiaca aqueous extract as a new green inhibitor for mild steel in acidic solution (HCl 1 M). J. Taiwan Inst. Chem. Eng. 2019, 102, 349–377. [Google Scholar] [CrossRef]
- Fang, Y.; Suganthan, B.; Ramasamy, R.P. Electrochemical characterization of aromatic corrosion inhibitors from plant extracts. J. Electroanal. Chem. 2019, 840, 74–83. [Google Scholar] [CrossRef]
- Furtado, L.B.; Nascimento, R.C.; Seidl, P.R.; Guimarães, M.J.O.C.; Costa, L.M.; Rocha, J.C.; Ponciano, J.A.C.P. Eco-friendly corrosion inhibitors based on Cashew nut shell liquid (CNSL) for acidizing fluids. J. Mol. Liq. 2019, 284, 393–404. [Google Scholar] [CrossRef]
- Agi, A.; Junin, R.; Rasol, M.; Gbadamosi, A.; Gunaji, R. Treated Rhizophora mucronata tannin as a corrosion inhibitor in chloride solution. PLoS ONE 2018, 13, e0200595. [Google Scholar] [CrossRef]
- Martinez, S. Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Mater. Chem. Phys. 2003, 77, 97–102. [Google Scholar] [CrossRef]
- Fouda, A.S.; El-Etre, A.Y.; Mahmoud, M. Plant doum (Hyphaenethebaica l.) as a safe corrosion inhibitor for carbon steel in a solution of HCl. Int. J. Corros. Scale Inhib. 2021, 10, 1547–1565. [Google Scholar]
- Fouda, A.E.A.S.; Salem, A.M.; Wahba, A.M.; Abd El-Maksous, S.A.; El-Haddad, M.N. Experimental and theoretical optimization of Chelidonium Majus (Papaveraceae) extract as an environmentally friendly inhibitor for corrosion of α-brass in nitric acid solution. Mater. Prot. 2023, 64, 239–255. [Google Scholar] [CrossRef]
- Okeniyi, J.O.; Okeniyi, E.T.; Ogunlana, O.O.; Owoeye, T.F.; Ogunlana, O.E. Investigating biochemical constituents of Cymbopogon citratus leaf: Prospects on total corrosion of concrete steel-reinforcement in acidic-sulphate medium. In TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings Part F6; Springer: Berlin/Heidelberg, Germany, 2017; pp. 341–351. [Google Scholar]
- Lin, B.L.; Shao, J.J.; Xu, Y.Y.; Lai, Y.M.; Zhao, Z.N. Adsorption and corrosion of renewable inhibitor of Pomelo peel extract for mild steel in phosphoric acid solution. Arab. J. Chem. 2021, 14, 103114. [Google Scholar] [CrossRef]
- Hassannejad, H.; Nouri, A. Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution. J. Mol. Liq. 2018, 254, 377–382. [Google Scholar] [CrossRef]
- Hussin, M.H.; Rahim, A.A.; Mohamad Ibrahim, M.N.; Brosse, N. Improved corrosion inhibition of mild steel by chemically modified lignin polymers from Elaeis guineensis agricultural waste. Mater. Chem. Phys. 2015, 163, 201–212. [Google Scholar] [CrossRef]
- Hajar, H.M.; Zulkifli, F.; Mohd Sabri, M.G.; Fitriadhy, A.; Wan, W.B. Nik Lawsonia inermis performance as corrosion inhibitor for mild steel in seawater. Int. J. ChemTech Res. 2016, 9, 600–608. [Google Scholar]
- Luo, X.; Chen, B.; Li, J.; Lan, B.; Zhou, C.; Ren, Z.; Ci, C.; Liu, Y. Synthesis of natural glucomannan derivative as a highly-efficient green inhibitor for mild steel in the simulated seawater. J. Ind. Engin. Chem. 2023, 124, 132–146. [Google Scholar] [CrossRef]
- Singh, A.; Ebenso, E.E.; Quraishi, M.A. Corrosion Inhibition of Carbon Steel in HCl Solution by Some Plant Extracts. Int. J. Corros. 2012, 2012, 897430. [Google Scholar] [CrossRef]
- Bilgiç, S. Plant extracts as corrosion inhibitors for mild steel in HCl media—Review I. Int. J. Corros. Scale Inhib. 2021, 10, 145–175. [Google Scholar]
- Bilgiç, S. Plant extracts as corrosion inhibitors for mild steel in H2SO4 and H3PO4 media—Review II. Int. J. Corros. Scale Inhib. 2022, 11, 1–42. [Google Scholar]
- Daouda, D.; Douadi, T.; Ghobrini, D.; Lahouel, N.; Hamani, H. Investigation of some phenolic-type antioxidants compounds extracted from biodiesel as green natural corrosion inhibitors; DFT and molecular dynamic simulation, comparative study. AIP Conf. Proc. 2019, 2190, 020098. [Google Scholar]
- Ghelichkhah, Z.; Dehkharghani, F.K.; Sharifi-Asl, S.; Obot, I.B.; Macdonald, D.D.; Farhadi, K.; Avestan, M.S.; Petrossians, A. The inhibition of type 304LSS general corrosion in hydrochloric acid by the New Fuchsin compound. Corros. Sci. 2021, 178, 109072. [Google Scholar] [CrossRef]
- Ganjoo, R.; Verma, C.; Kumar, A.; Quraishi, M.A. Colloidal and interface aqueous chemistry of dyes: Past, present and future scenarios in corrosion mitigation. Adv. Coll. Interf. Sci. 2023, 311, 102832. [Google Scholar] [CrossRef]
- Buier, R.; Szabo, G.S.; Katona, G.; Muntean, N.; Muresan, L.M. Influence of pH on the Inhibiting Characteristics of Cresol Red Incorporated in Chitosan Coatings on Zinc. Metals 2023, 13, 1958. [Google Scholar] [CrossRef]
- Fouda, A.S.; Mostafa, H.A.; El-Abbasy, H.M. Antibacterial drugs as inhibitors for the corrosion of stainless steel type 304 in HCl solution. J. Appl. Electrochem. 2010, 40, 163–173. [Google Scholar] [CrossRef]
- Adardour, L.; Lgaz, H.; Salghi, R.; Larouj, M.; Jodeh, S.; Zougagh, M.; Hamed, O.; Taleb, M. Corrosion inhibition of steel in phosphoric acid by Sulfapyridine: Experimental and theoretical studies. Der Pharm. Lett. 2016, 8, 173–185. [Google Scholar]
- Tasić, Ž.Z.; Petrović Mihajlović, M.B.; Radovanović, M.B.; Simonović, A.T.; Antonijević, M.M. Experimental and theoretical studies of paracetamol as a copper corrosion inhibitor. J. Mol. Liq. 2021, 327, 114817. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Rhee, K.Y. Present and emerging trends in using pharmaceutically active compounds as aqueous phase corrosion inhibitors. J. Mol. Liq. 2021, 328, 115395. [Google Scholar] [CrossRef]
- Ituen, E.; Akaranta, O.; James, A. Influence of Clomipramine-Based Blends on Corrosion Behaviour of J55 Steel in Simulated Oilfield Acidizing Solution. J. Bio. Tribo. Corros. 2017, 3, 23. [Google Scholar] [CrossRef]
- Abeng, F.E.; Ikpi, M.E.; Okafor, P.C.; Anadebe, V.C.; Chukwuike, V.I.; Uwakwe, K.J.; Ikeuba, A.I.; Okafor, N.A.; Anaekwe, N.O. Corrosion inhibition of API 5L X-52 pipeline steel in oilfield acidizing solution by gentamicin and sulfamethoxazole: Experimental, plane-wave density functional theory (PWDFT) and the generalized-gradient approximation (GGA) simulations. J. Adhes. Sci. Technol. 2022, 36, 2438–2461. [Google Scholar] [CrossRef]
- Monisha, R.; Ramkumar, S.; Nalini, D. Experimental and density function theory calculations to investigate the adsorption of an anti-inflammatory drug on aluminum surface in acid solution. NACE Int. Corr. Conf. Ser. 2016, 4, 2703–2717. [Google Scholar]
- Bedair, M.A.; Abuelela, A.M.; Alshareef, M.; Owda, M.; Eliwa, E.M. Ethyl ester/acyl hydrazide-based aromatic sulfonamides: Facile synthesis, structural characterization, electrochemical measurements and theoretical studies as effective corrosion inhibitors for mild steel in 1.0 M HCl. RSC Adv. 2022, 13, 186–211. [Google Scholar] [CrossRef] [PubMed]
- El-Haddad, M.N.; Fouda, A.E.A.S. Evaluation of Curam drug as an ecofriendly corrosion inhibitor for protection of stainless steel-304 in hydrochloric acid solution: Chemical, electrochemical, and surface morphology studies. J. Chin. Chem. Soc. 2021, 68, 826–836. [Google Scholar] [CrossRef]
- Fouda, A.S.; El-Abbasy, H.M. Inhibitive action of ampicillin and benzyl penicillin drugs for corrosion of type 304 stainless steel in 1.0 M HCl solution. Corrosion 2012, 68, 015002. [Google Scholar] [CrossRef]
- Fouda, A.S.; El-Ewady, G.; Ali, A.H. Modazar as promising corrosion inhibitor of carbon steel in hydrochloric acid solution. Green Chem. Lett. Rev. 2017, 10, 88–100. [Google Scholar] [CrossRef]
- Beltran-Perez, C.; Serrano, A.A.A.; Solis-Rosas, G.; Martinez-Jimenez, A.; Orozco-Cruz, R.; Espinoza-Vazquez, A.; Miralrio, A. A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine. Int. J. Mol. Sci. 2022, 23, 5086. [Google Scholar] [CrossRef]
- Chen, W.; Xiao, W. Corrosion Inhibition Effect of flubendazole for Carbon Steel in 0.5 M H2SO4. Int. J. Electrochem. Sci. 2022, 17, 220427. [Google Scholar] [CrossRef]
- Arslan, T.; Kandemirli, F.; Ebenso, E.E.; Love, I.; Alemu, H. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros. Sci. 2009, 51, 35–47. [Google Scholar] [CrossRef]
- Murulana, L.C.; Kabanda, M.M.; Ebenso, E.E. Investigation of the adsorption characteristics of some selected sulphonamide derivatives as corrosion inhibitors at mild steel/hydrochloric acid interface: Experimental, quantum chemical and QSAR studies. J. Mol. Liq. 2016, 215, 763–779. [Google Scholar] [CrossRef]
- Vaszilcsin, N.; Kellenberger, A.; Dan, M.L.; Duca, D.A.; Ordodi, V.L. Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review. Materials 2023, 16, 5555. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; He, S.; Wu, C.; Chen, Z.; Cen, H. Corrosion inhibition of extracts from the expired traditional Chinese patent medicines for Q235 carbon steel in hydrochloric acid. Sust. Chem. Pharm. 2023, 36, 101326. [Google Scholar] [CrossRef]
- El-Haddad, M.N.; Fouda, A.S. Inhibition Effect and Adsorption Behavior of New Azodye Derivatives on Corrosion of Carbon Steel in Acid Medium. J. Dispers. Sci. Technol. 2013, 34, 1471–1480. [Google Scholar] [CrossRef]
- Alrazzak, N.A. Synthesis of New Azo Compounds Based on 4-Aminosalicylic Acid and Study Anti-Corrosive Activity. Bull. Chem. Soc. Ethiopia 2024, 38, 473–479. [Google Scholar] [CrossRef]
- Ramkumar, S.; Nalini, D.; Quraishi, M.A.; Ebenso, E.E.; Verma, C. Anti-corrosive property of bioinspired environmental benign imidazole and isoxazoline heterocyclics: A cumulative studies of experimental and DFT methods. J. Heterocyc. Chem. 2020, 57, 103–119. [Google Scholar] [CrossRef]
- Song, X.; Qiu, G.; Qu, P.; Yang, H.; He, X. Density function theory studies on the structure of AMT inhibitor. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2006, 21, 61–64. [Google Scholar]
- Oyeneyin, O.E.; Ojo, N.D.; Ipinloju, N.; Agbaffa, E.B.; Emmanuel, A.V. Investigation of the corrosion inhibition potentials of some 2-(4-(substituted) arylidene)-1H-indene-1,3-dione derivatives: Density functional theory and molecular dynamics simulation. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 132. [Google Scholar] [CrossRef]
- Shafi, A.; Timiri Sathyamurthy, R.D.; Seetharaman, J.; Sambanthan, M.; Murugesan, R.; Sundaram, S.; Bhanumathy Ramarathinam, R. Molecular docking, quantum chemical computational and vibrational studies on bicyclic heterocycle “6-nitro-2,3-dihydro-1,4-benzodioxine”: Anti-cancer agent. Comp. Biol. Chem. 2020, 86, 107226. [Google Scholar] [CrossRef]
- Holze, R. Optical and Electrochemical Band Gaps in Mono-, Oligo-, and Polymeric Systems: A Critical Reassessment. Organometallics 2014, 33, 5033–5042. [Google Scholar] [CrossRef]
- Sastri, V.S.; Perumareddi, J.R. Selection of Corrosion Inhibitors for Use in Sour Media. Corrosion 1994, 50, 432–437. [Google Scholar] [CrossRef]
- Sayós, R.; González, M.; Costa, J.M. On the use of quantum chemical methods as an additional tool in studying corrosion inhibitor substances. Corros. Sci. 1986, 26, 927–934. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roscher, J.; Liu, D.; Xie, X.; Holze, R. Aromatic Metal Corrosion Inhibitors. Corros. Mater. Degrad. 2024, 5, 513-560. https://doi.org/10.3390/cmd5040024
Roscher J, Liu D, Xie X, Holze R. Aromatic Metal Corrosion Inhibitors. Corrosion and Materials Degradation. 2024; 5(4):513-560. https://doi.org/10.3390/cmd5040024
Chicago/Turabian StyleRoscher, Jessica, Dan Liu, Xuan Xie, and Rudolf Holze. 2024. "Aromatic Metal Corrosion Inhibitors" Corrosion and Materials Degradation 5, no. 4: 513-560. https://doi.org/10.3390/cmd5040024
APA StyleRoscher, J., Liu, D., Xie, X., & Holze, R. (2024). Aromatic Metal Corrosion Inhibitors. Corrosion and Materials Degradation, 5(4), 513-560. https://doi.org/10.3390/cmd5040024