Acoustic Performance-Based Design: A Brief Overview of the Opportunities and Limits in Current Practice
Abstract
:1. Introduction
1.1. Performance-Based Design
1.2. Performance-Based Design in Acoustics
1.3. Objectives
2. Research Methods
2.1. Selection of Case Studies
2.2. Case Studies
2.2.1. Music Venues
The Philharmonie de Paris
Elbphilharmonie Concert Hall
Anneliese Brost Musikforum Ruhr
Concert Hall of Ureshino Cultural Center
University of Iowa Concert Hall
Symphony Hall of the Fuzhou Strait Culture and Art Centre
Opera Hall of the Fuzhou Strait Culture and Art Centre
Conga Room
Stage by the Sea
Resonant String Shell (ReS) 6.0
Soundforms
Tiara Acoustic Shell
Aalborg Acoustic Pavilion 2011
Aalborg Acoustic Pavilion 2012
Resonant Chamber
Courtyard Enclosure of Smithsonian Institute
2.2.2. Other Spaces
FabPod
Manufacturing Parametric Acoustic Surfaces (MPAS) Project
Distortion II
3. Discussion
3.1. Architecture and APBD
3.2. Digital Workflows in APBD
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, X. Performance-based and performance-driven architectural design and optimization. Front. Arch. Civ. Eng. China 2010, 4, 512–518. [Google Scholar] [CrossRef]
- Shi, X.; Yang, W. Performance-driven architectural design and optimization technique from a perspective of architects. Autom. Constr. 2013, 32, 125–135. [Google Scholar] [CrossRef]
- Turrin, M.; Von Buelow, P.; Stouffs, R. Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms. Adv. Eng. Inform. 2011, 25, 656–675. [Google Scholar] [CrossRef]
- Grobman, Y.J.; Ron, R. Digital Form Finding: Generative use of simulation processes by architects in the early stages of the design process. In Proceedings of the 29th Education and research in Computer Aided Architectural Design in Europe (eCAADe) Conference, Ljubljana, Slovenia, 21–24 Semptember 2011; pp. 107–115. [Google Scholar] [CrossRef]
- Chong, Y.T.; Chen, C.H.; Leong, K.F. A heuristic-based approach to conceptual design. Res. Eng. Des. 2009, 20, 97–116. [Google Scholar] [CrossRef]
- Wang, J. Improved engineering design concept selection using fuzzy sets. Int. J. Comput. Integr. Manuf. 2002, 15, 18–27. [Google Scholar] [CrossRef]
- Méndez Echenagucia, T.; Capozzoli, A.; Cascone, Y.; Sassone, M. The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Appl. Energy 2015, 154, 577–591. [Google Scholar] [CrossRef]
- Lu, S.; Yan, X.; Li, J.; Xu, W. The influence of shape design on the acoustic performance of concert halls from the viewpoint of acoustic potential of shapes. Acta Acust. United Acust. 2016, 102, 1027–1044. [Google Scholar] [CrossRef]
- Paulson, B.C., Jr. Designing to Reduce Construction Costs. J. Constr. Div. 1976, 102, 587–592. [Google Scholar] [CrossRef]
- Marble, S. Digital Workflows in Architecture: Design–Assembly–Industry; Birkhauser: Basel, Switzerland, 2012. [Google Scholar]
- Méndez Echenagucia, T. Computational Search in Architectural Design. Ph.D. Thesis, Polytechnic University of Turin, Turin, Italy, 2013. [Google Scholar]
- Reinhardt, D.; Martens, W.L.; Miranda, L. Acoustic Consequences of Performative Structures—Modelling dependencies between spatial formation and acoustic behaviour. In Proceedings of the 30th Education and research in Computer Aided Architectural Design in Europe (eCAADe) Conference, Prague, Czech Republic, 12–14 September 2012; pp. 577–586. [Google Scholar]
- Becker, R. Fundamentals of performance-based building design. Build. Simul. 2008, 1, 356–371. [Google Scholar] [CrossRef]
- Hensel, M. Performance-Oriented Architecture: Rethinking Architectural Design and the Built Environment; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Kolarevic, B.; Malkawi, A. Performative Architecture: Beyond Instrumentality; Routledge: Abingdon-on-Thames, UK, 2005. [Google Scholar] [CrossRef]
- Holzer, D. Design exploration supported by digital tool ecologies. Autom. Constr. 2016, 72, 3–8. [Google Scholar] [CrossRef]
- Jensen, M.B. Robotic Fabrication of Acoustic Geometries—An explorative and creative design process within an educational context. ArchiDOCT 2019, 6, 34–45. [Google Scholar]
- Oxman, R. Performance-Based Design: Current Practices and Research Issues. Int. J. Arch. Comput. 2008, 6, 1–17. [Google Scholar] [CrossRef]
- Oxman, R. Theory and design in the first digital age. Des. Stud. 2006, 27, 229–265. [Google Scholar] [CrossRef]
- Rutten, D. Grasshopper. Available online: http://www.grasshopper3d.com/ (accessed on 18 March 2020).
- Rhinoceros. Available online: http://www.rhino3d.com/ (accessed on 18 March 2020).
- GenerativeComponents. Available online: https://www.bentley.com/en/products/product-line/modeling-and-visualization-software/generativecomponents (accessed on 18 March 2020).
- Flager, F.; Haymaker, J. A comparison of multidisciplinary design, analysis and optimization processes in the building construction and aerospace industries. In Proceedings of the 24th W78 Conference, Maribor, Slovenia, 27–29 June 2007; pp. 625–630. [Google Scholar] [CrossRef]
- Rutten, D. Galapagos. Available online: http://www.grasshopper3d.com/group/galapagos (accessed on 18 March 2020).
- Vierlinger, R. Octopus. Available online: http://www.food4rhino.com/app/octopus (accessed on 18 March 2020).
- Tang, M.; Anderson, J.; Aksamija, A.; Hodge, M. Performace-based Generative Design: An investigation of the parametric nature of architecture. In Proceedings of the 100th Association of Collegiate Schools of Architecture (ACSA) Annual Meeting, Boston, MA, USA, 1–4 March 2012; Volume 2, pp. 1–8. [Google Scholar]
- Bassuet, A.; Rife, D.; Dellatorre, L. Computational and Optimization Design in Geometric Acoustics. Build. Acoust. 2014, 21, 75–85. [Google Scholar] [CrossRef]
- Takenaka, T.; Okabe, A. A Computational Method for Integrating Parametric Origami Design and Acoustic Engineering. Comput. Perform. 2013, 2, 289–296. [Google Scholar]
- World Health Organization. Environmental Noise Guidelines for the European Region. 2018. Available online: http://www.euro.who.int/en/publications/abstracts/environmental-noise-guidelines-for-the-european-region-2018 (accessed on 18 March 2020).
- Di Blasio, S.; Shtrepi, L.; Puglisi, G.E.; Astolfi, A. A Cross-Sectional Survey on the Impact of Irrelevant Speech Noise on Annoyance, Mental Health and Well-being, Performance and Occupants’ Behavior in Shared and Open-Plan Offices. Int. J. Environ. Res. Public Health 2019, 16, 280. [Google Scholar] [CrossRef] [Green Version]
- Reinten, J.; Braat-Eggen, P.E.; Hornikx, M.; Kort, H.S.M.; Kohlrausch, A. The indoor sound environment and human task performance: A literature review on the role of room acoustics. Build. Environ. 2017, 123, 315–332. [Google Scholar] [CrossRef]
- Badino, E.; Manca, R.; Shtrepi, L.; Calleri, C.; Astolfi, A. Effect of façade shape and acoustic cladding on reduction of leisure noise levels in a street canyon. Build. Environ. 2019, 157, 242–256. [Google Scholar] [CrossRef]
- ISO 3382-1:2009. Acoustics—Measurement of room acoustic parameters. Part 1: Performance spaces. Int. Organ. Stand. 2009. Available online: https://www.iso.org/standard/40979.html (accessed on 18 March 2020).
- ISO 3382-2:2009. Acoustics—Measurement of room acoustics parameters. Part 2: Reverberation time in ordinary rooms. Int. Organ. Stand. 2009. Available online: https://www.iso.org/standard/36201.html (accessed on 18 March 2020).
- Shtrepi, L.; Astolfi, A.; D’Antonio, G.; Guski, M. Objective and perceptual evaluation of distance-dependent scattered sound effects in a small variable-acoustics hall. J. Acoust. Soc. Am. 2016, 140, 3651–3662. [Google Scholar] [CrossRef]
- Bo, E.; Astolfi, A.; Pellegrino, A.; Pelegrin-Garcia, D.; Puglisi, G.E.; Shtrepi, L.; Rychtarikova, M. The modern use of ancient theatres related to acoustic and lighting requirements: Stage design guidelines for the Greek theatre of Syracuse. Energy Build. 2015, 95, 106–115. [Google Scholar] [CrossRef]
- Cox, T.J.; D’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application; Spon Press: London, UK, 2004. [Google Scholar]
- Odeon. Available online: http://odeon.dk/ (accessed on 18 March 2020).
- CATT-Acoustic. Available online: https://www.catt.se/ (accessed on 18 March 2020).
- Van der Harten, A. Pachyderm Acoustics. Available online: http://www.perspectivesketch.com/pachyderm/ (accessed on 18 March 2020).
- Lokki, T.; Southern, A.; Siltanen, S.; Savioja, L. Acoustics of epidaurus—Studies with room acoustics modelling methods. Acta Acust. United Acust. 2013, 99, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Shtrepi, L.; Hamilton, B.; Astolfi, A.; Masoero, M. Preliminary results of scattering surface modeling and perceptual aspects in wave-based acoustic simulations. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany, 9–13 September 2019; pp. 5990–5993. [Google Scholar] [CrossRef]
- Orazio, D.D.; Fratoni, G.; Rovigatti, A.; Hamilton, B. Numerical simulations of Italian opera houses using geometrical and wave-based acoustics methods. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany, 9–13 September 2019; pp. 5994–5996. [Google Scholar]
- Lu, S.; Yan, X.; Xu, W.; Chen, Y.; Liu, J. Improving auditorium designs with rapid feedback by integrating parametric models and acoustic simulation. Build. Simul. 2016, 9, 235–250. [Google Scholar] [CrossRef]
- Negendahl, K. Building performance simulation in the early design stage: An introduction to integrated dynamic models. Autom. Constr. 2015, 54, 39–53. [Google Scholar] [CrossRef]
- Mirra, G.; Pignatelli, E.; Di Rosario, S. An automated design methodology for acoustic shells in outdoor concerts. In Proceedings of the Euronoise, Crete, Greece, 27–31 May 2018; pp. 2123–2130. [Google Scholar]
- Peters, B. Parametric Acoustic Surfaces. In reForm(), Proceedings of the Association for Computer Aided Design in Architecture 2009 Conference, Chicago, USA, 22–25 Octorber 2009; Sterk, T.D.E., Loveridge, R., Pancoast, D., Eds.; pp. 174–181. Available online: https://adk.elsevierpure.com/en/publications/parametric-acoustic-surfaces (accessed on 18 March 2020).
- Peters, B. Integrating Acoustic Analysis in the Architectural Design Process using Parametric Modeling; Forum Acusticum: Aalborg, Denmark, 2011; pp. 1589–1594. [Google Scholar]
- Wortmann, T.; Tunçer, B. Differentiating parametric design: Digital workflows in contemporary architecture and construction. Des. Stud. 2017, 52, 173–197. [Google Scholar] [CrossRef]
- Scopus. Available online: https://www.scopus.com (accessed on 18 March 2020).
- Research Gate. Available online: https://www.researchgate.net/ (accessed on 18 March 2020).
- Alias System Corporation; Autodesk, Autodesk Maya. Available online: https://www.autodesk.com/products/maya/overview (accessed on 18 March 2020).
- Day, C.; Marshall, H.; Scelo, T.; Valentine, J.; Exton, P. The Philharmonie de Paris—Acoustic design and commissioning. Proceedings of Acoustics 2016: The Second Australasian Acoustical Societies Conference, Brisbane, Australia, 9–11 November 2016; pp. 1–15. [Google Scholar]
- McGar, J. The Acoustic Feats of the World’s Costliest Concert Hall. 2015. Available online: https://sourceable.net/acoustic-feats-worlds-costliest-concert-hall/ (accessed on 18 March 2020).
- Philharmonie de Paris. Available online: http://www.nagata.co.jp/e_sakuhin/factsheets/PdP.pdf (accessed on 18 March 2020).
- Marshall, H. Implementing the acoustical concept for the Philharmonie de Paris, Grande Salle. In Proceedings of the Institute of Acoustics; Institute of Acoustics (IOA): Paris, France, 29–31 October 2015; Volume 37, Pt 3, pp. 118–127. [Google Scholar]
- Kahle, E.; Wulfrank, T.; Jurkiewicz, Y.; Faillet, N. Philharmonie de Paris—The Acoustic Brief. In Proceedings of the Institute of Acoustics; Institute of Acoustics (IOA): Paris, France, 29–31 October 2015; Volume 37, Pt 3, pp. 105–110. [Google Scholar]
- Scelo, T. Integration of acoustics in parametric architectural design. Acoust. Aust. 2015, 43, 59–67. [Google Scholar] [CrossRef]
- Philharmonie de Paris—Information Sheet. Available online: http://www.kahleacoustics.com/en/ref/philharmonie.html# (accessed on 18 March 2020).
- Khan, N. An Algorithm Designed a Hamburg Concert Hall’s Interior, Creating the Ideal Acoustic Experience. 2017. Available online: https://qz.com/894929/an-algorithm-designed-a-hamburg-concert-halls-interior-creating-the-ideal-acoustic-experience/ (accessed on 18 March 2020).
- Elbphilharmonie Hamburg Grosser Saal. Available online: http://www.nagata.co.jp/e_sakuhin/factsheets/Elbphilharmonie.pdf (accessed on 18 March 2020).
- Stinson, E. What Happens When Algorithms Design a Concert Hall? The Stunning Elbphilharmonie. 2017. Available online: https://www.wired.com/2017/01/happens-algorithms-design-concert-hall-stunning-elbphilharmonie/ (accessed on 18 March 2020).
- Oguchi, K. Highlights of Room Acoustics and Sound Isolation Design. 2017. Available online: http://www.nagata.co.jp/e_news/news1702-e.html (accessed on 18 March 2020).
- Architectural Details: Herzog & de Meuron’s Spectacular Elbphilharmonie. 2016. Available online: https://architizer.com/blog/architectural-details-herzog-de-meuron-elbphilharmonie/ (accessed on 18 March 2020).
- Mommertz, E.; Kahle, E. The Bochum Concert Hall—The challenge of small concert halls for large orchestras on low budget. In Proceedings of the Institute of Acoustics; Institute of Acoustics (IOA): Cardiff, UK, 4–6 October 2018; Volume 40, Pt 1, pp. 174–181. [Google Scholar]
- Anneliese Brost Musikforum Ruhr. Available online: https://www.architonic.com/en/project/bez-kock-architekten-anneliese-brost-musikforum-ruhr/5106249 (accessed on 18 March 2020).
- Musikzentrum Bochum—Information Sheet. Available online: http://www.khale.be/en/ref/bochum.html# (accessed on 18 March 2020).
- Nishiyama, Y. Miura folding: Applying Origami to space exploration. Int. J. Pure Appl. Math. 2012, 79, 269–279. [Google Scholar]
- Ureshino Cultural Center. 2014. Available online: http://www.suep.jp/Ureshino_cultural_center/text_inE.html (accessed on 18 March 2020).
- @Last Software; Google, SketchUp. Available online: https://www.sketchup.com/ (accessed on 18 March 2020).
- Autodesk Revit. Available online: http://www.autodesk.com/revit (accessed on 18 March 2020).
- Garber, R. Workflows: Expanding Architecture’s Territory in the Design and Delivery of Buildings; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Theatroacoustic System for University of Iowa Concert Hall. Available online: https://lmnarchitects.com/case-study/theatroacoustic-system-concert-hall (accessed on 18 March 2020).
- Cornachio, J. Behind the Building: Voxman Music Building by LMN Architects. Available online: https://architizer.com/blog/practice/materials/behind-voxman-music-building/ (accessed on 18 March 2020).
- Jurkiewicz, Y.; Wulfrank, T.; Kahle, E. Architectural shape and early acoustic efficiency in concert halls (L). J. Acoust. Soc. Am. 2012, 132, 1253–1256. [Google Scholar] [CrossRef]
- Jurkiewicz, Y.; Moller, H.; Wulfrank, T.; Wang, J.; Kahle, E. Acoustic Optimization of Curved Architecture in Practice: The New Straight Cultural Arts Center in Fuzhou. In Proceedings of the International Symposium on Room Acoustics, Amsterdam, Netherlands, 15–17 September 2019; pp. 401–408. [Google Scholar]
- Wulfrank, T.; Jurkiewicz, Y.; Kahle, E. Design-Focused Acoustic Analysis of Curved Geometries using a Differential Raytracing Technique. Build. Acoust. 2014, 21, 87–96. [Google Scholar] [CrossRef]
- García Gòmez, J.Ó.; Kahle, E.; Wulfrank, T. Shaping concert halls. In Proceedings of the EuroRegio, Porto, Portugal, 13–15 June 2016. [Google Scholar]
- CATIA. Available online: http://www.3ds.com/products-services/catia/ (accessed on 18 March 2020).
- Square One Research; Autodesk, Ecotect Analysis. Available online: https://www.autodesk.com/education/free-software/ecotect-analysis (accessed on 18 March 2020).
- Minutillo, J. When the Whole Is Greater Than the Sum of Its Parts. 2009. Available online: https://continuingeducation.bnpmedia.com/courses/areditorial/when-the-whole-is-greater-than-the-sum-of-its-parts/ (accessed on 18 March 2020).
- The Conga Room/Belzberg Architects. 2011. Available online: http://www.archdaily.com/160584/the-conga-room-belzberg-architects (accessed on 18 March 2020).
- Conga Room at LA Live. Available online: http://belzbergarchitects.com/project/conga-room/ (accessed on 18 March 2020).
- The Conga Room, Los Angeles. Available online: http://www.designcurial.com/projects/the_conga_room_los_angeles (accessed on 18 March 2020).
- Dynamo. Available online: http://dynamobim.org/ (accessed on 18 March 2020).
- Fang, D. Shells for the Senses: The Multidisciplinary Success of Stage by the Sea. 2016. Available online: https://formfindinglab.wordpress.com/2016/09/21/shells-for-the-senses-the-multidisciplinary-success-of-stage-by-the-sea/ (accessed on 18 March 2020).
- Flanagan, J. Acoustic Shells. Shotcrete 2015, 17, 16–19. [Google Scholar]
- Griffiths, A. Shell-Shaped Shelter by Flanagan Lawrence Built on Littlehampton Seafront. 2014. Available online: https://www.dezeen.com/2014/07/22/flanagan-lawrence-acoustic-shells-shelter-stage-littlehampton/ (accessed on 18 March 2020).
- Flanagan Lawrence—Acoustic Shells. Available online: https://theplan.it/eng/webzine/the-plan-award-2015/acoustic-shells#sthash.XmPPnnkv.dpbs (accessed on 18 March 2020).
- Acoustic Shells. Available online: http://flanaganlawrence.com/project/acoustic-shells/ (accessed on 18 March 2020).
- Soundforms. Available online: https://www.flanaganlawrence.com/soundforms (accessed on 18 March 2020).
- The Park’s Bandstand—A Built Environment Story. Available online: http://www.beyond2012.org.uk/sounforms-the-parks-bandstand/ (accessed on 18 March 2020).
- Bavister, P. Soundforms. (n.d.) 405–421. Available online: https://www.academia.edu/6385238/The_design_development_and_fabrication_of_a_11_scale_mobile_acoustic_performance_shell_prototype (accessed on 28 April 2020).
- Boning, W.; Acoustics, A.; Bassuet, A.; Rise, T.; Shell, G. A Room Without Walls: Optimizing an Outdoor Music Shell To Maintain Views and Maximize Reflections. In Proceedings of the Institute of Acoustics; Institute of Acoustics (IOA): Paris, France, 29–31 October 2015; pp. 332–341. [Google Scholar]
- Foged, I.W.; Pasold, A.; Brath, M. Acoustic Environments: Applying Evolutionary Algorithms for Sound Based Morphogenesis. In Proceedings of the 30th Education and research in Computer Aided Architectural Design in Europe (eCAADe) Conference, Prague, Czech Republic, 12–14 September 2012; pp. 347–353. [Google Scholar]
- Furuto, A. Acoustic Environments/AREA and Electrotexture Lab. 2011. Available online: https://www.archdaily.com/170078/acoustic-environments-area-and-electrotexture-lab (accessed on 18 March 2020).
- Foged, I.W.; Pasold, A.; Jensen, M.B. Evolution of an Instrumental Architecture. In Proceedings of the 32nd Education and research in Computer Aided Architectural Design in Europe (eCAADe) Conference, Newcastle upon Tyne, UK, 10–12 Semptember 2014; pp. 365–372. [Google Scholar]
- Piker, D. Kangaroo. Available online: http://kangaroo3d.com/ (accessed on 18 March 2020).
- Resonant Chamber. Available online: http://www.rvtr.com/projects/resonant-chamber (accessed on 18 March 2020).
- Anderson, L. Origami in Stereo: Welcome to the Sound Cloud! Available online: https://architizer.com/blog/resonant-chamber-rvtr/ (accessed on 18 March 2020).
- Filipetti, J. Rvtr: Resonant Chamber Origami Architectural Acoustic Panels. Available online: http://www.designboom.com/technology/rvtr-resonant-chamber-origami-architectural-acoustic-panels/ (accessed on 18 March 2020).
- Grozdanic, L. Resonant Chamber Is An Acoustically Responsive Envelope. Available online: http://www.evolo.us/architecture/resonant-chamber-is-an-acoustically-responsive-envelope/ (accessed on 18 March 2020).
- Thün, G.; Velikov, K.; Ripley, C.; Sauvé, L.; McGee, W. Soundspheres: Resonant Chamber. Leonardo 2012, 45, 348–357. [Google Scholar] [CrossRef]
- Peters, B. Acoustic Performance as a Design Driver: Sound Simulation and Parametric Modeling using SmartGeometry. Int. J. Arch. Comput. 2011, 8, 337–358. [Google Scholar] [CrossRef]
- Peters, B. The Smithsonian Courtyard Enclosure: A case-study of digital design processes. Acadia 2007, 2007, 74–83. [Google Scholar]
- Smithsonian Institution. Available online: http://www.bradypeters.com/smithsonian.html (accessed on 18 March 2020).
- Smithsonian Selects Norman Foster to Design New Atrium for Historic Home of two Museum. Available online: https://www.fosterandpartners.com/news/archive/2004/03/smithsonian-selects-norman-foster-to-design-new-atrium-for-historic-home-of-two-museums/ (accessed on 18 March 2020).
- Williams, N.; Burry, J.; Davis, D.; Peters, B.; Pena De Leon, A.; Burry, M. FabPod: Designing with temporal flexibility & relationships to mass-customisation. Autom. Constr. 2015, 51, 124–131. [Google Scholar] [CrossRef]
- Williams, N.; Davis, D.; Peters, B.; Pena de Leon, A.; Burry, J.; Burry, M. Fabpod: An open design-to-fabrication system. In Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013), Singapore, 2013; pp. 251–260. [Google Scholar]
- Burry, J.; Williams, N.; Cherrey, J.; Peters, B. Fabpod: Universal Digital Workflow, Local Prototype Materialization. In Proceedings of the 15th International Conference on Computer-Aided Architectural Design Futures, Shanghai, China, 3–5 July 2013; pp. 176–186. [Google Scholar]
- Burry, M. FabPod. Available online: https://mcburry.net/fabpod/ (accessed on 18 March 2020).
- Davis, D. FabPod. Available online: https://www.danieldavis.com/fabpod/ (accessed on 18 March 2020).
- Peters, B. Integrating acoustic simulation in architectural design workflows: The FabPod meeting room prototype. Simulation 2015, 91, 787–808. [Google Scholar] [CrossRef]
- Wong, K. Shaped by Number. 2010. Available online: http://www.cgw.com/Publications/CGW/2010/Volume-33-Issue-9-October-2010-/Shaped-by-Number.aspx (accessed on 18 March 2020).
- Peters, B. Complex Surfaces—Sound and Space Defining Surfaces for Architecture. Available online: https://kadk.dk/case/complex-surfaces-sound-and-space-defining-surfaces-architecture (accessed on 18 March 2020).
- Manufacturing Parametric Acoustic Surfaces. Available online: http://www.bradypeters.com/smartgeometry-2010.html (accessed on 18 March 2020).
- Peters, B.; Tamke, M.; Nielsen, S.A.; Vestbjerg Andersen, S.; Haase, M. Responsive Acoustic Surfaces, in: Respect. In Proceedings of the 29th Education and research in Computer Aided Architectural Design in Europe (eCAADe) Conference, Ljubljana, Slovenia, 21–24 Semptember 2011; pp. 819–828. [Google Scholar]
- Pelegrín-García, D. Comment on “Increase in voice level and speaker comfort in lecture rooms” [J. Acoust. Soc. Am. 125, 2072–2082 (2009)] (L). J. Acoust. Soc. Am. 2011, 129, 1161–1164. [Google Scholar] [CrossRef]
- Project Distortion II. Available online: http://www.bradypeters.com/project-distortion-ii.html (accessed on 18 March 2020).
- SU2Odeon Plugin for SketchUp. Available online: https://odeon.dk/downloads/su2odeon/ (accessed on 18 March 2020).
- ACOUCOU. Available online: https://acoucou.org/ (accessed on 18 March 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badino, E.; Shtrepi, L.; Astolfi, A. Acoustic Performance-Based Design: A Brief Overview of the Opportunities and Limits in Current Practice. Acoustics 2020, 2, 246-278. https://doi.org/10.3390/acoustics2020016
Badino E, Shtrepi L, Astolfi A. Acoustic Performance-Based Design: A Brief Overview of the Opportunities and Limits in Current Practice. Acoustics. 2020; 2(2):246-278. https://doi.org/10.3390/acoustics2020016
Chicago/Turabian StyleBadino, Elena, Louena Shtrepi, and Arianna Astolfi. 2020. "Acoustic Performance-Based Design: A Brief Overview of the Opportunities and Limits in Current Practice" Acoustics 2, no. 2: 246-278. https://doi.org/10.3390/acoustics2020016