Journal Description
Acoustics
Acoustics
is an international, peer-reviewed, open access journal on acoustics science and engineering, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, and other databases.
- Journal Rank: CiteScore - Q2 (Acoustics and Ultrasonics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 22.3 days after submission; acceptance to publication is undertaken in 4.6 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
1.2 (2024);
5-Year Impact Factor:
1.7 (2024)
Latest Articles
Fitting Methods for Empirical Models of Open-Pore Foams
Acoustics 2025, 7(4), 62; https://doi.org/10.3390/acoustics7040062 - 30 Sep 2025
Abstract
►
Show Figures
Sound-absorbing materials in the frequency range can be characterised upon the basis of their propagation constant and characteristic impedance. For a number of years, there have been empirical models, such as that of Delany and Bazley, which adjust these parameters to the flow
[...] Read more.
Sound-absorbing materials in the frequency range can be characterised upon the basis of their propagation constant and characteristic impedance. For a number of years, there have been empirical models, such as that of Delany and Bazley, which adjust these parameters to the flow resistivity and frequency, defining fitting coefficients. Based on the Delany–Bazley model, further adjustments of these coefficients have been proposed to improve the prediction of specific materials. The most commonly used adjustments are based on a quadratic error function for the normal incidence sound absorption coefficient or the surface impedance. Three adjustment methods are displayed in this paper to obtain new open-pore foam coefficients. The propagation constant and characteristic impedance measurements are adjusted, with different error functions and minimisation algorithms. New and improved models are obtained upon the basis of these three methods. The results obtained display satisfactory adjustments of all the material variables.
Full article
Open AccessArticle
Bifurcation in Stick–Slip-Induced Low-Frequency Brake Noises: Experimental and Numerical Study
by
Deborah Audretsch, Daniel Wallner, Michael Frey and Frank Gauterin
Acoustics 2025, 7(4), 61; https://doi.org/10.3390/acoustics7040061 - 26 Sep 2025
Abstract
►▼
Show Figures
The term honk noise describes a low-frequency brake noise from approximately 400 Hz to 500 Hz which arises at extremely low speeds and low brake pressures. Manoeuvres like slowly releasing the brake at a hill or gently braking against the drag torque of
[...] Read more.
The term honk noise describes a low-frequency brake noise from approximately 400 Hz to 500 Hz which arises at extremely low speeds and low brake pressures. Manoeuvres like slowly releasing the brake at a hill or gently braking against the drag torque of an automatic gearbox lead to honk noise. Under the same conditions, we observed creep groan at about 80 Hz. It has been shown that honk noise usually occurs after or alternates with creep groan. For this reason, it is assumed that honk noise—like creep groan—is a stick–slip-induced phenomenon and therefore shows highly nonlinear behaviour. In this paper, we present an approach for explaining the onset of honk noise under stick–slip excitation. A minimal model consisting of coupled mass oscillators excited by stick–slip is investigated. The model was able to reproduce the phenomena observed in the experiments. Thus, it is suitable for explaining the mechanisms leading to honk and estimate the influence of basic parameter variations. The lessons learned are a crucial step towards more realistic finite element or multi-body simulation methods, which have high potential for saving costs in the noise, vibration, and harshness (NVH) development process of brake systems.
Full article

Figure 1
Open AccessArticle
Broadband Acoustic Modal Identification by Combined Sensor Array Measurements
by
Kunbo Xu, Dongjun Liu, Zekai Zong, Chenzhe Xiang, Weiyang Qiao and Liang Yu
Acoustics 2025, 7(4), 60; https://doi.org/10.3390/acoustics7040060 - 23 Sep 2025
Abstract
►▼
Show Figures
This paper proposes a synchronous measurement method for broadband acoustic modal identification based on a combined microphone array, which is capable of overcoming the acoustic modal aliasing issue arising from a limited number of microphones. In the proposed method, the cross-correlation combination of
[...] Read more.
This paper proposes a synchronous measurement method for broadband acoustic modal identification based on a combined microphone array, which is capable of overcoming the acoustic modal aliasing issue arising from a limited number of microphones. In the proposed method, the cross-correlation combination of axial and circumferential arrays is performed by utilizing the relevant characteristics of turbulent noise modes, thereby realizing modal identification of turbulent noise in a wide range with a small number of acoustic measurement points. For fast iteration, the modal cross terms are optimized by leveraging the relevant characteristics of turbulent noise modes. This method can effectively distinguish the distribution information of forward- and backward-propagating acoustic modes. The accuracy of the identified acoustic modes is verified through numerical simulations, and the method is experimentally validated using experimental results from an axial flow compressor. The results show that this method can effectively suppress the aliasing problem. Compared with the traditional rotating axial array method, it has higher testing efficiency in circumferential and radial modal identification, requires fewer sound-pressure measurement points, and is more suitable for rapid evaluation of noise reduction designs.
Full article

Figure 1
Open AccessArticle
Applicability of Traditional Acoustic Technology for Underwater Archeology: A Case Study of Model Detection in Xiamen Bay
by
Xudong Fang, Jianglong Zheng, Shengtao Zhou, Zepeng Huang, Boran Liu, Ping Chen and Jiang Xu
Acoustics 2025, 7(3), 59; https://doi.org/10.3390/acoustics7030059 - 22 Sep 2025
Abstract
►▼
Show Figures
This study addresses the applicability of conventional marine acoustic technologies for detecting non-metal artifacts. Based on the typical environment in Xiamen Bay, we evaluated the detection efficacy of common multibeam sonar, side-scan sonar, and sub-bottom profiling sonar through a controlled model experiment system.
[...] Read more.
This study addresses the applicability of conventional marine acoustic technologies for detecting non-metal artifacts. Based on the typical environment in Xiamen Bay, we evaluated the detection efficacy of common multibeam sonar, side-scan sonar, and sub-bottom profiling sonar through a controlled model experiment system. We employed ceramic artifact replicas (ranging in size from 10 to 70 cm) and incorporated acoustic parameter optimization to elucidate the applicability boundaries of different technologies. The results indicate that multibeam sonar can identify clustered targets larger than 0.5 m, but is limited in resolving small individual targets (less than 30 cm) due to terrain detail constraints. Side-scan sonar, under low-speed (less than 4 knots) and near-bottom operating conditions, effectively captures the high-intensity echo characteristics of ceramic targets, achieving a maximum effective detection range of more than 40 m. High-frequency sub-bottom profiler (94–110 kHz) offers resolution advantages for exposed artifacts, while low-frequency signals (5–15 kHz) provide theoretical support for detecting subsequently buried targets. Furthermore, the study quantifies the coupling effects of substrate type, target size, and surface roughness on acoustic responses. We propose a synergistic detection workflow comprising “multibeam initial screening—side-scan fine mapping—sub-bottom profiling validation,” which provides empirical support for the optimization and standardization of underwater archeological technologies in complex marine environments.
Full article

Figure 1
Open AccessReview
Advancements in Super-High Frequency Al(Sc)N BAW Resonators for 5G and Beyond
by
Chen Li, Ruidong Qin, Wentong Dou, Chongyang Huo, Xuanqi Huang, Zhiqiang Mu, Weimin Li and Wenjie Yu
Acoustics 2025, 7(3), 58; https://doi.org/10.3390/acoustics7030058 - 21 Sep 2025
Abstract
►▼
Show Figures
With the booming development of the 5G market in recent years, super-high frequency (SHF) resonators will play an increasingly critical role in 5G and future communication systems. Facing the growing market demand for miniaturized, high-bandwidth, and low insertion loss filters, the design of
[...] Read more.
With the booming development of the 5G market in recent years, super-high frequency (SHF) resonators will play an increasingly critical role in 5G and future communication systems. Facing the growing market demand for miniaturized, high-bandwidth, and low insertion loss filters, the design of SHF resonators and filters with a high effective electromechanical coupling coefficient (K2eff) and quality factor, low insertion loss, high passband flatness, strong out-of-band rejection, and high power handling capacity has placed high demands on piezoelectric material preparation, process optimization, and resonator design. The polarity-inverted Al(Sc)N multilayer substrate has become one of the key solutions for SHF resonators. This review provides a comprehensive overview of the recent advances in SHF Al(Sc)N bulk acoustic wave (BAW) resonators. It systematically discusses the device design methodologies, structural configurations, and material synthesis techniques for high-quality Al(Sc)N thin films. Particular emphasis is placed on the underlying mechanisms and engineering strategies for polarity control in Al(Sc)N-based periodically poled multilayer structures. The progress in periodically poled piezoelectric film (P3F) BAW resonators is also examined, with special attention to their ability to significantly boost the operating frequency of BAW devices without reducing the thickness of the piezoelectric layer, while maintaining a high K2eff. Finally, the review outlines current challenges and future directions for achieving a higher quality factor (Q), improved frequency scalability, and greater integration compatibility in SHF acoustic devices, paving the way for next-generation radio frequency (RF) front-end technologies in 5G/6G and beyond.
Full article

Figure 1
Open AccessArticle
A Note on the Sound Absorption Characteristics of Microperforated Panels with Non-Circular Holes
by
Kimihiro Sakagami and Sakurako Abe
Acoustics 2025, 7(3), 57; https://doi.org/10.3390/acoustics7030057 - 16 Sep 2025
Abstract
►▼
Show Figures
This study examines the characteristic parameters required for non-circular-hole microperforated panels (MPPs) to achieve sound absorption performance comparable to that of conventional circular-hole MPPs. Through numerical analysis, the flow resistivity and perforation ratio were found to be key parameters influencing the absorption characteristics
[...] Read more.
This study examines the characteristic parameters required for non-circular-hole microperforated panels (MPPs) to achieve sound absorption performance comparable to that of conventional circular-hole MPPs. Through numerical analysis, the flow resistivity and perforation ratio were found to be key parameters influencing the absorption characteristics of MPPs with square and equilateral triangular holes. The results indicate that for square-hole MPPs, matching either the flow resistivity alone or both the flow resistivity and perforation ratio to those of circular-hole MPPs leads to similar sound absorption characteristics. In contrast, for equilateral triangular-hole MPPs, both the above parameters must be matched to ensure comparable performance. Furthermore, this study explores MPPs incorporating a combination of circular and non-circular holes. It was confirmed that by appropriately matching the flow resistivity and perforation ratio, such mixed-hole MPPs can achieve sound absorption characteristics similar to those of MPPs composed solely of circular holes. These findings contribute to the broader design possibilities of MPPs, providing a foundation for optimising hole geometries in practical applications where manufacturing constraints or aesthetic considerations may necessitate non-circular hole patterns.
Full article

Figure 1
Open AccessArticle
Comparison of Impulse Response Generation Methods for a Simple Shoebox-Shaped Room
by
Lloyd May, Nima Farzaneh, Orchisama Das and Jonathan S. Abel
Acoustics 2025, 7(3), 56; https://doi.org/10.3390/acoustics7030056 - 6 Sep 2025
Cited by 1
Abstract
►▼
Show Figures
Simulated room impulse responses (RIRs) are important tools for studying architectural acoustics. Many methods exist to generate RIRs, each with unique properties that need to be considered when choosing an RIR synthesis technique. Despite the variation in synthesis techniques, there is a dearth
[...] Read more.
Simulated room impulse responses (RIRs) are important tools for studying architectural acoustics. Many methods exist to generate RIRs, each with unique properties that need to be considered when choosing an RIR synthesis technique. Despite the variation in synthesis techniques, there is a dearth of comparisons between these techniques. To address this, a comprehensive comparison of four major categories of RIR synthesis techniques was conducted: wave-based methods (hybrid FEM and modal analysis), geometrical acoustics methods (the image source method and ray tracing), delay-network reverberators (SDNs), and statistical methods (Sabine-NED). To compare these techniques, RIRs were recorded in a simple shoebox-shaped racquetball court, and we compared the synthesized RIRs against these recordings. We conducted both objective analyses, such as energy decay curves, normalized echo density, and frequency-dependent decay times, and a perceptual assessment of synthesized RIRs, which consisted of a listening assessment with 29 participants that utilized a MUSHRA comparison methodology. Our results reveal distinct advantages and limitations across synthesis categories. For example, the Sabine-NED technique was indistinguishable from the recorded IR, but it does not scale well with increasing geometric complexity. These findings provide valuable insights for selecting appropriate synthesis techniques for applications in architectural acoustics, immersive audio rendering, and virtual reality environments.
Full article

Figure 1
Open AccessArticle
B-Scan Imaging and 3D Visualization of Hardened Layer Depth Profile in Linear Guide Rails Based on Ultrasonic Shear Wave Backscattering Technique
by
Peiqiang Chen, Lingtong Chen, Mingyang Xue and Chenlong Yang
Acoustics 2025, 7(3), 55; https://doi.org/10.3390/acoustics7030055 - 31 Aug 2025
Abstract
►▼
Show Figures
In order to measure the depth profile of the heat-treated case-hardened layer of linear guides, this paper proposes a B-scan imaging and 3D visualization method for detecting the depth profile of the case-hardened layer of linear guides based on the ultrasonic transverse wave
[...] Read more.
In order to measure the depth profile of the heat-treated case-hardened layer of linear guides, this paper proposes a B-scan imaging and 3D visualization method for detecting the depth profile of the case-hardened layer of linear guides based on the ultrasonic transverse wave backscattering technology. Firstly, by analyzing the generation mechanism of ultrasonic transverse waves and their advantages in material detection, and combining the differences in metallographic structure and hardness properties between the case-hardened layer and the base material, an ultrasonic transverse wave backscattering model for the case-hardened layer of linear guides was established. Then, an ultrasonic transverse wave detection experiment for the GH20 linear guide was designed and carried out to obtain the A-scan signals of the case-hardened layer depth at different positions on the cross-section of the linear guide. Finally, the A-scan signals obtained from the detection were used to generate the B-scan image of the case-hardened layer depth profile, and the 3D visualization of the case-hardened layer of the linear guide was achieved using Python and VTK tools. The experimental results show that the error between the measurement results of ultrasonic transverse waves and those of the metallographic method is 0.063 mm, and the detection results are within the allowable error range. This research provides an efficient, intuitive, and reliable technical method for detecting the depth of the case-hardened layer of linear guides in the industrial field.
Full article

Figure 1
Open AccessArticle
A Finite Element Modeling Approach for Assessing Noise Reduction in the Passenger Cabin of the Piaggio P.180 Aircraft
by
Carmen Brancaccio, Giovanni Fasulo, Felicia Palmiero, Giorgio Travostino and Roberto Citarella
Acoustics 2025, 7(3), 54; https://doi.org/10.3390/acoustics7030054 - 29 Aug 2025
Abstract
►▼
Show Figures
Passenger comfort in executive-class aircraft demands rigorous control of noise, vibration, and harshness. This study describes the development of a detailed, high-fidelity coupled structural–acoustic finite element model of the Piaggio P.180 passenger cabin, aimed at accurately predicting interior cabin noise within the low-
[...] Read more.
Passenger comfort in executive-class aircraft demands rigorous control of noise, vibration, and harshness. This study describes the development of a detailed, high-fidelity coupled structural–acoustic finite element model of the Piaggio P.180 passenger cabin, aimed at accurately predicting interior cabin noise within the low- to mid-frequency range. A hybrid discretization strategy was employed to balance computational efficiency and model fidelity. The fuselage structure was discretized using two-dimensional shell elements and one-dimensional beam elements, while the interior cabin air volume was represented using three-dimensional fluid elements. Mesh sizing in both the structural and acoustic domains were determined through analytical wavelength estimates and numerical convergence studies, ensuring appropriate resolution and accuracy. The model’s reliability and accuracy were validated through comprehensive modal analysis. The first three structural modes exhibited strong correlation with available experimental data, confirming the robustness of the numerical model. Subsequent harmonic response analyses were conducted to evaluate the intrinsic noise reduction characteristics of the P.180 airframe, specifically within the frequency range up to approximately 300 Hz.
Full article

Figure 1
Open AccessArticle
An Impedance Model for Angle-Dependent Sound Reflection and Absorption with Diffraction Effects
by
Jens Holger Rindel
Acoustics 2025, 7(3), 53; https://doi.org/10.3390/acoustics7030053 - 29 Aug 2025
Abstract
►▼
Show Figures
Traditionally, an open window is considered a kind of reference for perfect sound absorption. The sound reflection and absorption of an aperture is analyzed by means of an impedance model representing a rectangular absorbing surface surrounded by a thin, infinite rigid baffle. The
[...] Read more.
Traditionally, an open window is considered a kind of reference for perfect sound absorption. The sound reflection and absorption of an aperture is analyzed by means of an impedance model representing a rectangular absorbing surface surrounded by a thin, infinite rigid baffle. The most important part of the model is the complex radiation impedance. It is shown that the sound absorption coefficient of the open window is not exactly 1, but it is angle-dependent and decreases towards low frequencies. Two diffraction effects are identified: the refraction that appears when a wave passes through an aperture, and the scattering of waves from the edges of the aperture. A revised model for sound absorption is presented, taking these diffraction effects into account. It is shown that the refraction effect is the reason for measured absorption coefficients greater than 1, whereas the scattering effect can explain the typical decrease in absorption towards lower frequencies. The revised model is validated against examples of measured sound absorption. Finally, it is discussed how room acoustic calculation models can handle realistic absorption data.
Full article

Figure 1
Open AccessArticle
Robust Blind Algorithm for DOA Estimation Using TDOA Consensus
by
Danilo Greco
Acoustics 2025, 7(3), 52; https://doi.org/10.3390/acoustics7030052 - 26 Aug 2025
Abstract
►▼
Show Figures
This paper proposes a robust blind algorithm for direction of arrival (DOA) estimation in challenging acoustic environments. The method introduces a novel Time Difference of Arrival (TDOA) consensus framework that effectively identifies and filters outliers using Median and Median Absolute Deviation (MAD) statistics.
[...] Read more.
This paper proposes a robust blind algorithm for direction of arrival (DOA) estimation in challenging acoustic environments. The method introduces a novel Time Difference of Arrival (TDOA) consensus framework that effectively identifies and filters outliers using Median and Median Absolute Deviation (MAD) statistics. By combining this consensus approach with whitening transformation and Lawson norm optimization, the algorithm achieves superior performance in noisy and reverberant conditions. Comprehensive simulations demonstrate that the proposed method significantly outperforms traditional approaches and modern alternatives such as SRP-PHAT and robust MUSIC, particularly in environments with high reverberation times and low signal-to-noise ratios. The algorithm’s robustness to impulsive noise and varying microphone array configurations is also evaluated. Results show consistent improvements in DOA estimation accuracy across diverse acoustic scenarios, with root mean square error (RMSE) reductions of up to 30% compared to standard methods. The computational complexity analysis confirms the algorithm’s feasibility for real-time applications with appropriate implementation optimizations, showing significant improvements in estimation accuracy compared to conventional approaches, particularly in highly reverberant conditions and under impulsive noise. The proposed algorithm maintains consistent performance without requiring prior knowledge of the acoustic environment, making it suitable for real-world applications.
Full article

Figure 1
Open AccessArticle
Sound Absorption Properties of Waste Pomelo Peel
by
Lihua Lyu, Yiping Zhao and Jinglin Li
Acoustics 2025, 7(3), 51; https://doi.org/10.3390/acoustics7030051 - 24 Aug 2025
Abstract
►▼
Show Figures
To solve the issue of environmental noise pollution and promote the resource recycling of waste pomelo peel, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) are used to systematically characterize the microstructure and chemical composition of waste pomelo
[...] Read more.
To solve the issue of environmental noise pollution and promote the resource recycling of waste pomelo peel, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) are used to systematically characterize the microstructure and chemical composition of waste pomelo peel. It was found that waste pomelo peel has a porous network structure, which is conducive to the improvement of sound absorption performance. Waste pomelo peel/polycaprolactone (PCL) sound-absorbing composites are prepared by the hot-pressing molding process, and the single-factor analysis method is adopted to explore the effects of seven factors (waste pomelo peel mass fraction, composite density, composite thickness, hot-pressing time, hot-pressing pressure, hot-pressing temperature, and thickness of rear air layer) on the sound absorption performance. Through process optimization, under the optimal conditions, the average sound absorption coefficient (SAC) of the composites reaches 0.54, the noise reduction coefficient (NRC) reaches 0.57, and the maximum SAC reaches 0.99, with the sound absorption performance reaching Grade III. This study not only provides a new idea for the preparation of porous sound-absorbing composites but also opens a new path for the high-value utilization of waste pomelo peel resources.
Full article

Figure 1
Open AccessArticle
Transient Vibro-Acoustic Characteristics of Double-Layered Stiffened Cylindrical Shells
by
Qirui Luo, Wang Miao, Zhe Zhao, Cong Gao and Fuzhen Pang
Acoustics 2025, 7(3), 50; https://doi.org/10.3390/acoustics7030050 - 21 Aug 2025
Abstract
►▼
Show Figures
This study investigates the underwater transient vibro-acoustic response of double-layered stiffened cylindrical shells through an integrated experimental-numerical approach. Initially, vibration and noise responses under transient impact loads were experimentally characterized in an anechoic water tank, establishing benchmark datasets. Subsequently, based on the theory
[...] Read more.
This study investigates the underwater transient vibro-acoustic response of double-layered stiffened cylindrical shells through an integrated experimental-numerical approach. Initially, vibration and noise responses under transient impact loads were experimentally characterized in an anechoic water tank, establishing benchmark datasets. Subsequently, based on the theory of transient structural dynamics, a numerical framework was developed by extending the time-domain finite element/boundary element (FEM/BEM) method, enabling comprehensive analysis of the transient vibration and acoustic radiation characteristics of submerged structures. Validation through experimental-simulation comparisons confirmed the method’s accuracy and effectiveness. Key findings reveal broadband features with distinct discrete spectral peaks in both structural vibration and acoustic pressure responses under transient excitation. Systematic parametric investigations demonstrate that: (1) Reducing the load pulse width significantly amplifies vibration acceleration and sound pressure levels, while shifting acoustic energy spectra toward higher frequencies; (2) Loading position alters both vibration patterns and noise radiation characteristics. The established numerical methodology provides theoretical support for transient impact noise prediction and low-noise structural optimization in underwater vehicle design.
Full article

Figure 1
Open AccessArticle
Revisiting the Acoustics of St Paul’s Cathedral, London
by
Aglaia Foteinou, Francis Stevens and Damian Murphy
Acoustics 2025, 7(3), 49; https://doi.org/10.3390/acoustics7030049 - 13 Aug 2025
Abstract
The acoustics of St Paul’s Cathedral, London, have been discussed in previous studies as a space of historical, cultural, societal, and architectural interest in the capital city of the United Kingdom. This paper presents the results from recent acoustic measurements carried out within
[...] Read more.
The acoustics of St Paul’s Cathedral, London, have been discussed in previous studies as a space of historical, cultural, societal, and architectural interest in the capital city of the United Kingdom. This paper presents the results from recent acoustic measurements carried out within the space, making use of state-of-the-art measurement techniques and equipment. The results from these measurements provide a new perspective on the acoustic properties of different and distinct spaces within the cathedral, including coupling effects between the main areas, and the whispering gallery effect that can be heard around the walkway at the base of the dome. The discussion includes the analysis of room acoustic parameters included in the international standards and speech intelligibility parameters, and an indirect comparison between the techniques used here and those used in previous studies of this space.
Full article
(This article belongs to the Special Issue The Past Has Ears: Archaeoacoustics and Acoustic Heritage)
►▼
Show Figures

Figure 1
Open AccessArticle
Development and Testing of an AI-Based Specific Sound Detection System Integrated on a Fixed-Wing VTOL UAV
by
Gabriel-Petre Badea, Mădălin Dombrovschi, Tiberius-Florian Frigioescu, Maria Căldărar and Daniel-Eugeniu Crunteanu
Acoustics 2025, 7(3), 48; https://doi.org/10.3390/acoustics7030048 - 30 Jul 2025
Abstract
►▼
Show Figures
This study presents the development and validation of an AI-based system for detecting chainsaw sounds, integrated into a fixed-wing VTOL UAV. The system employs a convolutional neural network trained on log-mel spectrograms derived from four sound classes: chainsaw, music, electric drill, and human
[...] Read more.
This study presents the development and validation of an AI-based system for detecting chainsaw sounds, integrated into a fixed-wing VTOL UAV. The system employs a convolutional neural network trained on log-mel spectrograms derived from four sound classes: chainsaw, music, electric drill, and human voices. Initial validation was performed through ground testing. Acoustic data acquisition is optimized during cruise flight, when wing-mounted motors are shut down and the rear motor operates at 40–60% capacity, significantly reducing noise interference. To address residual motor noise, a preprocessing module was developed using reference recordings obtained in an anechoic chamber. Two configurations were tested to capture the motor’s acoustic profile by changing the UAV’s orientation relative to the fixed microphone. The embedded system processes incoming audio in real time, enabling low-latency classification without data transmission. Field experiments confirmed the model’s high precision and robustness under varying flight and environmental conditions. Results validate the feasibility of real-time, onboard acoustic event detection using spectrogram-based deep learning on UAV platforms, and support its applicability for scalable aerial monitoring tasks.
Full article

Figure 1
Open AccessArticle
Development of Floor Structures with Crumb Rubber for Efficient Floor Impact Noise Reduction
by
Ji-Hoon Park and Chan-Hoon Haan
Acoustics 2025, 7(3), 47; https://doi.org/10.3390/acoustics7030047 - 29 Jul 2025
Abstract
►▼
Show Figures
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous
[...] Read more.
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous national economic growth, the interest in well-being and the expectation of a quiet life with a comfortable and pleasant residential environment have also been increasing. However, Koreans have a lifestyle involving sitting on the floor, so floor impact noise has been occurring more and more frequently. Because of this, neighborly disputes have been a serious social problem. And lately, damage and disputes from noise between floors have been increasing much more. The present work, therefore, used waste tire chips as a resilient material for reducing floor impact noise in order to recycle waste tires effectively. Also, a compounded resilient material, which combines EPS (expanded polystyrene), a flat resilient material on the upper part, with waste tire chips for the lower part, was developed. After constructing waste tire chips at a standardized test building, experiments with both light-weight and heavy-weight floor impact noise were performed. The tests confirmed that waste tire chips, when used as a resilient material, can effectively reduce both light-weight and heavy-weight floor impact noise.
Full article

Figure 1
Open AccessSystematic Review
Indoor Soundscape Intervention (ISI) Criteria for Architectural Practice: A Systematic Review with Grounded Theory Analysis
by
Uğur Beyza Erçakmak Osma and Papatya Nur Dökmeci Yörükoğlu
Acoustics 2025, 7(3), 46; https://doi.org/10.3390/acoustics7030046 - 28 Jul 2025
Abstract
Indoor soundscape is a relatively new and developing field compared to urban soundscape in practice. To address this gap, this study aims to identify the key influencing factors as a first step of the indoor soundscape intervention approach. The study employed a two-phase
[...] Read more.
Indoor soundscape is a relatively new and developing field compared to urban soundscape in practice. To address this gap, this study aims to identify the key influencing factors as a first step of the indoor soundscape intervention approach. The study employed a two-phase methodology. Phase one involved a Systematic Review (SR) of the literature, conducted through the PRISMA 2020 guidelines, to collate data on the influencing factors and intervention criteria of the indoor soundscape approach. Searching was conducted using two databases, Web of Science and Scopus. As a result of the search, a total of 29 studies were included in the review. The review included studies addressing the soundscape influencing factors and theoretical frameworks. Studies that did not address these criteria were excluded. Phase two comprised the application of the Grounded Theory (GT) coding process to organize, categorize, and merge the data collected in phase one. As a result of the coding process, three levels of categories were achieved; L1: key concept, L2: overarching category, L3: core category. Four core categories were identified as ‘Sound’, ‘People’, ‘Building’, and ‘Environment’ by proposing the Indoor Soundscape Intervention (ISI) criteria. The repeatable and updatable nature of the proposed method allows it to be adapted to further studies and different contexts/cases.
Full article
(This article belongs to the Special Issue Indoor Soundscape: Integrating Sound, Experience and Architecture (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by
Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Abstract
►▼
Show Figures
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects
[...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure.
Full article

Figure 1
Open AccessArticle
Real-Time Analysis of Millidecade Spectra for Ocean Sound Identification and Wind Speed Quantification
by
Mojgan Mirzaei Hotkani, Bruce Martin, Jean Francois Bousquet and Julien Delarue
Acoustics 2025, 7(3), 44; https://doi.org/10.3390/acoustics7030044 - 24 Jul 2025
Abstract
►▼
Show Figures
This study introduces an algorithm for quantifying oceanic wind speed and identifying sound sources in the local underwater soundscape. Utilizing low-complexity metrics like one-minute spectral kurtosis and power spectral density levels, the algorithm categorizes different soundscapes and estimates wind speed. It detects rain,
[...] Read more.
This study introduces an algorithm for quantifying oceanic wind speed and identifying sound sources in the local underwater soundscape. Utilizing low-complexity metrics like one-minute spectral kurtosis and power spectral density levels, the algorithm categorizes different soundscapes and estimates wind speed. It detects rain, vessels, fin and blue whales, as well as clicks and whistles from dolphins. Positioned as a foundational tool for implementing the Ocean Sound Essential Ocean Variable (EOV), it contributes to understanding long-term trends in climate change for sustainable ocean health and predicting threats through forecasts. The proposed soundscape classification algorithm, validated using extensive acoustic recordings (≥32 kHz) collected at various depths and latitudes, demonstrates high performance, achieving an average precision of and an average recall of through optimized parameter tuning via a genetic algorithm. Here, wind speed is determined using a cubic function with power spectral density (PSD) at 6 kHz and the MASLUW method, exhibiting strong agreement with satellite data below 15 m/s. Designed for compatibility with low-power electronics, the algorithm can be applied to both archival datasets and real-time data streams. It provides a straightforward metric for ocean monitoring and sound source identification.
Full article

Figure 1
Open AccessArticle
Optimizing Museum Acoustics: How Absorption Magnitude and Surface Location of Finishing Materials Influence Acoustic Performance
by
Milena Jonas Bem and Jonas Braasch
Acoustics 2025, 7(3), 43; https://doi.org/10.3390/acoustics7030043 - 11 Jul 2025
Abstract
►▼
Show Figures
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific
[...] Read more.
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific absorption treatments on acoustic metrics across eight gallery spaces. Room impulse responses calibrated virtual models, which simulated nine absorption scenarios (low, medium, and high on ceilings, floors, and walls) and evaluated reverberation time (T20), speech transmission index (STI), clarity (C50), distraction distance (rD), Spatial Decay Rate of Speech (D2,S), and Speech Level at 4 m (Lp,A,S,4m). The results indicate that going from concrete to a wooden floor yields the most rapid T20 reductions (up to −1.75 s), ceiling treatments deliver the greatest STI and C50 gains (e.g., STI increases of +0.16), and high-absorption walls maximize privacy metrics (D2,S and Lp,A,S,4m). A linear regression model further predicted the STI from T20, total absorption (Sabins), and room volume, with an 84.9% conditional R2, enabling ±0.03 accuracy without specialized testing. These findings provide empirically derived, surface-specific “first-move” guidelines for architects and acousticians, underscoring the necessity of integrating acoustics early in museum design to balance auditory and visual objectives and enhance the visitor experience.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics

Special Issues
Special Issue in
Acoustics
The Past Has Ears: Archaeoacoustics and Acoustic Heritage
Guest Editor: Brian FG KatzDeadline: 30 November 2025
Special Issue in
Acoustics
Soundscape in Urban Forests - 2nd Edition
Guest Editors: Xin-Chen Hong, Jiang Liu, Guangyu WangDeadline: 31 December 2025
Special Issue in
Acoustics
Indoor Soundscape: Integrating Sound, Experience and Architecture (2nd Edition)
Guest Editors: Papatya Nur Dökmeci Yörükoğlu, Jian KangDeadline: 22 June 2026
Special Issue in
Acoustics
Artificial Intelligence in Acoustic Phonetics
Guest Editor: Georgios P. GeorgiouDeadline: 15 July 2026