Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps
Abstract
:1. Introduction
2. Methods
2.1. Airway Model with a Vibrating Uvula and Constricted Pharynx
2.2. Numerical Methods
2.3. Principal Component Analysis (PCA) of 2D Time Series Vortex Images
2.4. Wavelet Transform Analyses of Time-Series Pressures
2.5. Poincaré Section Analysis of Time-Series Pressures/Velocities
3. Results
3.1. DNS-Predicted Inspiratory Vortex Dynamics
3.2. PCA Analysis
3.3. Wavelet Analyses of DNS-Predicted Pressures (P1–7)
3.4. Poincaré Analyses of DNS-Predicted Pressures and Velocities
3.4.1. P3: Immediately Downstream of the Uvula
3.4.2. P6: Site of Pharyngeal Constriction
3.4.3. P1, P2, and P7: Sampling Points in the Mouth-Throat Tract
3.4.4. Velocity Magnitude at Sampling Points 3, 6, and 7
4. Discussion
4.1. Evaluation of PC Curves, Multifractal Spectra, and Poincaré Maps
4.2. Anomaly-Sensitive Parameters/Features
4.3. Implications of New Anomaly-Sensitive Features for AI-Based Diagnosis
5. Conclusions
- The vortex images were projected in the PC1–3 vector space as a closed orbit for those from one vibration cycle and six closed orbits from six vibration cycles, suggesting the periodicity and regularity of the dominant flows.
- The regularity in PC projections decays gradually with increasing ranks, and eventually becomes random.
- The PC projections reveal significant differences among models in the leading vector space (PC1–3).
- The multifractal spectra of pressures in the pharynx (P6, P7) show high sensitivity to the uvula vibration modes; the pitching mode (K2) has a wider spectrum, with the peak more skewed to the left than the heaving mode (K1).
- Mean Poincaré maps of velocities in the pharynx (Vel6, Vel7) successfully separate three pharyngeal constriction levels (M1–M3). Maxima Poincaré maps of pressures in the pharynx (P6, P7) also show distinct clusters among M1–M3.
- Sensitivity to anomalies differs among probes and analytical algorithms. Synergizing measurements from multiple probes and their anomaly-sensitive features extracted with proper algorithms can aid source localization and stage gauging.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; White, D.P.; Malhotra, A. Use of computational modeling to predict responses to upper airway surgery in obstructive sleep apnea. Laryngoscope 2007, 117, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Ortiz, A.L.; Ibarra, D. Lung and heart sounds analysis: State-of-the-art and future trends. Crit. Rev. Biomed. Eng. 2018, 46, 33–52. [Google Scholar] [CrossRef] [PubMed]
- Pramono, R.X.A.; Bowyer, S.; Rodriguez-Villegas, E. Automatic adventitious respiratory sound analysis: A systematic review. PLoS ONE 2017, 12, e0177926. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Xi, J.S.; Talaat, M.; Donepudi, R.; Su, W.-C.; Xi, J. Evaluation of impulse oscillometry in respiratory airway casts with varying obstruction phenotypes, locations, and complexities. J. Respir. 2022, 2, 44–58. [Google Scholar] [CrossRef]
- Burrowes, K.S.; Iravani, A.; Kang, W. Integrated lung tissue mechanics one piece at a time: Computational modeling across the scales of biology. Clin. Biomech. 2019, 66, 20–31. [Google Scholar] [CrossRef]
- Oruganti Venkata, S.S.; Koenig, A.; Pidaparti, R.M. Mechanical ventilator parameter estimation for lung health through machine learning. Bioengineering 2021, 8, 60. [Google Scholar] [CrossRef]
- Roy, G.S.; Daphtary, N.; Johnson, O.; Dixon, A.E.; Kaminsky, D.A.; Bates, J.H.T. Measuring the mechanical input impedance of the respiratory system with breath-driven flow oscillations. J. Appl. Physiol. 2021, 130, 1064–1071. [Google Scholar] [CrossRef]
- Sun, Q.; Chase, J.G.; Zhou, C.; Tawhai, M.H.; Knopp, J.L.; Möller, K.; Heines, S.J.; Bergmans, D.C.; Shaw, G.M. Prediction and estimation of pulmonary response and elastance evolution for volume-controlled and pressure-controlled ventilation. Biomed. Signal Process. Control 2022, 72, 103367. [Google Scholar] [CrossRef]
- Yuan, J.; Chiofolo, C.M.; Czerwin, B.J.; Karamolegkos, N.; Chbat, N.W. Alveolar tissue fiber and surfactant effects on lung mechanics-model development and validation on ARDS and IPF patients. IEEE Open J. Eng. Med. Biol. 2021, 2, 44–54. [Google Scholar] [CrossRef]
- Venegas, J.G.; Harris, R.S.; Simon, B.A. A comprehensive equation for the pulmonary pressure-volume curve. J. Appl. Physiol. 1998, 84, 389–395. [Google Scholar] [CrossRef]
- Xi, J.; Si, X.; Kim, J.; Su, G.; Dong, H. Modeling the pharyngeal anatomical effects on breathing resistance and aerodynamically generated sound. Med. Biol. Eng. Comput. 2014, 52, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Wang, Z.; Talaat, K.; Glide-Hurst, C.; Dong, H.J.S. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model. Sleep Breath. 2018, 22, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xi, J.; Han, P.; Wongwiset, N.; Pontius, J.; Dong, H. Computational analysis of a flapping uvula on aerodynamics and pharyngeal wall collapsibility in sleep apnea. J. Biomech. 2019, 94, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Iyer, V.K.; Ramamoorthy, P.A.; Ploysongsang, Y. Autoregressive modeling of lung sounds: Characterization of source and transmission. IEEE. Trans. Biomed. Eng. 1989, 36, 1133–1137. [Google Scholar] [CrossRef]
- Chen, H.; Joshi, S.; Oberle, A.J.; Wong, A.K.; Shaz, D.; Thapamagar, S.; Tan, L.; Anholm, J.D.; Giri, P.C.; Henriquez, C.; et al. Development and evaluation of a small airway disease index derived from modeling the late-expiratory flattening of the flow-volume loop. Front. Physiol. 2022, 13, 914972. [Google Scholar] [CrossRef]
- Faizal, W.M.; Ghazali, N.N.N.; Khor, C.Y.; Badruddin, I.A.; Zainon, M.Z.; Yazid, A.A.; Ibrahim, N.B.; Razi, R.M. Computational fluid dynamics modelling of human upper airway: A review. Comput. Methods Programs Biomed. 2020, 196, 105627. [Google Scholar] [CrossRef]
- Stuck, B.A.; Hofauer, B. The diagnosis and treatment of snoring in adults. Dtsch. Arztebl. Int. 2019, 116, 817–824. [Google Scholar] [CrossRef]
- Sowho, M.; Sgambati, F.; Guzman, M.; Schneider, H.; Schwartz, A. Snoring: A source of noise pollution and sleep apnea predictor. Sleep 2020, 43, zsz305. [Google Scholar] [CrossRef]
- Kim, S.D.; Jung, D.W.; Lee, J.W.; Park, J.H.; Mun, S.J.; Cho, K.S. Relationship between allergic rhinitis and nasal surgery success in patients with obstructive sleep apnea. Am. J. Otolaryngol. 2021, 42, 103079. [Google Scholar] [CrossRef]
- Taherian, S.; Rahai, H.; Lopez, S.; Shin, J.; Jafari, B. Evaluation of human obstructive sleep apnea using computational fluid dynamics. Commun. Biol. 2019, 2, 423. [Google Scholar] [CrossRef]
- Xi, J.; April Si, X.; Dong, H.; Zhong, H. Effects of glottis motion on airflow and energy expenditure in a human upper airway model. Eur. J. Mech. B Fluids 2018, 72, 23–37. [Google Scholar] [CrossRef]
- Huang, Y.; White, D.P.; Malhotra, A. The impact of anatomic manipulations on pharyngeal collapse: Results from a computational model of the normal human upper airway. Chest 2005, 128, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-H.; Rakibuzzaman, M.; Suh, S.-H.; Kim, H.-J.; Choi, J.-Y.; Lee, U.-L. A study of fluid dynamics parameters for prediction of obstructive sleep apnea. J. Mech. Sci. Technol. 2018, 32, 1079–1085. [Google Scholar] [CrossRef]
- Wakayama, T.; Suzuki, M.; Tanuma, T. Effect of nasal obstruction on continuous positive airway pressure treatment: Computational fluid dynamics analyses. PLoS ONE 2016, 11, e0150951. [Google Scholar] [CrossRef] [PubMed]
- Mihaescu, M.; Murugappan, S.; Gutmark, E.; Donnelly, L.F.; Kalra, M. Computational modeling of upper airway before and after adenotonsillectomy for obstructive sleep apnea. Laryngoscope 2008, 118, 360–362. [Google Scholar] [CrossRef]
- Sittitavornwong, S.; Waite, P.; Shih, A.; Cheng, G.; Koomullil, R.; Ito, Y.; Cure, J.; Harding, S.; Litaker, M. Computational fluid dynamic analysis of the posterior airway space after maxillomandibular advancement for obstructive sleep apnea syndrome. J. Oral Maxillofac. Surg. 2013, 71, 1397–1405. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Han, P.; Xi, J.; Dong, H. Effect of uvula length on airflow and pressure oscillation in a human pharynx model. In Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, Salt Lake City, UT, USA, 11–14 November 2019; p. V003T004A041. [Google Scholar]
- Xi, J.; Wang, J.; Si, X.A.; Dong, H. Direct numerical simulations and flow-pressure acoustic analyses of flapping-uvula-induced flow evolutions within normal and constricted pharynx. Theor. Comput. Fluid Dyn. 2023, 37, 131–149. [Google Scholar] [CrossRef]
- Xi, J.; Kim, J.; Si, X.A.; Corley, R.A.; Kabilan, S.; Wang, S. CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: Towards non-invasive diagnosis and treatment of respiratory obstructive diseases. Theranostics 2015, 5, 443–455. [Google Scholar] [CrossRef]
- Xi, J.; Kim, J.; Si, X.A.; Zhou, Y. Diagnosing obstructive respiratory diseases using exhaled aerosol fingerprints: A feasibility study. J. Aerosol Sci. 2013, 64, 24–36. [Google Scholar] [CrossRef]
- Si, X.A.; Xi, J. Deciphering exhaled aerosol fingerprints for early diagnosis and personalized therapeutics of obstructive respiratory diseases in small airways. J. Nanotheranostics 2021, 2, 94–117. [Google Scholar] [CrossRef]
- Verstraete, K.; Das, N.; Gyselinck, I.; Topalovic, M.; Troosters, T.; Crapo, J.D.; Silverman, E.K.; Make, B.J.; Regan, E.A.; Jensen, R.; et al. Principal component analysis of flow-volume curves in COPDGene to link spirometry with phenotypes of COPD. Respir. Res. 2023, 24, 20. [Google Scholar] [CrossRef] [PubMed]
- Hellström, L.H.; Smits, A.J. Structure identification in pipe flow using proper orthogonal decomposition. Philos. Trans. A Math. Phys. Eng. Sci. 2017, 375, 20160086. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic mode decomposition and its variants. Annu. Rev. Fluid Mech. 2022, 54, 225–254. [Google Scholar] [CrossRef]
- Iannelli, A.; Fasel, U.; Smith, R.S. The balanced mode decomposition algorithm for data-driven LPV low-order models of aeroservoelastic systems. Aerosp. Sci. Technol. 2021, 115, 106821. [Google Scholar] [CrossRef]
- Della Pia, A.; Chiatto, M.; de Luca, L. Global eigenmodes of thin liquid sheets by means of Volume-of-Fluid simulations. Phys. Fluids 2020, 32, 082112. [Google Scholar] [CrossRef]
- Raubitzek, S.; Neubauer, T. Combining measures of signal complexity and machine learning for time series analyis: A review. Entropy 2021, 23, 1672. [Google Scholar] [CrossRef]
- Mihailović, D.T.; Nikolić-Đorić, E.; Malinović-Milićević, S.; Singh, V.P.; Mihailović, A.; Stošić, T.; Stošić, B.; Drešković, N. The choice of an appropriate information dissimilarity measure for hierarchical clustering of river streamflow Ttme series, based on calculated Lyapunov exponent and Kolmogorov measures. Entropy 2019, 21, 215. [Google Scholar] [CrossRef]
- Chen, X.; Xu, G.; Du, C.; Zhang, S.; Zhang, X.; Teng, Z. Poincaré plot nonextensive distribution entropy: A new method for electroencephalography (EEG) time series. Sensors 2022, 22, 6283. [Google Scholar] [CrossRef]
- Moskal, A.; Makowski, L.; Sosnowski, T.R.; Gradon, L. Deposition of fractal-like aerosol aggregates in a model of human nasal cavity. Inhal. Toxicol. 2006, 18, 725–731. [Google Scholar] [CrossRef]
- Xi, J.; Si, X.A.; Kim, J.; Mckee, E.; Lin, E.-B. Exhaled aerosol pattern discloses lung structural abnormality: A sensitivity study using computational modeling and fractal analysis. PLoS ONE 2014, 9, e104682. [Google Scholar] [CrossRef]
- Xi, J.; Zhao, W.; Yuan, J.E.; Kim, J.; Si, X.; Xu, X. Detecting lung diseases from exhaled aerosols: Non-Invasive lung diagnosis using fractal analysis and SVM classification. PLoS ONE 2015, 10, e0139511. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.R.; Colombo, L.J. On the existence and uniqueness of Poincaré maps for systems with impulse effects. IEEE Trans. Automat. Contr. 2020, 65, 1815–1821. [Google Scholar] [CrossRef]
- Kolemen, E.; Kasdin, N.J.; Gurfil, P. Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astron. 2012, 112, 47–74. [Google Scholar] [CrossRef]
- Bramburger, J.J.; Kutz, J.N. Poincaré maps for multiscale physics discovery and nonlinear Floquet theory. Phys. D Nonlinear Phenom. 2020, 408, 132479. [Google Scholar] [CrossRef]
- Xi, J.; Longest, P.W. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int. J. Heat Mass Transf. 2008, 51, 5562–5577. [Google Scholar] [CrossRef]
- Clark, A.; Newman, S.; Dasovich, N. Mouth and oropharyngeal deposition of pharmaceutical aerosols. J. Aerosol Med. 1998, 11, S116–S120. [Google Scholar] [CrossRef]
- Borojeni, A.A.T.; Garcia, G.J.M.; Moghaddam, M.G.; Frank-Ito, D.O.; Kimbell, J.S.; Laud, P.W.; Koenig, L.J.; Rhee, J.S. Normative ranges of nasal airflow variables in healthy adults. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 87–98. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, Y.; Gong, Y.; Dong, H.; Xi, J. A versatile IBM-based AMR method for studying human snoring. In Proceedings of the ASME 2021 Fluids Engineering Division Summer Meeting, Virtual, 10–12 August 2021; p. V001T002A039. [Google Scholar]
- Liu, G.; Dong, H.; Li, C. Vortex dynamics and new lift enhancement mechanism of wing–body interaction in insect forward flight. J. Fluid Mech. 2016, 795, 634–651. [Google Scholar] [CrossRef]
- Wan, H.; Dong, H.; Gai, K. Computational investigation of cicada aerodynamics in forward flight. J. R. Soc. Interface 2015, 12, 20141116. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Y.; Li, C.; Dong, H. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Bioinspir. Biomim. 2019, 14, 046010. [Google Scholar] [CrossRef]
- Ren, Y.; Dong, H.; Deng, X.; Tobalske, B. Turning on a dime: Asymmetric vortex formation in hummingbird maneuvering flight. Phys. Rev. Fluids 2016, 1, 050511. [Google Scholar] [CrossRef]
- Wang, J.; Wainwright, D.K.; Lindengren, R.E.; Lauder, G.V.; Dong, H. Tuna locomotion: A computational hydrodynamic analysis of finlet function. J. R. Soc. Interface 2020, 17, 20190590. [Google Scholar] [CrossRef]
- Li, C.; Dong, H.; Liu, G. Effects of a dynamic trailing-edge flap on the aerodynamic performance and flow structures in hovering flight. J. Fluid. Struct. 2015, 58, 49–65. [Google Scholar] [CrossRef]
- Wang, J.; Han, P.; Sanchez, Y.; Xi, J.; Dong, H. Computational analysis on aerodynamics and vortex formation of sleep apnea. In Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, Montreal, QC, Canada, 15–20 July 2018; p. V001T002A003. [Google Scholar]
- Dong, H.; Mittal, R.; Najjar, F.M. Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 2006, 566, 309–343. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Scherl, I.; Strom, B.; Shang, J.K.; Williams, O.; Polagye, B.L.; Brunton, S.L. Robust principal component analysis for modal decomposition of corrupt fluid flows. Phys. Rev. Fluids 2020, 5, 054401. [Google Scholar] [CrossRef]
- Xi, J.; Wang, J.; Si, X.A.; Zheng, S.; Donepudi, R.; Dong, H. Extracting signature responses from respiratory flows: Low-dimensional analyses on Direct Numerical Simulation-predicted wakes of a flapping uvula. Int. J. Numer. Meth. Biomed. Eng. 2020, 36, e3406. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Bruggeman, C.; Hare, K.E.; Mak, C.Y. Multifractal spectrum of self-similar measures with overlap. Nonlinearity 2014, 27, 227. [Google Scholar] [CrossRef]
- Zabihi, M.; Kiranyaz, S.; Rad, A.B.; Katsaggelos, A.K.; Gabbouj, M.; Ince, T. Analysis of high-dimensional phase space via poincaré section for patient-specific seizure detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 386–398. [Google Scholar] [CrossRef]
- Pérez-Toro, P.A.; Vásquez-Correa, J.C.; Arias-Vergara, T.; Nöth, E.; Orozco-Arroyave, J.R. Nonlinear dynamics and Poincaré sections to model gait impairments in different stages of Parkinson’s disease. Nonlinear Dyn. 2020, 100, 3253–3276. [Google Scholar] [CrossRef]
- Kapela, T.; Wilczak, D.; Zgliczyński, P. Recent advances in a rigorous computation of Poincaré maps. Commun. Nonlinear Sci. Numer. Simul. 2022, 110, 106366. [Google Scholar] [CrossRef]
- Bhavsar, R.; Davey, N.; Helian, N.; Sun, Y.; Steffert, T.; Mayor, D. Time Series Analysis using Embedding Dimension on Heart Rate Variability. Procedia Comput. Sci. 2018, 145, 89–96. [Google Scholar] [CrossRef]
- Cuesta-Frau, D.; Murillo-Escobar, J.P.; Orrego, D.A.; Delgado-Trejos, E. Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy 2019, 21, 385. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Reyes, J.E. Mutual information matrix based on asymmetric Shannon entropy for nonlinear interactions of time series. Nonlinear Dyn. 2021, 104, 3913–3924. [Google Scholar] [CrossRef]
- Jiang, A.-H.; Huang, X.-C.; Zhang, Z.-H.; Li, J.; Zhang, Z.-Y.; Hua, H.-X. Mutual information algorithms. Mech. Syst. Signal Process. 2010, 24, 2947–2960. [Google Scholar] [CrossRef]
- Khalili, F.; Gamage, P.T.; Taebi, A.; Johnson, M.E.; Roberts, R.B.; Mitchell, J. Spectral decomposition of the flow and characterization of the sound signals through stenoses with different levels of severity. Bioengineering 2021, 8, 41. [Google Scholar] [CrossRef]
- Petmezas, G.; Cheimariotis, G.A.; Stefanopoulos, L.; Rocha, B.; Paiva, R.P.; Katsaggelos, A.K.; Maglaveras, N. Automated lung sound classification using a hybrid CNN-LSTM network and focal loss function. Sensors 2022, 22, 1232. [Google Scholar] [CrossRef]
- Talaat, M.; Si, X.; Xi, J. Multi-level training and testing of CNN models in diagnosing multi-center COVID-19 and pneumonia X-ray images. Appl. Sci. 2023, 13, 10270. [Google Scholar] [CrossRef]
- Xi, J.; Zhao, W. Correlating exhaled aerosol images to small airway obstructive diseases: A study with dynamic mode decomposition and machine learning. PLoS ONE 2019, 14, e0211413. [Google Scholar] [CrossRef]
- Xi, J.; Zhao, W.; Yuan, J.E.; Cao, B.; Zhao, L. Multi-resolution classification of exhaled aerosol images to detect obstructive lung diseases in small airways. Comput. Biol. Med. 2017, 87, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Talaat, M.; Si, X.; Xi, J. Datasets of simulated exhaled aerosol images from normal and diseased lungs with multi-level similarities for neural network training/testing and continuous learning. Data 2023, 8, 126. [Google Scholar] [CrossRef]
- Talaat, M.; Xi, J.; Tan, K.; Si, X.A.; Xi, J. Convolutional neural network classification of exhaled aerosol images for diagnosis of obstructive respiratory diseases. J. Nanotheranostics 2023, 4, 228–247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, X.; Wang, J.; Dong, H.; Xi, J. Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps. Acoustics 2023, 5, 1046-1065. https://doi.org/10.3390/acoustics5040060
Si X, Wang J, Dong H, Xi J. Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps. Acoustics. 2023; 5(4):1046-1065. https://doi.org/10.3390/acoustics5040060
Chicago/Turabian StyleSi, Xiuhua, Junshi Wang, Haibo Dong, and Jinxiang Xi. 2023. "Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps" Acoustics 5, no. 4: 1046-1065. https://doi.org/10.3390/acoustics5040060
APA StyleSi, X., Wang, J., Dong, H., & Xi, J. (2023). Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps. Acoustics, 5(4), 1046-1065. https://doi.org/10.3390/acoustics5040060