The Sonoscape of a Rural Town in the Mediterranean Region: A Case Study of Fivizzano
Abstract
:1. Introduction
- (1)
- Assess the current conditions of the sonoscape that emerged from a small urban town set within a rural Mediterranean landscape, which has experienced moderate urban development outside its historic center and a simultaneous abandonment of the adjacent rural landscape.
- (2)
- Determine the composition, complexity, and spatio-temporal composition of geophonies, biophonies, and technophonies as indicators of geophysical, biological, and anthropogenic processes that play out in this urban–rural landscape.
- (3)
- Identify the relationship between these sonic components and the spatial and structural characteristics of landcover types across the urban–rural interface combining ecoacoustic indices and landscape metrics.
2. Materials and Methods
2.1. Study Area
2.1.1. Geographical Profile
2.1.2. Landscape Characters
2.1.3. Geological Characters
2.1.4. Climatic Characters
2.2. Sampling Design
2.3. Morphological and Landcover Characterizations
2.4. Methods for Collecting Sound Data
2.5. Metrics Used to Process Sonic Data
2.5.1. Sonic Heterogeneity Indices (SHItf)
2.5.2. Spectral Sonic Signature (SSS)
2.5.3. Number of Frequency Bins (NFB)
2.5.4. Spectral Variability (SV)
2.5.5. Effective Number of Frequency Bins (ENFB)
2.5.6. Effective Number of Frequency Bins Ratio (ENFBr)
2.5.7. Spectral Sonic Evenness J′
2.5.8. Sheldon Index of Ecological Evenness (E)
2.5.9. Normalize Difference Sonic Index (NDSHI)
2.5.10. The Alignment Between SSS and Landscape Variables
3. Results
3.1. Morphology and RS Landcover
3.2. The Sonic Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Naeem, S. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Isbell, F.; Cowles, J.M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 471–493. [Google Scholar] [CrossRef]
- Pinilla, V.; Ayuda, M.I.; Saez, L.A. Rural Depopulation in Mediterranean Western Europe: A Case Study of Aragon. 2006, Documentos de Trabajo, 1. Available online: https://www.researchgate.net/publication/28143754_Rural_depopulation_in_mediterranean_western_Europe_a_case_Study_of_Aragon (accessed on 4 October 2024).
- Viñas, C.D. Depopulation processes in European rural areas: A case study of Cantabria (Spain). Eur. Countrys. 2019, 11, 341–369. [Google Scholar] [CrossRef]
- Sueur, J.; Farina, A. Ecoacoustics: The ecological investigation and interpretation of environmental sound. Biosemiotics 2015, 8, 493–502. [Google Scholar] [CrossRef]
- Farina, A.; Krause, B.; Mullet, T.C. An exploration of ecoacoustics and its applications in conservation ecology. Biosystems 2024, 245, 105296. [Google Scholar] [CrossRef]
- Stowell, D.; Sueur, J. Ecoacoustics: Acoustic sensing for biodiversity monitoring at scale. Remote Sens. Ecol. Conserv. 2020, 6, 217–219. [Google Scholar] [CrossRef]
- Lawrence, B.T.; Hornberg, J.; Schröer, K.; Djeudeu, D.; Haselhoff, T.; Ahmed, S.; Moebus, S.; Gruehn, D. Linking ecoacoustic indices to psychoacoustic perception of the urban acoustic environment. Ecol. Indic. 2023, 155, 111023. [Google Scholar] [CrossRef]
- Mullet, T.C.; Morton, J.M.; Gage, S.H.; Huettmann, F. Acoustic footprint of snowmobile noise and natural quiet refugia in an Alaskan wilderness. Nat. Areas J. 2017, 37, 332–349. [Google Scholar] [CrossRef]
- Krause, B.; Farina, A. Using ecoacoustic methods to survey the impacts of climate change on biodiversity. Biol. Conserv. 2016, 195, 245–254. [Google Scholar] [CrossRef]
- Mullet, T.C.; Farina, A.; Morton, J.M.; Wilhelm, S.R. Seasonal sonic patterns reveal phenological phases (sonophases) associated with climate change in subarctic Alaska. Front. Ecol. Evol. 2024, 12, 1345558. [Google Scholar] [CrossRef]
- Linke, S.; Gifford, T.; Desjonquères, C.; Tonolla, D.; Aubin, T.; Barclay, L.; Karaconstantis, C.; Kennard, M.J.; Rybak, F.; Sueur, J. Freshwater ecoacoustics as a tool for continuous ecosystem monitoring. Front. Ecol. Environ. 2018, 16, 231–238. [Google Scholar] [CrossRef]
- Stansfeld, S.A.; Matheson, P.M. Noise pollution: Non-auditory effects on health. Br. Med. Bull. 2003, 68, 243–257. [Google Scholar] [CrossRef]
- Alvarsson, J.J.; Wiens, S.; Nilsson, M.E. Stress recovery during exposure to nature sound and environmental noise. Int. J. Environ. Res. Public Health 2010, 7, 1036–1046. [Google Scholar] [CrossRef]
- Robinson, J.M.; Annells, A.; Cavagnaro, T.R.; Liddicoat, C.; Rogers, H.; Taylor, A.; Breed, M.F. Monitoring soil fauna with ecoacoustics. Proc. R. Soc. B 2024, 291, 20241595. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.A.; Burns, P.; Gill, G.; Baligar, S.; Snyder, R.L.; Salas, L.; Goetz, S.J.; Clark, M.L. Soundscape classification with convolutional neural networks reveals temporal and geographic patterns in ecoacoustic data. Ecol. Indic. 2022, 138, 108831. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis, in Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 4 October 2024).
- Oleson, K.W.; Monaghan, A.; Wilhelmi, O.; Barlage, M.; Brunsell, N.; Feddema, J.; Hu, L.; Steinhoff, D.F. Interactions between urbanization, heat stress, and climate change. Clim. Change 2015, 129, 525–541. [Google Scholar] [CrossRef]
- Ameen RF, M.; Mourshed, M.; Li, H. A critical review of environmental assessment tools for sustainable urban design. Environmental Impact. Assess. Rev. 2015, 55, 110–125. [Google Scholar]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- Rapetti, F.; Vittorini, S. Note illustrative della carta climatica della Toscana. Atti Soc. Tosc. Sci. Nat. Mem. Ser A 2012, 117, 41–74. [Google Scholar]
- Farina, A.; Mullet, T.C. Sonotope patterns within a mountain beech forest of Northern Italy: A methodological and empirical approach. Front. Ecol. Evol. 2024, 12, 1341760. [Google Scholar] [CrossRef]
- Yip, D.; Leston, L.; Bayne, E.; Sólymos, P.; Grover, A. Experimentally derived detection distances from audio recordings and human observers enable integrated analysis of point count data. Avian Conserv. Ecol. 2017, 12, 11. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Niemelä, J.; Kotze, D.J. Fauna and habitat fragmentation: The use of Feret’s diameter in habitat connectivity studies. Conserv. Biol. 2005, 19, 1303–1311. [Google Scholar]
- Sullivan, D.E.; Dunning, J.B. Using morphometrics, including Feret’s diameter, to assess habitat fragmentation and species dispersal. Landsc. Ecol. 2011, 26, 89–100. [Google Scholar]
- Pimentel, D.; Zuniga, R. Invasive species and their impact on biodiversity and ecosystems: Using Feret’s diameter to track spread. Biol. Invasions 2007, 9, 413–424. [Google Scholar]
- Thompson, K.; McCarthy, L.A. Invasive plant morphology: Can Feret’s diameter predict spread patterns? Plant Ecol. 2010, 184, 249–259. [Google Scholar]
- Feder, J. The fractal dimension. In Fractals; Springer: Boston, MA, USA, 1988; pp. 6–30. [Google Scholar]
- Turner, L.A. Fractal geometry and its application to landscape ecology. J. Environ. Manag. 1990, 31, 353–363. [Google Scholar]
- Stoll, A.R.G.A. Quantifying landscape patterns using fractal geometry. Landscape Ecol. 2001, 16, 137–147. [Google Scholar]
- Campos, L.M.d.; Pessôa, G.T.P. Fractals in Ecology and Environmental Science. Ecol. Complex. 2005, 2, 1–16. [Google Scholar]
- Farina, A. The acoustic complexity index (ACI): Theoretical foundations, applied perspectives and semantics. OIKOS 2024, e10760. [Google Scholar] [CrossRef]
- Farina, A.; Li, P. Methods in Ecoacoustics. The Acoustic Complexity Index; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Lance, G.N.; Williams, W.T. Computer programs for hierarchical polythetic classification (“similarity analyses”). Comput. J. 1966, 9, 60–64. [Google Scholar] [CrossRef]
- Lance, G.N.; Williams, W.T. Computer Program for Classification. In Proceedings of the ANCCAC Conference, Canberra, Australia, 16–20 May 1966. Paper 12/3. [Google Scholar]
- Blondel, P.; Dell, B.; Suriyaprakasam, C. Acoustic signatures of shipping, weather and marine life: Comparison of NE Pacific and Arctic Soundscapes. In Proceedings of the Meetings on Acoustics 2020, Virtual, 9 September 2020; AIP Publishing: Melville, NY, USA, 2020; Volume 40. [Google Scholar]
- Gini, C. Variabilità e Mutabilità: Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche; Tipografia P. Cuppini: Bologna, Italy, 1912; 159p. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1963; 117p. [Google Scholar]
- Heip, C. A new index measuring evenness. J. Mar. Biol. Assoc. U.K. 1974, 54, 555–557. [Google Scholar] [CrossRef]
- Sheldon, A.L. Equitability indices: Dependence on the species count. Ecology 1969, 50, 466–467. [Google Scholar] [CrossRef]
- Hurlbert, S.H. The nonconcept of species diversity: A critique and alternative parameters. Ecology 1971, 52, 577–586. [Google Scholar] [CrossRef]
- Ricotta, C. On parametric evenness measures. J. Theor. Biol. 2003, 222, 189–197. [Google Scholar] [CrossRef]
- Kasten, E.P.; Gage, S.H.; Fox, J.; Joo, W. The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecol. Informat. 2012, 12, 50–67. [Google Scholar] [CrossRef]
- Gage, S.H.; Axel, A.C. Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecol. Inform. 2014, 21, 100–109. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning (Vol. 1), 2017, (Sthda). Available online: http://www.sthda.com (accessed on 4 October 2024).
- R Core Team. R: A Language and Environment of Statistical Computing. R. Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://www.R-project.org/ (accessed on 4 October 2024).
- Goodman, L.A.; Kruskal, W.H. Measures of association for cross classifications. J. Am. Stat. Assoc. 1954, 49, 732–764. [Google Scholar]
- Baker, F.B. Stability of two hierarchical grouping techniques case I: Sensitivity to data errors. J. Am. Stat. Assoc. 1974, 69, 440–445. [Google Scholar] [CrossRef]
- SAS Institute Inc. JMP (18 Pro) [Computer Software]. 2023. Available online: https://www.jmp.com (accessed on 4 October 2024).
- Mullet, T.C.; Farina, A.; Gage, S.H. The acoustic habitat hypothesis: An ecoacoustics perspective on species habitat selection. Biosemiotics 2017, 10, 319–336. [Google Scholar] [CrossRef]
- Zakkak, S.; Radovic, A.; Nikolov, S.C.; Shumka, S.; Kakalis, L.; Kati, V. Assessing the effect of agricultural land abandonment on bird communities in southern-eastern Europe. J. Environ. Manag. 2015, 164, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Farina, A. Landscape structure and breeding bird distribution in a sub-Mediterranean agro-ecosystem. Landsc. Ecol. 1997, 12, 365–378. [Google Scholar] [CrossRef]
- Salaverri, L.; Guitián, J.; Munilla, I.; Sobral, M. Bird richness decreases with the abandonment of agriculture in a rural region of SW Europe. Reg. Environ. Change 2019, 19, 245–250. [Google Scholar] [CrossRef]
- Farina, A.; Mullet, T.C.; Bazarbayeva, T.A.; Tazhibayeva, T.; Polyakova, S.; Li, P. Sonotopes reveal dynamic spatio-temporal patterns in a rural landscape of Northern Italy. Front. Ecol. Evol. 2023, 11, 1205272. [Google Scholar] [CrossRef]
- Butler, S.J.; Boccaccio, L.; Gregory, R.D.; Vorisek, P.; Norris, K. Quantifying the impact of land-use change to European farmland bird populations. Agric. Ecosyst. Environ. 2010, 137, 348–357. [Google Scholar] [CrossRef]
- Mullet, T.C.; Gage, S.H.; Morton, J.M.; Huettmann, F. Temporal and spatial variation of a winter soundscape in south-central Alaska. Landsc. Ecol. 2016, 31, 1117–1137. [Google Scholar] [CrossRef]
- Quinn, C.A.; Burns, P.; Hakkenberg, C.R.; Salas, L.; Pasch, B.; Goetz, S.J.; Clark, M.L. Soundscape components inform acoustic index patterns and refine estimates of bird species richness. Front. Remote Sens. 2023, 4, 1156837. [Google Scholar] [CrossRef]
- Fuller, S.; Axel, A.C.; Tucker, D.; Gage, S.H. Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecol. Indic. 2015, 58, 207–215. [Google Scholar] [CrossRef]
- Thakre, C.; Laxmi, V.; Kalawapudi, K.; Motghare, V.M.; Vijay, R. Noise Mapping and Impact of Land Use Land Cover on Urban Soundscape. MAPAN 2025, 40, 59–75. [Google Scholar] [CrossRef]
- Morton, E.S. Ecological sources of selection on avian sounds. Am. Nat. 1975, 109, 17–34. [Google Scholar] [CrossRef]
- Pocock, Z.; Lawrence, R.E. How Far into a Forest does the Effect of a Road Extend? Defining Road Edge Effect in Eucalypt Forests of South-Eastern Australia. 2005. Available online: https://escholarship.org/uc/item/4q576877 (accessed on 4 October 2024).
- Terraube, J.; Archaux, F.; Deconchat, M.; Van Halder, I.; Jactel, H.; Barbaro, L. Forest edges have high conservation value for bird communities in mosaic landscapes. Ecol. Evol. 2016, 6, 5178–5189. [Google Scholar] [CrossRef]
- Munro, J.; Williamson, I.; Fuller, S. Traffic noise impacts on urban forest soundscapes in south-eastern Australia. Austral Ecol. 2018, 43, 180–190. [Google Scholar] [CrossRef]
- Shamon, H.; Paraskevopoulou, Z.; Kitzes, J.; Card, E.; Deichmann, L.J.; Boyce, J.A.; McShea, W.J. Using ecoacoustics metrices to track grassland bird richness across landscape gradients. Ecol. Indic. 2021, 120, 106928. [Google Scholar] [CrossRef]
- Bradfer-Lawrence, T.; Gardner, N.; Bunnefeld, L.; Bunnefeld, N.; Willis, G.S.; Dent, H.D. Guidelines for the use of acoustic indices in environmental research. Methods Ecol. Evol. 2019, 10, 1796–1807. [Google Scholar] [CrossRef]
- Xie, J.; Hu, K.; Zhu, M.; Guo, Y. Data-driven analysis of global research trends in bioacoustics and ecoacoustics from 1991 to 2008. Ecol. Inform. 2020, 57, 101068. [Google Scholar]
Indicator | Description |
---|---|
Number of Patches (PN) | The number of patches of the selected LCC |
Patch Area (PA) | Measures the area of the selected LCC in pixels |
Patch size (PS) | Total area/Number of patches |
Patch Perimeter (PP) | The length of the boundaries of all patches/number of patches |
Feret’s Patch Diameter (Fmax, Fmin) | Feret’s Patch Diameter: The longest straight-line distance between any two points on the perimeter of the selected object. Feret’s diameter provides an indication of the overall size and shape of the object. It is a powerful measurement for analyzing the size and shape of irregular objects, offering insights into both the overall size (max diameter, Fmax) and the compactness or elongation (min diameter, Fmin) of the object. This makes it a crucial tool in landscape ecology [25,26,27,28]. |
Patch Fractal Dimension (PFD) | Fractal analysis has been applied to every land cover using the box counting method |
Index | |||||||
---|---|---|---|---|---|---|---|
Landcover | PN | PA | PS | PP | Fmax | Fmin | PFD |
Woodland | 248.97 | 172,128.57 | 875.52 | 45.98 | 11.51 | 5.97 | 1.70 |
Shrubland | 1013.70 | 23,486.80 | 24.01 | 13.60 | 4.63 | 2.62 | 1.19 |
Uncultivated | 1806.57 | 79,977.77 | 48.47 | 18.77 | 6.06 | 2.80 | 1.42 |
Cultivated | 1171.27 | 36,617.30 | 36.60 | 14.85 | 5.23 | 2.48 | 1.27 |
Bamboo | 979.53 | 18,653.17 | 20.45 | 12.13 | 4.08 | 2.31 | 1.17 |
Olive orchard | 807.17 | 10,812.60 | 12.77 | 11.86 | 4.52 | 2.58 | 1.01 |
Vineyard | 697.73 | 8167.53 | 11.44 | 10.55 | 3.99 | 2.24 | 1.04 |
Edgerows | 1068.67 | 828,275.23 | 361.55 | 33.65 | 7.38 | 3.83 | 1.71 |
Buildings | 877.97 | 61,197.37 | 67.62 | 20.50 | 7.62 | 3.16 | 1.36 |
Roads | 252.60 | 120,364.10 | 502.15 | 58.02 | 16.01 | 7.24 | 1.50 |
Other | 339.30 | 5048.73 | 12.84 | 12.05 | 4.99 | 2.33 | 0.88 |
Frequency Partition | |||||
---|---|---|---|---|---|
<2000 Hz | >2000 Hz | ||||
Cluster | Recording Station | SHItf | Dendrogram | Recording Station | SHtf |
6 | 12 | 28,123.68 | 4 | 12 | 46,260.58 |
2 | 34 | 35,059.71 | 5 | 23 | 64,271.27 |
2 | 24 | 35,188.92 | 5 | 16 | 65,102.13 |
1 | 23 | 36,034.18 | 5 | 13 | 66,572.83 |
1 | 32 | 36,353.31 | 5 | 36 | 67,608.64 |
1 | 13 | 36,359.17 | 5 | 14 | 68,744.02 |
1 | 11 | 36,432.96 | 5 | 41 | 76,229.24 |
1 | 16 | 36,765.09 | 5 | 46 | 76,443.15 |
1 | 36 | 36,967.85 | 5 | 43 | 78,964.50 |
1 | 43 | 37,091.01 | 2 | 25 | 80,851.88 |
1 | 25 | 37,112.04 | 2 | 56 | 80,851.88 |
1 | 56 | 37,112.04 | 5 | 31 | 80,865.12 |
1 | 26 | 37,376.46 | 5 | 24 | 81,903.66 |
3 | 14 | 37,515.73 | 5 | 15 | 85,020.87 |
3 | 51 | 37,579.68 | 2 | 55 | 92,085.64 |
3 | 33 | 37,605.58 | 1 | 53 | 94,004.16 |
3 | 46 | 37,687.25 | 1 | 32 | 99,373.64 |
3 | 53 | 37,820.52 | 1 | 51 | 99,903.56 |
3 | 41 | 37,957.69 | 1 | 42 | 109,419.55 |
3 | 52 | 38,106.40 | 2 | 26 | 110,370.74 |
3 | 31 | 38,138.96 | 6 | 34 | 114,463.87 |
3 | 42 | 38,582.13 | 1 | 52 | 114,469.00 |
4 | 35 | 39,611.64 | 1 | 11 | 116,003.70 |
4 | 44 | 39,952.99 | 1 | 44 | 116,833.16 |
4 | 15 | 40,576.80 | 1 | 33 | 129,931.27 |
5 | 55 | 41,828.83 | 3 | 35 | 149,998.87 |
Woodland | Shrubland | |||||||||||||
Index | PN | PA | PS | PP | Fmax | Fmin | PFD | PN | PA | PS | PP | Fmax | Fmin | PFD |
NFB | 0.198 | 0.085 | −0.028 | 0.150 | 0.218 | 0.389 | −0.161 | 0.138 | −0.002 | −0.030 | −0.128 | −0.164 | −0.204 | 0.093 |
E | 0.365 | 0.363 | 0.211 | 0.034 | −0.132 | −0.111 | 0.368 | 0.015 | 0.175 | 0.248 | 0.382 | 0.404 | 0.442 | 0.185 |
J′ | 0.399 | 0.404 | 0.230 | 0.073 | −0.089 | −0.037 | 0.366 | 0.052 | 0.178 | 0.237 | 0.356 | 0.367 | 0.400 | 0.196 |
SV | 0.334 | 0.355 | 0.198 | 0.184 | 0.106 | 0.308 | 0.146 | 0.191 | 0.161 | 0.164 | 0.167 | 0.136 | 0.129 | 0.233 |
ENFB | 0.443 | 0.362 | 0.158 | 0.205 | 0.151 | 0.320 | 0.127 | 0.136 | 0.102 | 0.134 | 0.144 | 0.120 | 0.103 | 0.214 |
ENFBr | 0.357 | 0.433 | 0.291 | 0.116 | −0.058 | 0.007 | 0.408 | 0.006 | 0.206 | 0.310 | 0.449 | 0.463 | 0.491 | 0.242 |
SHItf < 2000 | −0.145 | 0.003 | 0.066 | 0.176 | 0.123 | 0.053 | 0.133 | 0.027 | −0.326 | −0.244 | −0.101 | −0.072 | −0.084 | −0.140 |
SHItf > 2000 | 0.213 | 0.216 | 0.184 | 0.312 | 0.298 | 0.304 | 0.187 | −0.119 | −0.145 | 0.008 | 0.124 | 0.135 | 0.104 | 0.076 |
SHItf Tot | 0.189 | 0.206 | 0.181 | 0.314 | 0.295 | 0.295 | 0.191 | −0.111 | −0.169 | −0.016 | 0.108 | 0.122 | 0.091 | 0.059 |
NDSHI | 0.284 | 0.289 | 0.239 | 0.341 | 0.337 | 0.367 | 0.207 | −0.128 | −0.103 | 0.056 | 0.151 | 0.154 | 0.124 | 0.100 |
Cultivated | Uncultivated | |||||||||||||
NFB | 0.307 | −0.058 | −0.159 | −0.247 | −0.293 | −0.269 | −0.050 | 0.183 | 0.266 | 0.011 | −0.024 | 0.032 | −0.056 | 0.156 |
E | −0.510 | −0.120 | 0.075 | 0.032 | 0.085 | 0.058 | −0.266 | −0.500 | −0.413 | 0.262 | 0.210 | 0.137 | 0.110 | −0.136 |
J′ | −0.475 | −0.116 | 0.072 | 0.002 | 0.043 | 0.016 | −0.257 | −0.483 | −0.378 | 0.254 | 0.221 | 0.158 | 0.113 | −0.110 |
SV | −0.161 | −0.097 | −0.028 | −0.130 | −0.154 | −0.164 | −0.144 | −0.268 | 0.002 | 0.262 | 0.220 | 0.202 | 0.121 | 0.104 |
ENFB | −0.045 | −0.130 | −0.090 | −0.239 | −0.250 | −0.259 | −0.230 | −0.168 | −0.045 | 0.177 | 0.133 | 0.140 | 0.012 | 0.063 |
ENFBr | −0.528 | −0.179 | 0.024 | −0.019 | 0.029 | −0.013 | −0.318 | −0.566 | −0.418 | 0.315 | 0.244 | 0.184 | 0.115 | −0.126 |
SHItf < 2000 | 0.126 | 0.101 | 0.014 | −0.354 | −0.536 | −0.526 | 0.062 | −0.073 | 0.171 | 0.164 | −0.005 | −0.059 | −0.065 | 0.096 |
SHItf > 2000 | 0.119 | −0.206 | −0.238 | −0.423 | −0.434 | −0.472 | −0.336 | −0.060 | −0.165 | 0.030 | −0.108 | −0.086 | −0.260 | −0.081 |
SHItf Tot | 0.125 | −0.187 | −0.225 | −0.437 | −0.465 | −0.500 | −0.315 | −0.064 | −0.141 | 0.045 | −0.103 | −0.087 | −0.254 | −0.068 |
NDSHI | 0.073 | −0.230 | −0.239 | −0.393 | −0.382 | −0.431 | −0.363 | −0.102 | −0.180 | 0.071 | −0.060 | −0.039 | −0.233 | −0.061 |
Bamboo | Olive orchard | |||||||||||||
Index | PN | PA | PS | PP | Fmax | Fmin | PFD | PN | PA | PS | PP | Fmax | Fmin | PFD |
NFB | −0.038 | 0.571 | 0.575 | 0.627 | 0.511 | 0.487 | 0.549 | 0.166 | 0.160 | 0.156 | 0.184 | 0.134 | 0.070 | 0.090 |
E | 0.081 | −0.183 | −0.383 | −0.329 | −0.283 | −0.268 | −0.362 | −0.377 | −0.398 | −0.401 | −0.439 | −0.417 | −0.373 | −0.202 |
J′ | 0.091 | −0.081 | −0.303 | −0.226 | −0.188 | −0.181 | −0.278 | −0.348 | −0.374 | −0.376 | −0.409 | −0.396 | −0.364 | −0.168 |
SV | 0.103 | 0.317 | 0.121 | 0.292 | 0.243 | 0.227 | 0.186 | −0.132 | −0.141 | −0.110 | −0.104 | −0.138 | −0.179 | −0.019 |
ENFB | 0.002 | 0.432 | 0.285 | 0.395 | 0.333 | 0.321 | 0.282 | −0.113 | −0.141 | −0.141 | −0.140 | −0.175 | −0.211 | −0.043 |
ENFBr | 0.063 | −0.185 | −0.372 | −0.281 | −0.254 | −0.231 | −0.294 | −0.443 | −0.459 | −0.430 | −0.467 | −0.457 | −0.424 | −0.292 |
SHItf < 2000 | −0.144 | −0.027 | −0.004 | 0.074 | 0.084 | 0.068 | 0.014 | −0.240 | −0.281 | −0.173 | −0.158 | −0.206 | −0.242 | −0.179 |
SHItf > 2000 | −0.298 | 0.242 | 0.374 | 0.338 | 0.276 | 0.285 | 0.308 | −0.289 | −0.398 | −0.400 | −0.398 | −0.431 | −0.426 | −0.381 |
SHItf Tot | −0.297 | 0.228 | 0.355 | 0.329 | 0.271 | 0.278 | 0.295 | −0.299 | −0.406 | −0.397 | −0.394 | −0.430 | −0.429 | −0.380 |
NDSHI | −0.306 | 0.277 | 0.415 | 0.372 | 0.301 | 0.305 | 0.327 | −0.310 | −0.412 | −0.408 | −0.407 | −0.442 | −0.438 | −0.375 |
Vineyard | Edgerows | |||||||||||||
NFB | 0.126 | −0.028 | −0.158 | −0.079 | −0.112 | −0.020 | 0.096 | −0.113 | 0.231 | 0.218 | 0.182 | 0.171 | 0.295 | 0.016 |
E | −0.186 | −0.201 | −0.060 | 0.154 | 0.243 | 0.086 | −0.046 | 0.165 | −0.333 | −0.295 | −0.248 | −0.070 | −0.065 | −0.276 |
J′ | −0.160 | −0.193 | −0.068 | 0.163 | 0.243 | 0.098 | −0.022 | 0.141 | −0.300 | −0.269 | −0.205 | −0.038 | −0.008 | −0.268 |
SV | 0.033 | −0.088 | −0.106 | 0.128 | 0.153 | 0.133 | 0.110 | −0.005 | −0.019 | 0.010 | 0.084 | 0.101 | 0.233 | −0.140 |
ENFB | −0.034 | −0.189 | −0.193 | 0.032 | 0.064 | 0.039 | 0.053 | −0.010 | −0.020 | 0.000 | 0.005 | 0.146 | 0.272 | −0.214 |
ENFBr | −0.218 | −0.253 | −0.110 | 0.148 | 0.248 | 0.090 | −0.062 | 0.171 | −0.349 | −0.282 | −0.237 | −0.028 | −0.006 | −0.350 |
SHItf < 2000 | −0.284 | −0.352 | −0.238 | −0.290 | −0.295 | −0.263 | −0.247 | 0.126 | −0.204 | −0.146 | −0.020 | −0.063 | −0.062 | −0.274 |
SHItf > 2000 | −0.341 | −0.547 | −0.474 | −0.315 | −0.256 | −0.309 | −0.232 | 0.076 | −0.247 | −0.164 | −0.284 | 0.130 | 0.105 | −0.518 |
SHItf Tot | −0.352 | −0.555 | −0.475 | −0.328 | −0.272 | −0.320 | −0.245 | 0.084 | −0.255 | −0.171 | −0.272 | 0.118 | 0.094 | −0.520 |
NDSHI | −0.322 | −0.532 | −0.447 | −0.240 | −0.177 | −0.241 | −0.166 | 0.059 | −0.264 | −0.167 | −0.286 | 0.166 | 0.134 | −0.546 |
Roads | Buildings | |||||||||||||
Index | PN | PA | PS | PP | Fmax | Fmin | PFD | PN | PA | PS | PP | Fmax | Fmin | PFD |
NFB | 0.305 | 0.094 | −0.003 | −0.050 | −0.142 | −0.070 | 0.287 | 0.281 | 0.039 | −0.147 | −0.098 | −0.084 | −0.102 | 0.038 |
E | −0.432 | −0.360 | −0.066 | 0.442 | 0.545 | 0.472 | −0.385 | −0.511 | −0.347 | 0.169 | 0.364 | 0.424 | 0.309 | −0.135 |
J′ | −0.393 | −0.364 | −0.069 | 0.412 | 0.503 | 0.435 | −0.347 | −0.476 | −0.353 | 0.132 | 0.329 | 0.389 | 0.272 | −0.139 |
SV | −0.068 | −0.318 | −0.140 | 0.201 | 0.215 | 0.204 | −0.105 | −0.210 | −0.287 | −0.079 | 0.068 | 0.119 | 0.034 | −0.149 |
ENFB | −0.004 | −0.136 | −0.016 | 0.246 | 0.225 | 0.241 | 0.026 | −0.077 | −0.183 | −0.009 | 0.169 | 0.222 | 0.123 | −0.032 |
ENFBr | −0.432 | −0.402 | −0.099 | 0.466 | 0.565 | 0.491 | −0.394 | −0.553 | −0.391 | 0.130 | 0.353 | 0.426 | 0.288 | −0.178 |
SHItf < 2000 | 0.116 | 0.192 | 0.193 | −0.097 | −0.089 | −0.126 | 0.103 | 0.009 | 0.121 | 0.113 | 0.053 | 0.034 | 0.037 | 0.176 |
SHItf > 2000 | 0.030 | 0.369 | 0.346 | 0.230 | 0.169 | 0.200 | 0.288 | 0.053 | 0.109 | 0.185 | 0.336 | 0.373 | 0.269 | 0.217 |
SHItf Tot | 0.040 | 0.370 | 0.348 | 0.210 | 0.152 | 0.178 | 0.285 | 0.052 | 0.115 | 0.187 | 0.325 | 0.358 | 0.260 | 0.224 |
NDSHI | −0.005 | 0.307 | 0.312 | 0.285 | 0.224 | 0.254 | 0.277 | 0.011 | 0.052 | 0.167 | 0.354 | 0.402 | 0.278 | 0.172 |
Other | Altitude | Slope | Orientation | |||||||||||
Index | PN | PA | PS | PP | Fmax | Fmin | PFD | |||||||
NFB | 0.068 | 0.004 | 0.057 | 0.072 | 0.046 | 0.117 | 0.150 | −0.157 | −0.178 | −0.009 | ||||
E | −0.367 | −0.265 | −0.204 | −0.184 | −0.194 | −0.149 | −0.165 | −0.181 | 0.194 | 0.364 | ||||
J′ | −0.366 | −0.271 | −0.189 | −0.166 | −0.182 | −0.121 | −0.138 | −0.215 | 0.180 | 0.378 | ||||
SV | −0.288 | −0.233 | −0.095 | −0.071 | −0.102 | −0.013 | −0.009 | −0.331 | 0.069 | 0.225 | ||||
ENFB | −0.172 | −0.153 | −0.050 | −0.017 | −0.052 | 0.053 | 0.068 | −0.326 | −0.055 | 0.250 | ||||
ENFBr | −0.429 | −0.296 | −0.206 | −0.180 | −0.195 | −0.142 | −0.148 | −0.272 | 0.163 | 0.337 | ||||
SHItf < 2000 | 0.115 | 0.105 | 0.196 | 0.144 | 0.112 | 0.148 | 0.316 | −0.468 | 0.141 | −0.267 | ||||
SHItf > 2000 | 0.063 | 0.067 | 0.115 | 0.126 | 0.093 | 0.163 | 0.255 | −0.363 | −0.236 | −0.045 | ||||
SHItf Tot | 0.071 | 0.074 | 0.129 | 0.134 | 0.099 | 0.170 | 0.274 | −0.391 | −0.212 | −0.069 | ||||
NDSHI | 0.000 | 0.014 | 0.076 | 0.103 | 0.071 | 0.148 | 0.218 | −0.367 | −0.255 | 0.017 |
Index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Landcover | NFB | E | J′ | SV | ENFB | ENFBr | SHItf < 2000 | SHItf > 2000 | SHItf Tot | NDSHI |
Woodland | 1 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 0 |
Shrubland | 0 | 2 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
Uncultivated | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
Cultivated | 0 | 1 | 1 | 0 | 0 | 1 | 2 | 3 | 3 | 2 |
Bamboo | 6 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 |
Olive orchard | 0 | 4 | 2 | 0 | 0 | 6 | 0 | 5 | 5 | 5 |
Vineyard | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 |
Edgerows | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Buildings | 0 | 2 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 1 |
Roads | 0 | 4 | 4 | 0 | 0 | 6 | 0 | 0 | 0 | 0 |
Other | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Total | 7 | 15 | 13 | 0 | 3 | 24 | 2 | 11 | 11 | 12 |
Index | ||||||||
---|---|---|---|---|---|---|---|---|
Landcover | PN | PA | PS | PP | Fmax | Fmin | PFD | Total |
Woodland | 2 | 2 | - | - | - | 1 | 1 | 6 |
Shrubland | - | - | - | 1 | 2 | 3 | - | 6 |
Uncultivated | 3 | 2 | - | - | - | - | - | 5 |
Cultivated | 3 | - | - | 3 | 3 | 4 | - | 13 |
Bamboo | - | 2 | 2 | 2 | 1 | 1 | 1 | 9 |
Olive orchard | 1 | 5 | 5 | 6 | 6 | 4 | - | 27 |
Vineyard | - | 3 | 3 | - | - | - | - | 6 |
Edgerows | - | - | - | - | - | - | 3 | 3 |
Buildings | 3 | 1 | - | - | 4 | - | - | 8 |
Roads | 3 | 1 | - | 3 | 3 | 3 | 1 | 14 |
Other | 1 | - | - | - | - | - | - | 1 |
Total | 16 | 16 | 10 | 15 | 19 | 16 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farina, A.; Mullet, T.C. The Sonoscape of a Rural Town in the Mediterranean Region: A Case Study of Fivizzano. Acoustics 2025, 7, 23. https://doi.org/10.3390/acoustics7020023
Farina A, Mullet TC. The Sonoscape of a Rural Town in the Mediterranean Region: A Case Study of Fivizzano. Acoustics. 2025; 7(2):23. https://doi.org/10.3390/acoustics7020023
Chicago/Turabian StyleFarina, Almo, and Timothy C. Mullet. 2025. "The Sonoscape of a Rural Town in the Mediterranean Region: A Case Study of Fivizzano" Acoustics 7, no. 2: 23. https://doi.org/10.3390/acoustics7020023
APA StyleFarina, A., & Mullet, T. C. (2025). The Sonoscape of a Rural Town in the Mediterranean Region: A Case Study of Fivizzano. Acoustics, 7(2), 23. https://doi.org/10.3390/acoustics7020023