CNN-Based Pattern Classifiers for Precise Identification of Perinatal EEG Biomarkers of Brain Injury in Preterm Neonates
Abstract
:1. Introduction
2. Data Acquisition
2.1. Ethics
2.2. Clinical Procedures
2.3. Neonatal HI Micro-Scale Sharp Waves
3. Related Works
4. Methods
4.1. Pre-Processing
4.2. Scalogram Image Feature Extraction
4.3. The Deep WS-CNN Classifier: Model Setup and Architecture
4.4. Computing Infrastructure
4.5. Training and Testing the WS-CNN Classifier
4.6. WS-CNN Classifier
4.7. 1D-CNN Classifier
4.8. Wavelet Type-II Fuzzy Classifier
4.9. Performance Evaluation Metrics
- (1)
- K-fold cross-validation for the deep CNN-based classifiers
- (2)
- K-fold cross-validation for the Wavelet-Type-II-FLC
5. Results
5.1. Cross Dataset Results of the WS-CNN Classifier
5.2. Cross Dataset Results of the WF-CNN Classifier
5.3. Cross Dataset Results of the 1D-CNN Classifier
5.4. Cross Dataset Results of the WT-Type-II-FLC
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merchant, N.; Azzopardi, D. Early predictors of outcome in infants treated with hypothermia for hypoxic–ischaemic encephalopathy. Dev. Med. Child Neurol. 2015, 57, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Aridas, J.D.; Yawno, T.; Sutherland, A.E.; Nitsos, I.; Ditchfield, M.; Wong, F.Y.; Fahey, M.C.; Malhotra, A.; Wallace, E.M.; Jenkin, G.; et al. Detecting brain injury in neonatal hypoxic ischemic encephalopathy: Closing the gap between experimental and clinical research. Exp. Neurol. 2014, 261C, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Parikh, P.; Juul, S.E. Neuroprotection strategies in preterm encephalopathy. Semin. Pediatr. Neurol. 2019, 32, 100772. [Google Scholar] [CrossRef] [PubMed]
- Manuck, T.A.; Rice, M.M.; Bailit, J.L.; Grobman, W.A.; Reddy, U.M.; Wapner, R.J.; Thorp, J.M.; Caritis, S.N.; Prasad, M.; Tita, A.T. Preterm neonatal morbidity and mortality by gestational age: A contemporary cohort. Am. J. Obstet. Gynecol. 2016, 215, e1–e103. [Google Scholar] [CrossRef] [PubMed]
- Ophelders, D.R.; Gussenhoven, R.; Klein, L.; Jellema, R.K.; Westerlaken, R.J.; Hütten, M.C.; Vermeulen, J.; Wassink, G.; Gunn, A.J.; Wolfs, T.G. Preterm brain injury; antenatal triggers; therapeutics: Timing is key. Cells 2020, 9, 1871. [Google Scholar] [CrossRef] [PubMed]
- Wachtel, E.V.; Verma, S.; Mally, P.V. Update on the current management of newborns with neonatal encephalopathy. Curr. Probl. Pediatr. Adolesc. Health Care 2019, 49, 100636. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.I.; Drury, P.P. The pharmacology of hypothermia. In Neonatal Neural Rescue: A Clinical Guide; Cambridge University Press: Cambridge, UK, 2013; p. 73. [Google Scholar]
- Thoresen, M.; Tooley, J.; Liu, X.; Jary, S.; Fleming, P.; Luyt, K.; Jain, A.; Cairns, P.; Harding, D.; Sabir, H. Time is brain: Starting therapeutic hypothermia within three hours after birth improves motor outcome in asphyxiated newborns. Neonatology 2013, 104, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Herrera, T.I.; Edwards, L.; Malcolm, W.F.; Smith, P.B.; Fisher, K.A.; Pizoli, C.; Gustafson, K.E.; Goldstein, R.F.; Cotten, C.M.; Goldberg, R.N. Outcomes of preterm infants treated with hypothermia for hypoxic-ischemic encephalopathy. Early Hum. Dev. 2018, 125, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Walsh, W.F.; Butler, D.; Schmidt, J.W. Report of a pilot study of cooling four preterm infants 32–35 weeks gestation with HIE. J. Neonatal-Perinat. Med. 2015, 8, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Battin, M.R.; Butler, R.; Rowe, D.; Lear, B.A.; Gunn, A.J.; Bennet, L. Early signatures of brain injury in the preterm neonatal EEG. Signals 2023, 4, 630–643. [Google Scholar] [CrossRef]
- Bennet, L.; Booth, L.; Gunn, A.J. Potential biomarkers for hypoxic-ischemic encephalopathy. Semin. Fetal Neonatal Med. 2010, 15, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Drury, P.P.; Lear, C.A.; Gunn, A.J.; Davidson, J.O.; Bennet, L.; Unsworth, C.P. EEG sharp waves are a biomarker of striatal neuronal survival after hypoxia-ischemia in preterm fetal sheep. Sci. Rep. 2018, 8, 16312–16317. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Bennet, L.; Gunn, A.J.; Unsworth, C.P. Robust wavelet stabilized footprints of uncertainty for fuzzy system classifiers to automatically detect sharp waves in the EEG after hypoxia ischemia. Int. J. Neural Syst. 2017, 27, 1650051. [Google Scholar] [CrossRef] [PubMed]
- Bennet, L.; Roelfsema, V.; Pathipati, P.; Quaedackers, J.S.; Gunn, A.J. Relationship between evolving epileptiform activity and delayed loss of mitochondrial activity after asphyxia measured by near-infrared spectroscopy in preterm fetal sheep. J. Physiol. 2006, 572, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.D.; Brocklehurst, P.; Gunn, A.J.; Halliday, H.; Juszczak, E.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: Synthesis and meta-analysis of trial data. BMJ 2010, 340, 409. [Google Scholar] [CrossRef] [PubMed]
- Raurale, S.A.; Boylan, G.B.; Mathieson, S.R.; Marnane, W.P.; Lightbody, G.; O’Toole, J.M. Grading hypoxic-ischemic encephalopathy in neonatal EEG with convolutional neural networks and quadratic time-frequency distributions. J. Neural Eng. 2021, 18, 046007. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Marnane, W.P.; Boylan, G.B.; Lightbody, G. Neonatal hypoxic-ischemic encephalopathy grading from multi-channel EEG time-series data using a fully convolutional neural network. Technologies 2023, 11, 151. [Google Scholar] [CrossRef]
- Gramacki, A.; Gramacki, J. A deep learning framework for epileptic seizure detection based on neonatal EEG signals. Sci. Rep. 2022, 12, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Raeisi, K.; Khazaei, M.; Croce, P.; Tamburro, G.; Comani, S.; Zappasodi, F. A graph convolutional neural network for the automated detection of seizures in the neonatal eeg. Comput. Methods Programs Biomed. 2022, 222, 106950. [Google Scholar] [CrossRef] [PubMed]
- Tjepkema-Cloostermans, M.C.; de Carvalho, R.C.; van Putten, M.J. Deep learning for detection of focal epileptiform discharges from scalp EEG recordings. Clin. Neurophysiol. 2018, 129, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- Deburchgraeve, W.; Cherian, P.J.; De Vos, M.; Swarte, R.M.; Blok, J.H.; Visser, G.H.; Govaert, P.; Van Huffel, S. Automated neonatal seizure detection mimicking a human observer reading EEG. Clin. Neurophysiol. 2008, 119, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Cherian, P.J.; Deburchgraeve, W.; Swarte, R.M.; De Vos, M.; Govaert, P.; Van Huffel, S.; Visser, G.H. Validation of a new automated neonatal seizure detection system: A clinician’s perspective. Clin. Neurophysiol. 2011, 122, 1490–1499. [Google Scholar] [CrossRef] [PubMed]
- Tapani, K.T.; Vanhatalo, S.; Stevenson, N.J. Incorporating spike correlations into an SVM-based neonatal seizure detector. In EMBEC & NBC 2017; Anonymous; Springer: Berlin/Heidelberg, Germany, 2017; pp. 322–325. [Google Scholar]
- Ansari, A.H.; Cherian, P.J.; Caicedo, A.; Dereymaeker, A.; Jansen, K.; De Wispelaere, L.; Dielman, C.; Vervisch, J.; Govaert, P.; De Vos, M. NeoGuard: A public, online learning platform for neonatal seizures. arXiv 2019, arXiv:1905.12382. [Google Scholar]
- Palmu, K.; Wikström, S.; Hippeläinen, E.; Boylan, G.; Hellström-Westas, L.; Vanhatalo, S. Detection of ‘EEG bursts’ in the early preterm EEG: Visual vs. automated detection. Clin. Neurophysiol. 2010, 121, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Gunn, A.J.; Unsworth, C.P.; Bennet, L. Advanced deep learning spectroscopy of scalogram infused CNN classifiers for robust identification of Post-Hypoxic epileptiform EEG spikes. Adv. Intell. Syst. 2021, 3, 2000198. [Google Scholar] [CrossRef]
- Abbasi, H.; Bennet, L.; Gunn, A.J.; Unsworth, C.P. 2D wavelet scalogram training of deep convolutional neural network for automatic identification of micro-scale sharp wave biomarkers in the hypoxic-ischemic EEG of preterm sheep. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 1825–1828. [Google Scholar] [PubMed]
- Selton, D.; Andre, M.; Hascoët, J.M. Normal EEG in very premature infants: Reference criteria. Clin. Neurophysiol. 2000, 111, 2116–2124. [Google Scholar] [CrossRef] [PubMed]
- Vecchierini, M.; André, M.; d’Allest, A.M. Normal EEG of premature infants born between 24 and 30 weeks gestational age: Terminology, definitions and maturation aspects. Neurophysiol. Clin./Clin. Neurophysiol. 2007, 37, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Scher, M.S.; Hamid, M.Y.; Steppe, D.A.; Beggarly, M.E.; Painter, M.J. Ictal and interictal electrographic seizure durations in preterm and term neonates. Epilepsia 1993, 34, 284–288. [Google Scholar] [CrossRef]
- Tyner, F.S.; Knott, J.R. Fundamentals of EEG Technology: Basic Concepts and Methods; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1983. [Google Scholar]
- Tsuchida, T.N.; Wusthoff, C.J.; Shellhaas, R.A.; Abend, N.S.; Hahn, C.D.; Sullivan, J.E.; Nguyen, S.; Weinstein, S.; Scher, M.S.; Riviello, J.J.; et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: Report of the american clinical neurophysiology society critical care monitoring committee. J. Clin. Neurophysiol. 2013, 30, 161–173. [Google Scholar] [CrossRef]
- De Weerd, A.W.; Despland, P.A.; Plouin, P. Neonatal EEG. the international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 149–157. [Google Scholar] [PubMed]
- Abbasi, H.; Bennet, L.; Gunn, A.J.; Unsworth, C.P. Automatically identified micro-scale sharp-wave transients in the early-latent phase of hypoxic-ischemic EEG from preterm fetal sheep reveal timing relationship to subcortical neuronal survival. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 7084–7087. [Google Scholar] [PubMed]
- Kriegeskorte, N. Deep neural networks: A new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 2015, 1, 417–446. [Google Scholar] [CrossRef]
- Shanmuganathan, S. Artificial Neural Network Modelling: An Introduction; Springer: Berlin/Heidelberg, Germany, 2016; Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=i3qG2YcAAAAJ&citation_for_view=i3qG2YcAAAAJ:R22Rs3tN8aoC (accessed on 1 January 2024).
- Zhang, J.; Yin, Z.; Chen, P.; Nichele, S. Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Inf. Fusion 2020, 59, 103–126. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 2018, 100, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, A.; Peters, J.F.; Jausovec, N.; Don, A.P.; Ramanna, S.; Legchenkova, I.; Bormashenko, E. Nervous activity of the brain in five dimensions. Biophysica 2021, 1, 38–47. [Google Scholar] [CrossRef]
- Pavel, A.M.; O’Toole, J.M.; Proietti, J.; Livingstone, V.; Mitra, S.; Marnane, W.P.; Finder, M.; Dempsey, E.M.; Murray, D.M.; Boylan, G.B. Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic encephalopathy. Epilepsia 2023, 64, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Gabeff, V.; Teijeiro, T.; Zapater, M.; Cammoun, L.; Rheims, S.; Ryvlin, P.; Atienza, D. Interpreting deep learning models for epileptic seizure detection on EEG signals. Artif. Intell. Med. 2021, 117, 102084. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Romero, R.; Guevara, E.; Peng, K.; Nguyen, D.K.; Lesage, F.; Pouliot, P.; Lima-Saad, W. Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals. Comput. Biol. Med. 2019, 111, 103355. [Google Scholar] [CrossRef]
- Daftari, C.; Shah, J.; Shah, M. Detection of epileptic seizure disorder using EEG signals. In Artificial Intelligence-Based Brain-Computer Interface; Anonymous; Elsevier: Amsterdam, The Netherlands, 2022; pp. 163–188. [Google Scholar]
- Nejedly, P.; Cimbalnik, J.; Klimes, P.; Plesinger, F.; Halamek, J.; Kremen, V.; Viscor, I.; Brinkmann, B.H.; Pail, M.; Brazdil, M.; et al. Intracerebral EEG artifact identification using convolutional neural networks. Neuroinformatics 2019, 17, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Bahador, N.; Erikson, K.; Laurila, J.; Koskenkari, J.; Ala-Kokko, T.; Kortelainen, J. A correlation-driven mapping for deep learning application in detecting artifacts within the EEG. J. Neural Eng. 2020, 17, 056018. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Zhang, X.; Ma, K.; Chen, Z.; Chen, W.; Zhang, H.; Yuan, H.; Ding, L. Automated detection of high frequency oscillations in intracranial EEG using the combination of short-time energy and convolutional neural networks. IEEE Access 2019, 7, 82501–82511. [Google Scholar] [CrossRef]
- Zuo, R.; Wei, J.; Li, X.; Li, C.; Zhao, C.; Ren, Z.; Liang, Y.; Geng, X.; Jiang, C.; Yang, X. Automated detection of high-frequency oscillations in epilepsy based on a convolutional neural network. Front. Comput. Neurosci. 2019, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zou, J.; Zhang, J.; Xu, J. Automatic epileptic EEG detection using convolutional neural network with improvements in time-domain. Biomed. Signal Process. Control 2019, 53, 101551. [Google Scholar] [CrossRef]
- Zhou, M.; Tian, C.; Cao, R.; Wang, B.; Niu, Y.; Hu, T.; Guo, H.; Xiang, J. Epileptic seizure detection based on EEG signals and CNN. Front. Neuroinformatics 2018, 12, 95. [Google Scholar] [CrossRef]
- Truong, N.D.; Nguyen, A.D.; Kuhlmann, L.; Bonyadi, M.R.; Yang, J.; Ippolito, S.; Kavehei, O. Integer convolutional neural network for seizure detection. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 849–857. [Google Scholar] [CrossRef]
- O’Shea, A.; Lightbody, G.; Boylan, G.; Temko, A. Neonatal seizure detection from raw multi-channel EEG using a fully convolutional architecture. Neural Netw. 2020, 123, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Swetapadma, A.; Pattnaik, P.K. A channel independent generalized seizure detection method for pediatric epileptic seizures. Comput. Methods Programs Biomed. 2021, 209, 106335. [Google Scholar] [CrossRef]
- Yıldız, İ.; Garner, R.; Lai, M.; Duncan, D. Unsupervised seizure identification on EEG. Comput. Methods Programs Biomed. 2022, 215, 106604. [Google Scholar] [CrossRef] [PubMed]
- Debelo, B.S.; Thamineni, B.L.; Dasari, H.K.; Dawud, A.A. Detection and severity identification of neonatal seizure using deep convolutional neural networks from multichannel EEG signal. Pediatr. Health Med. Ther. 2023, 14, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, M.A.; Khan, M.J.; Sajid, H.; Naseer, N. Convolutional neural networks ensemble model for neonatal seizure detection. J. Neurosci. Methods 2021, 358, 109197. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, A.; Ahmed, R.; Lightbody, G.; Pavlidis, E.; Lloyd, R.; Pisani, F.; Marnane, W.; Mathieson, S.; Boylan, G.; Temko, A. Deep learning for EEG seizure detection in preterm infants. Int. J. Neural Syst. 2021, 31, 2150008. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.H.; Cherian, P.J.; Caicedo, A.; Naulaers, G.; De Vos, M.; Van Huffel, S. Neonatal seizure detection using deep convolutional neural networks. Int. J. Neural Syst. 2019, 29, 4. [Google Scholar] [CrossRef] [PubMed]
- Kota, S.; Jasti, K.; Liu, Y.; Liu, H.; Zhang, R.; Chalak, L. EEG spectral power: A proposed physiological biomarker to classify the hypoxic-ischemic encephalopathy severity in real time. Pediatr. Neurol. 2021, 122, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Bourel-Ponchel, E.; Querne, L.; Flamein, F.; Ghostine-Ramadan, G.; Wallois, F.; Lamblin, M.D. The prognostic value of neonatal conventional-EEG monitoring in hypoxic-ischemic encephalopathy during therapeutic hypothermia. Dev. Med. Child Neurol. 2023, 65, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Dereymaeker, A.; Matic, V.; Vervisch, J.; Cherian, P.J.; Ansari, A.H.; De Wel, O.; Govaert, P.; De Vos, M.; Van Huffel, S.; Naulaers, G. Automated EEG background analysis to identify neonates with hypoxic-ischemic encephalopathy treated with hypothermia at risk for adverse outcome: A pilot study. Pediatr. Neonatol. 2019, 60, 50–58. [Google Scholar] [CrossRef]
- Moghadam, S.M.; Pinchefsky, E.; Tse, I.; Marchi, V.; Kohonen, J.; Kauppila, M.; Airaksinen, M.; Tapani, K.; Nevalainen, P.; Hahn, C. Building an open source classifier for the neonatal EEG background: A systematic feature-based approach from expert scoring to clinical visualization. Front. Hum. Neurosci. 2021, 15, 675154. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
Layers | Type | No. of Neurons (Output Layer) | Kernel Size | Stride | Padding | No. of Filters |
---|---|---|---|---|---|---|
0–1 | Conv. | 303 × 404 | 3 | 1 | 1 | 16 |
1–2 | Max_pool | 151 × 202 | [3 2] | 2 | 0 | |
2–3 | Conv. | 151 × 202 | 3 | 1 | 1 | 32 |
3–4 | Max_pool | 75 × 101 | [3 2] | 2 | 0 | |
4–5 | Conv. | 75 × 101 | 3 | 1 | 1 | 48 |
5–6 | Max_pool | 37 × 50 | 3 | 2 | 0 | |
6–7 | Conv. | 37 × 50 | 3 | 1 | 1 | 72 |
7–8 | Max_pool | 18 × 25 | [3 2] | 2 | 0 | |
8–9 | Conv. | 18 × 25 | 3 | 1 | 1 | 96 |
9–10 | Max_pool | 9 × 12 | [2 3] | 2 | 0 | |
10–11 | Conv. | 9 × 12 | 3 | 1 | 1 | 128 |
11–12 | Max_pool | 4 × 6 | [3 2] | 2 | 0 | |
12–13 | Conv. | 4 × 6 | 3 | 1 | 1 | 256 |
13–14 | Max_pool | 2 × 3 | 2 | 2 | 0 | |
14–17 | Fully_connected | 1536 | ||||
Fully_connected | 24 | |||||
Fully_connected | 2 | |||||
Output | Softmax & Classification |
Trained and Validated on Infant No. | No. of Patterns in the Train-Set | Tested on Infant No. | No. of Patterns in the Test-Set | TP Hits | TN Hits | FP Hits | FN Hits | Sensitivity (%) | Selectivity (%) | Precision (%) | Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
7,9,11,14,17,20,22 | 10,382 | 3 | 3242 | 1613 | 1620 | 1 | 8 | 99.5 | 99.9 | 99.9 | 99.7 |
3,9,11,14,17,20,22 | 12,274 | 7 | 1350 | 674 | 664 | 11 | 1 | 99.8 | 98.4 | 98.4 | 99.1 |
3,7,11,14,17,20,22 | 11,614 | 9 | 2010 | 1003 | 1003 | 2 | 2 | 99.8 | 99.8 | 99.8 | 99.8 |
3,7,9,14,17,20,22 | 10,818 | 11 | 2806 | 1392 | 1402 | 1 | 11 | 99.2 | 99.9 | 99.9 | 99.6 |
3,7,9,11,17,20,22 | 13,094 | 14 | 530 | 265 | 260 | 5 | 0 | 100 | 98.1 | 98.1 | 99.1 |
3,7,9,11,14,20,22 | 13,176 | 17 | 448 | 224 | 216 | 8 | 0 | 100 | 96.4 | 96.6 | 98.2 |
3,7,9,11,14,17,22 | 12,508 | 20 | 1116 | 553 | 555 | 3 | 5 | 99.1 | 99.5 | 99.5 | 99.3 |
3,7,9,11,14,17,20 | 11,502 | 22 | 2122 | 1060 | 1059 | 2 | 1 | 99.9 | 99.8 | 99.8 | 99.9 |
Overall performance of the 17 layers WS-CNN in the entire 0–6 h | 99.34 ± 0.51 |
Strategy | No. of Layers | Sensitivity (%) | Selectivity (%) | Precision (%) | Accuracy (%) |
---|---|---|---|---|---|
WS-CNN | 17-layers | 99.66 ± 0.35 | 98.97 ± 1.17 | 99.00 ± 1.12 | 99.34 ± 0.51 |
13-layers | 99.61 ± 0.30 | 98.65 ± 1.54 | 98.69 ± 1.48 | 99.14 ± 0.65 | |
9-layers | 98.98 ± 1.13 | 98.35 ± 0.94 | 98.38 ± 0.92 | 98.73 ± 0.87 | |
7-layers | 98.13 ± 1.30 | 97.50 ± 2.29 | 97.56 ± 2.19 | 97.81 ± 1.29 | |
WF-CNN | 17-layers | 98.22 ± 0.89 | 98.28 ± 1.44 | 98.32 ± 1.38 | 98.26 ± 0.87 |
13-layers | 99.47 ± 1.22 | 96.83 ± 3.21 | 96.93 ± 2.93 | 96.65 ± 1.46 | |
9-layers | 95.70 ± 1.49 | 95.90 ± 1.74 | 95.94 ± 1.64 | 95.81 ± 1.10 | |
7-layers | 94.82 ± 3.34 | 95.07 ± 2.74 | 95.19 ± 2.54 | 94.95 ± 1.08 | |
1D-CNN | 15-layers | 95.18 ± 4.79 | 95.30 ± 2.27 | 95.34 ± 2.14 | 95.25 ± 2.10 |
13-layers | 95.81 ± 4.25 | 97.67 ± 1.41 | 97.62 ± 1.36 | 96.75 ± 2.18 | |
9-layers | 88.21 ± 4.43 | 91.35 ± 3.89 | 91.21 ± 3.75 | 89.77 ± 2.70 | |
7-layers | 89.03 ± 8.55 | 80.63 ± 12.1 | 83.30 ± 7.87 | 84.81 ± 4.34 | |
WT-Type-II-FLC | Not applicable | 93.03 ± 2.46 | 58.26 ± 9.07 | Not applicable | 75.64 ± 5.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, H.; Battin, M.R.; Rowe, D.; Butler, R.; Gunn, A.J.; Bennet, L. CNN-Based Pattern Classifiers for Precise Identification of Perinatal EEG Biomarkers of Brain Injury in Preterm Neonates. Signals 2024, 5, 264-280. https://doi.org/10.3390/signals5020014
Abbasi H, Battin MR, Rowe D, Butler R, Gunn AJ, Bennet L. CNN-Based Pattern Classifiers for Precise Identification of Perinatal EEG Biomarkers of Brain Injury in Preterm Neonates. Signals. 2024; 5(2):264-280. https://doi.org/10.3390/signals5020014
Chicago/Turabian StyleAbbasi, Hamid, Malcolm R. Battin, Deborah Rowe, Robyn Butler, Alistair J. Gunn, and Laura Bennet. 2024. "CNN-Based Pattern Classifiers for Precise Identification of Perinatal EEG Biomarkers of Brain Injury in Preterm Neonates" Signals 5, no. 2: 264-280. https://doi.org/10.3390/signals5020014