Signal Processing for Transient Flow Rate Determination: An Analytical Soft Sensor Using Two Pressure Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Law of Hagen and Poiseuille and the Richardson Effect
2.2. Signal Processing Based on Laplace Techniques
2.3. Analytical Model for Signal Processing of Pressure Transducer Signals
- The flow is laminar (Reynolds number ), meaning the fluid layers do not mix. Consequently, the pressure remains constant across the pipe’s cross-section, and the pressure gradient in the radial direction is negligible.
- Both the flow and pipe geometry are axisymmetric, resulting in no gradient in the angular direction, i.e., .
- The axial flow velocity is much smaller than the speed of sound a, which governs the fluid’s pressure wave propagation speed. Therefore, , and the Mach number , so supersonic effects can be ignored.
- The pipe radius is much smaller than the pipe length (), meaning no pressure reflections occur at the pipe walls.
- The significant viscous effects in the motion equations are limited to those involving the radial distribution of axial velocity [5].
- Gravitational forces are negligible as the pipe is horizontal, keeping the forces constant over its length.
- Changes in fluid density due to vertical positioning are negligible because the pipe’s diameter is small.
- Heat transfer is ignored since the focus is on liquids, excluding gases [32].
2.4. Inverse Laplace Transformation of the Weighting Functions for Compressible Fluids
2.5. Investigation of the Necessary Criteria for an ILT
2.6. Approximation of the Hyperbolic Sine Term
2.7. Derivation of a Solution for a Fixed Dissipation Number for a Compressible Fluid
- .
2.8. Derivation of a Solution for Arbitrary Dissipation Numbers
3. Implementation of the Soft Sensor in the Time Domain
3.1. Application of the TVB Method to Obtain the Soft Sensor
3.2. Test Cases
4. Results
4.1. Sine Wave Pressure Signals
4.2. Sums of Sine Wave Pressure Signals
4.3. Sawtooth Pressure Signals
4.4. Step Function Pressure Signal
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FILT | Fast Inverse Laplace transform |
HP | Hagen–Poiseuille |
ILT | Inverse Laplace transform |
LP | Laplace transform |
TVB | Trikha–Vardy–Brown |
Nomenclature
Symbol | Definition | Unit |
* | Denotation of a Variable in the Laplace Domain | [m2/s] |
a | Speed of Sound | [m/s] |
C | Factor | [-] |
D | Diameter of the Pipe | [m] |
Dissipation Number | [-] | |
Difference in Pressure Between Inlet and Outlet | [Pa] | |
Averaged Pressure Over Time Step | [-] | |
Normalized Time Step | [-] | |
f | Frequency | [Hz] |
Example Function | [-] | |
Complex Example Function | [-] | |
Example Function | [-] | |
Complex Example Function | [-] | |
Modified Bessel Function of the First Kind of the i’th Order | [-] | |
K | Bulk Modulus | [Pa] |
First Part of the Convolution Integral | [-] | |
Second Part of the Convolution Integral | [-] | |
Approximation of | [-] | |
k | A Natural Number | [-] |
L | Length of the Pipe | [m] |
m | Order of poles | [-] |
Part of Assumed Weighting Function | [-] | |
Part of Assumed Weighting Function | [-] | |
N | Upper Limit of Residue Sum | [-] |
Pressure Boundary Condition at Input Boundary | [Pa] | |
Pressure Boundary Condition at Output Boundary | [Pa] | |
Initial Pressure Condition at Input Boundary | [Pa] | |
Initial Pressure Condition at Output Boundary | [Pa] | |
Pressure at Inlet | [bar] | |
Pressure at Outlet | [bar] | |
Q | Volumetric Flow Rate | [m3/s] |
Volumetric Flow Rate at Inlet: and Outlet: | [m3/s] | |
Dynamic Volumetric Flow Rate at Port i Caused By Pressure at Port j | [m3/s] | |
Stationary Volumetric Flow Rate at Port i | [m3/s] | |
r | Radial Coordinate Within the Pipe | [m] |
R | Radius of the Pipe | [m] |
Hydraulic Resistance | [Pa/(m3/s)] | |
s | Laplace Variable | [-] |
Poles of the Function | [Pa·s] | |
Simple Poles | [Pa·s] | |
Approximation of the Function | [-] | |
t | Time | [s] |
Normalized Time | [-] | |
Time | [s] | |
v | Axial Fluid Velocity | [v] |
Axial Fluid Velocity | [v] | |
Weighting Function at End of the Pipe | [-] | |
Dynamic Weighting Function at Port | [-] | |
Negative of | [-] | |
Weighting Function with Approximated sinh | [-] | |
Compressible Weighting Function | [-] | |
Incompressible Weighting Function | [-] | |
Womersley Number | [-] | |
Nominator of | [-] | |
Denominator of | [-] | |
Integral at Time Step | [-] | |
Normalized Laplace Variable | [-] | |
Poles of the Weighting Function | [Pa·s] | |
Series Impedance | [bar/(m3/s)] | |
Real Part of Bromwich Integral Boundaries | [-] | |
Dynamic Viscosity | [Pa·s] | |
Kinematic Viscosity | [m2/s] | |
Pressure Variation Frequency | [1/s] |
References
- Sutera, S.P.; Skalak, R. The History of Poiseuille’s Law. Annu. Rev. Fluid Mech. 1993, 25, 1–20. [Google Scholar] [CrossRef]
- Richardson, E.G.; Tyler, E. The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established. Proc. Phys. Soc. 1929, 42, 1. [Google Scholar] [CrossRef]
- Zhao, T.; Kitagawa, A.; Kagawa, T.; Takenaka, T. A Real Time Method of Measuring Unsteady Flow Rate and Velocity Employing Differential Pressure in a Pipe: Fluids Engineering. JSME Int. J. 1987, 30, 263–270. [Google Scholar] [CrossRef]
- Schmitz, K.; Murrenhoff, H. Hydraulik, vollständig neu bearbeitete auflage ed. In Reihe Fluidtechnik. U; Shaker Verlag: Aachen, Germany, 2018; Volume 002. [Google Scholar]
- Stecki, J.S.; Davis, D.C. Fluid Transmission Lines—Distributed Parameter Models Part 1: A Review of the State of the Art. Proc. Inst. Mech. Eng. Part A Power Process Eng. 1986, 200, 215–228. [Google Scholar] [CrossRef]
- Brereton, G.J.; Schock, H.J.; Rahi, M.A.A. An indirect pressure-gradient technique for measuring instantaneous flow rates in unsteady duct flows. Exp. Fluids 2006, 40, 238–244. [Google Scholar] [CrossRef]
- Brereton, G.J.; Schock, H.J.; Bedford, J.C. An indirect technique for determining instantaneous flow rate from centerline velocity in unsteady duct flows. Flow Meas. Instrum. 2008, 19, 9–15. [Google Scholar] [CrossRef]
- Sundstrom, L.R.J.; Saemi, S.; Raisee, M.; Cervantes, M.J. Improved frictional modeling for the pressure-time method. Flow Meas. Instrum. 2019, 69, 101604. [Google Scholar] [CrossRef]
- Foucault, E.; Szeger, P. Unsteady flowmeter. Flow Meas. Instrum. 2019, 69, 101607. [Google Scholar] [CrossRef]
- García García, F.J.; Fariñas Alvariño, P. On an analytic solution for general unsteady/transient turbulent pipe flow and starting turbulent flow. Eur. J. Mech. B/Fluids 2019, 74, 200–210. [Google Scholar] [CrossRef]
- García García, F.J.; Fariñas Alvariño, P. On the analytic explanation of experiments where turbulence vanishes in pipe flow. J. Fluid Mech. 2022, 951, A4. [Google Scholar] [CrossRef]
- Urbanowicz, K.; Bergant, A.; Stosiak, M.; Deptuła, A.; Karpenko, M. Navier-Stokes Solutions for Accelerating Pipe Flow—A Review of Analytical Models. Energies 2023, 16, 1407. [Google Scholar] [CrossRef]
- Urbanowicz, K.; Jing, H.; Bergant, A.; Stosiak, M.; Lubecki, M. Progress in Analytical Modeling of Water Hammer. J. Fluids Eng. 2023, 145, 081203. [Google Scholar] [CrossRef]
- Urbanowicz, K.; Bergant, A.; Stosiak, M.; Karpenko, M.; Bogdevičius, M. Developments in analytical wall shear stress modelling for water hammer phenomena. J. Sound Vib. 2023, 562, 117848. [Google Scholar] [CrossRef]
- Bayle, A.; Rein, F.; Plouraboué, F. Frequency varying rheology-based fluid–structure-interactions waves in liquid-filled visco-elastic pipes. J. Sound Vib. 2023, 562. [Google Scholar] [CrossRef]
- Bayle, A.; Plouraboue, F. Laplace-Domain Fluid–Structure Interaction Solutions for Water Hammer Waves in a Pipe. J. Hydraul. Eng. 2024, 150, 04023062. [Google Scholar] [CrossRef]
- Schröder, W. Fluidmechanik, 4., korrigierte auflage ed. In Aachener Beiträge zur Strömungsmechanik; Wissenschaftsverlag Mainz: Aachen, Germany, 2018; Volume 16. [Google Scholar]
- Sexl, T. Über den von E. G. Richardson entdeckten Annulareffekt. Z. Phys. 1930, 61, 349–362. [Google Scholar] [CrossRef]
- Brown, F.T. The Transient Response of Fluid Lines. J. Basic Eng. 1962, 84, 547–553. [Google Scholar] [CrossRef]
- Womersley, J.R. Oscillatory flow in arteries: The constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol. 1957, 2, 178–187. [Google Scholar] [CrossRef]
- Catania, G.; Sorrentino, S. Dynamical analysis of fluid lines coupled to mechanical systems taking into account fluid frequency-dependent damping and non-conventional constitutive models: Part 1—Modeling fluid lines. Mech. Syst. Signal Process. 2015, 50–51, 260–280. [Google Scholar] [CrossRef]
- D’Souza, A.F. Dynamic Response of Fluid Flow through Straight and Curved Lines. Ph.D. Thesis, Purdue University, Lafayette, LA, USA, 1963. [Google Scholar]
- Stecki, J.S.; Davis, D.C. Fluid Transmission Lines—Distributed Parameter Models Part 2: Comparison of Models. Proc. Inst. Mech. Eng. Part A Power Process Eng. 1986, 200, 229–236. [Google Scholar] [CrossRef]
- Young, F.D.L.; Liggett, J.A. Transient Finite Element Shallow Lake Circulation. J. Hydraul. Div. 1977, 103, 109–121. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Young, D.L. The singularity method in unsteady Stokes flow: Hydrodynamic force and torque around a sphere in time-dependent flows. J. Fluid Mech. 2019, 863, 1–31. [Google Scholar] [CrossRef]
- Manhartsgruber, B. Instantaneous Liquid Flow Rate Measurement Utilizing the Dynamic Characteristics of Laminar Flow in Circular Pipes. In Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Honolulu, HI, USA, 6–10 July 2003; pp. 159–164. [Google Scholar] [CrossRef]
- Manhartsgruber, B. Instantaneous Liquid Flow Rate Measurement Utilizing the Dynamics of Laminar Pipe Flow. J. Fluids Eng. 2008, 130, 121402. [Google Scholar] [CrossRef]
- Weber, H.; Ulrich, H. Laplace-, Fourier- und z-Transformation; Vieweg+Teubner Verlag: Wiesbaden, Germany, 2012. [Google Scholar] [CrossRef]
- Krantz, S.G. Handbook of Complex Variables; Birkhäuser: Boston, MA, USA, 1999. [Google Scholar]
- Xie, C. Applications of Residue Theorem to Some Selected Integrals. Highlights Sci. Eng. Technol. 2024, 88, 452–457. [Google Scholar] [CrossRef]
- Brumand-Poor, F.; Kotte, T.; Pasquini, E.; Kratschun, F.; Enking, J.; Schmitz, K. Unsteady flow rate in transient, incompressible pipe flow. Z. Angew. Math. Mech. 2024, e202300125. [Google Scholar] [CrossRef]
- Brown, F.T.; Nelson, S.E. Step Responses of Liquid Lines With Frequency-Dependent Effects of Viscosity. J. Basic Eng. 1965, 87, 504–510. [Google Scholar] [CrossRef]
- Almondo, A.; Sorli, M. Time Domain Fluid Transmission Line Modelling using a Passivity Preserving Rational Approximation of the Frequency Dependent Transfer Matrix. Int. J. Fluid Power 2006, 7, 41–50. [Google Scholar] [CrossRef]
- Goodson, R.E. Distributed system simulation using infinite product expansions. Simulation 1970, 15, 255–263. [Google Scholar] [CrossRef]
- Goodson, R.E.; Leonard, R.G. A Survey of Modeling Techniques for Fluid Line Transients. J. Basic Eng. 1972, 94, 474–482. [Google Scholar] [CrossRef]
- Maple, 2019; Maplesoft, a Division of Waterloo Maple Inc.: Waterloo, ON, Canada, 2023; Available online: https://www.maplesoft.com/products/Maple/ (accessed on 17 October 2024).
- Vardy, A.E.; Brown, J.M. Efficient Approximation of Unsteady Friction Weighting Functions. J. Hydraul. Eng. 2004, 130, 1097–1107. [Google Scholar] [CrossRef]
- Trikha, A.K. An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow. J. Fluids Eng. 1975, 97, 97–105. [Google Scholar] [CrossRef]
- Kagawa, T.; Lee, I.; Kitagawa, A.; Takenaka, T. High Speed and Accurate Computing Method of Frequency-Dependent Friction in Laminar Pipe Flow for Characteristics Method. Trans. Jpn. Soc. Mech. Eng. Ser. B 1983, 49, 2638–2644. [Google Scholar] [CrossRef]
- Suzuki, K.; Taketomi, T.; Sato, S. Improving Zielke’s Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow. J. Fluids Eng. 1991, 113, 569–573. [Google Scholar] [CrossRef]
- Schohl, G.A. Improved Approximate Method for Simulating Frequency-Dependent Friction in Transient Laminar Flow. J. Fluids Eng. 1993, 115, 420–424. [Google Scholar] [CrossRef]
- Vítkovský, J.; Stephens, M.; Bergant, A.; Lambert, M.; Simpson, A. Efficient and accurate calculation of Zielke and Vardy-Brown unsteady friction in pipe transients. In Proceedings of the 9th International Conference on Pressure Surges, Chester, UK, 24–26 March 2004. [Google Scholar]
- Vardy, A.E.; Brown, J.M. Transient, turbulent, smooth pipe friction. J. Hydraul. Res. 1995, 33, 435–456. [Google Scholar] [CrossRef]
- Ghidaoui, M.S.; Mansour, S. Efficient Treatment of the Vardy–Brown Unsteady Shear in Pipe Transients. J. Hydraul. Eng. 2002, 128, 102–112. [Google Scholar] [CrossRef]
- Urbanowicz, K. Fast and accurate modelling of frictional transient pipe flow. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 2018, 98, 802–823. [Google Scholar] [CrossRef]
- Vardy, A.E.; Brown, J.M. Evaluation of Unsteady Wall Shear Stress by Zielke’s Method. J. Hydraul. Eng. 2010, 136, 453–456. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB, version: 9.13.0 (R2022b); The MathWorks Inc.: Natick, MA, USA, 2022.
- FLUIDON GmbH. User Manual DSHplus 3.7; FLUIDON GmbH: Aachen, Germany, 2007. [Google Scholar]
- Brumand-Poor, F.; Schüpfer, M.; Merkel, A.; Schmitz, K. Development of a Hydraulic Test Rig for a Virtual Flow Sensor. In Proceedings of the Eighteenth Scandinavian International Conference on Fluid Power (SICFP’23), Tampere, Finland, 30 May–1 June 2023. [Google Scholar]
Name | Variable | Unit | Value |
---|---|---|---|
Kinematic Viscosity | m2/s | ||
Fluid Density | kg/m3 | 860 | |
Bulk Modulus | K | Pa | |
Diameter of the Pipe | D | m | |
Length of the Pipe | L | m | |
Hydraulic Resistance | Pa/(m3/s) |
Test Case | Initial Conditions [bar] | Boundary Conditions [bar] | Frequency f [Hz] |
---|---|---|---|
Sine | 50 | 1, 100, 1000 | |
Sum of Sines | 50 | [], [] | |
Sawtooth | 50 | 10 | |
Step | 50 | N/A |
Test Case | Frequency f [Hz] | Mean Error | Standard Deviation |
---|---|---|---|
Sine (Figure 7) | 1 | ||
Sine (Figure 8) | 100 | ||
Sine (Figure 9) | 1000 | ||
Sum of Sines (Figure 10) | [] | ||
Sum of Sines (Figure 11) | [] | ||
Sawtooth (Figure 12) | 10 | ||
Step (Figure 13) | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brumand-Poor, F.; Kotte, T.; Pasquini, E.G.; Schmitz, K. Signal Processing for Transient Flow Rate Determination: An Analytical Soft Sensor Using Two Pressure Signals. Signals 2024, 5, 812-840. https://doi.org/10.3390/signals5040045
Brumand-Poor F, Kotte T, Pasquini EG, Schmitz K. Signal Processing for Transient Flow Rate Determination: An Analytical Soft Sensor Using Two Pressure Signals. Signals. 2024; 5(4):812-840. https://doi.org/10.3390/signals5040045
Chicago/Turabian StyleBrumand-Poor, Faras, Tim Kotte, Enrico Gaspare Pasquini, and Katharina Schmitz. 2024. "Signal Processing for Transient Flow Rate Determination: An Analytical Soft Sensor Using Two Pressure Signals" Signals 5, no. 4: 812-840. https://doi.org/10.3390/signals5040045
APA StyleBrumand-Poor, F., Kotte, T., Pasquini, E. G., & Schmitz, K. (2024). Signal Processing for Transient Flow Rate Determination: An Analytical Soft Sensor Using Two Pressure Signals. Signals, 5(4), 812-840. https://doi.org/10.3390/signals5040045