The Acceptance and Use Behavior of Shared Mobility Services in a Rural Municipality
Abstract
:1. Introduction
2. Related Work
2.1. Mobility (as a Service)
2.2. Smart Mobility
2.3. Shared Mobility
3. Method
3.1. Use Case: Rural Municipality Lohmar
3.2. Methodocial Approach
3.3. Survey Design
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Caragliu, A.; Bo, C.D.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Gassmann, O.; Böhm, J.; Palmié, M. Smart Cities: Introducing Digital Innovation to Cities; Emerald Group Publishing: Bingley, UK, 2019; ISBN 978-1-78769-613-6. [Google Scholar]
- Giffinger, R. Smart Cities Ranking of European Medium-Sized Cities; Universität Wien: Wien, Austria, 2007; p. 16. [Google Scholar]
- United Nations THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 8 February 2022).
- Parker, K.; Horowitz, J.; Brown, A.; Fry, R.; Cohn, D.; Igielnik, R. What Unites and Divides Urban, Suburban and Rural Communities; Pew Research Center: Washington, DC, USA, 2018. [Google Scholar]
- Vandecasteele, I.; Baranzelli, C.; Siragusa, A. The Future of Cities: Opportunities, Challenges and the Way Forward; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- van Winden, W.; De, L.; Carvalho, L. How Digitalization Changes Cities: Innovation for the Urban Economy of Tomorrow; Amsterdam University of Applied Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Willing, C.; Brandt, T.; Neumann, D. Intermodal Mobility. Bus. Inf. Syst. Eng. 2017, 59, 173–179. [Google Scholar] [CrossRef]
- Magistrat der Stadt Wien Smart City Wien. Available online: https://smartcity.wien.gv.at/site/ (accessed on 1 September 2022).
- McNeill, D. New Songdo City: Atlantis of the Far East Independent. Independent. 2009. Available online: https://www.independent.co.uk/news/world/asia/new-songdo-city-atlantis-of-the-far-east-1712252.html (accessed on 1 July 2022).
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Meunier, C. Vergleich der Durchschnittlichen Emissionen Einzelner Verkehrsmittel im Personenverkehr. Available online: https://www.umweltbundesamt.de/bild/vergleich-der-durchschnittlichen-emissionen-0 (accessed on 1 September 2022).
- WHO. Available online: https://www.who.int/ (accessed on 15 November 2021).
- König, D.; Eckhardt, J.; Aapaoja, A.; Sochor, J.; Karlsson, M. Deliverable 3: Business and Operator Models for Mobility as a Service (MaaS). MAASiFiE Project Funded by CEDR; Technical Report; Conference of European Directors of Roads: Brussel, Belgium, 2016. [Google Scholar]
- Aapaoja, A.; Eckhardt, J.; Nykänen, L.; Sochor, J. MaaS Service Combinations for Different Geographical Areas. In Proceedings of the ITS World Congress, Montreal, QC, Canada, 29 October–2 November 2017. [Google Scholar]
- Hult, Å.; Perjo, L.; Smith, G. Shared Mobility in Rural Contexts: Organizational Insights from Five Mobility-as-a-Service Pilots in Sweden. Sustainability 2021, 13, 10134. [Google Scholar] [CrossRef]
- Etezadzadeh, C. Smart City—Made in Germany; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2020; ISBN 978-3-658-27231-9. [Google Scholar]
- Benevolo, C.; Dameri, R.P.; D’Auria, B. Smart Mobility in Smart City. Action Taxonomy, ICT Intensity and Public Benefits. In Empowering Organizations; Torre, T., Braccini, A.M., Spinelli, R., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 13–28. [Google Scholar]
- Aletà, N.B.; Alonso, C.M.; Ruiz, R.M.A. Smart Mobility and Smart Environment in the Spanish Cities. Transp. Res. Procedia 2017, 24, 163–170. [Google Scholar] [CrossRef]
- Flügge, B. Smart Mobility—Connecting Everyone: Trends, Concepts and Best Practices; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-658-15622-0. [Google Scholar]
- Sprei, F. Disrupting Mobility. Energy Res. Soc. Sci. 2018, 37, 238–242. [Google Scholar] [CrossRef]
- Willnat, M.; Lembcke, T.-B.; Harnischmacher, C.; Prinz, C.; Klumpp, M. How Far Are You Gonna Go? Understanding Pedestrian Catchment Areas in Shared Mobility Systems. ICIS 2021, 18, 1–17. [Google Scholar]
- Schulz, T.; Böhm, M.; Gewald, H.; Krcmar, H. Smart Mobility—An Analysis of Potential Customers’ Preference Structures. Electron Mark. 2021, 31, 105–124. [Google Scholar] [CrossRef]
- Jie, F.; Standing, C.; Biermann, S.; Standing, S.; Le, T. Factors Affecting the Adoption of Shared Mobility Systems: Evidence from Australia. Res. Transp. Bus. Manag. 2021, 41, 100651. [Google Scholar] [CrossRef]
- Esztergár-Kiss, D.; Lopez Lizarraga, J.C. Exploring User Requirements and Service Features of E-Micromobility in Five European Cities. Case Stud. Transp. Policy 2021, 9, 1531–1541. [Google Scholar] [CrossRef]
- Efthymiou, D.; Antoniou, C.; Waddell, P. Factors Affecting the Adoption of Vehicle Sharing Systems by Young Drivers. Transp. Policy 2013, 29, 64–73. [Google Scholar] [CrossRef]
- Sonneberg, M.-O.; Werth, O.; Leyerer, M.; Wille, W.; Breitner, M.H. An Empirical Study of Customers’ Behavioral Intention. In Proceedings of the 14th International Conference on Wirtschaftsinformatik, Siegen, Germany, 24–27 February 2019; pp. 83–97. [Google Scholar]
- Giordano, D.; Vassio, L.; Cagliero, L. A Multi-Faceted Characterization of Free-Floating Car Sharing Service Usage. Transp. Res. Part C Emerg. Technol. 2021, 125, 102966. [Google Scholar] [CrossRef]
- Wappelhorst, S.; Sauer, M.; Hinkeldein, D.; Bocherding, A.; Glaß, T. Potential of Electric Carsharing in Urban and Rural Areas. Transp. Res. Procedia 2014, 4, 374–386. [Google Scholar] [CrossRef]
- Foissaud, N.; Gioldasis, C.; Tamura, S.; Christoforou, Z.; Farhi, N. Free-Floating e-Scooter Usage in Urban Areas: A Spatiotemporal Analysis. J. Transp. Geogr. 2022, 100, 103335. [Google Scholar] [CrossRef]
- Baek, K.; Lee, H.; Chung, J.-H.; Kim, J. Electric Scooter Sharing: How Do People Value It as a Last-Mile Transportation Mode? Transp. Res. Part D Transp. Environ. 2021, 90, 102642. [Google Scholar] [CrossRef]
- Bieliński, T.; Ważna, A. Electric Scooter Sharing and Bike Sharing User Behaviour and Characteristics. Sustainability 2020, 12, 9640. [Google Scholar] [CrossRef]
- Shokouhyar, S.; Shokoohyar, S.; Sobhani, A.; Gorizi, A.J. Shared Mobility in Post-COVID Era: New Challenges and Opportunities. Sustain. Cities Soc. 2021, 67, 102714. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 319–340. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Philos. Rhetor. 1977, 10, 177–189. [Google Scholar]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Processes 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Chen, Y.; Salmanian, W.; Akram, A. User Acceptance In Sharing Economy: A Study Of Transportation Network Companies In China. In Proceedings of the 11th Mediterranean Conference on Information Systems, MCIS, Genoa, Italy, 4–5 September 2017; pp. 1–17. [Google Scholar]
- Brown, S.A.; Venkatesh, V. Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle. MIS Q. 2005, 29, 399–426. [Google Scholar] [CrossRef]
- Zeithaml, V.A. Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Dodds, W.B.; Monroe, K.B.; Grewal, D. Effects of Price, Brand, and Store Information on Buyers’ Product Evaluations. J. Mark. Res. (JMR) 1991, 28, 307–319. [Google Scholar] [CrossRef]
- Chen, L.Y.; Chen, Y.-J. A Study of the Use Behavior of Line Today in Taiwan Based on the Utaut2 Model. RAE Rev. Adm. Empresas 2021, 61, 1–19. [Google Scholar] [CrossRef]
- Chu, S.-C.; Kim, Y. Determinants of Consumer Engagement in Electronic Word-of-Mouth (EWOM) in Social Networking Sites. Int. J. Advert. 2011, 30, 47–75. [Google Scholar] [CrossRef]
- Hu, X.; Ha, L. Which Form of Word-of-Mouth Is More Important to Online Shoppers? A Comparative Study of WOM Use between General Population and College Students. J. Commun. Media Res. 2015, 7, 15–35. [Google Scholar]
- Andriani, D.; Ramadhani, I.; Febriana, A.V.; Gunadi, W. Influences of EWOM in Social Media on Consumer’s Purchase Intention on Online Video Streaming: Booklet. In Proceedings of the 2021 International Conference on Information Management and Technology (ICIMTech), Jakarta, Indonesia, 19–20 August 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Richardson, J.E.; Stanyer, J. Reader Opinion in the Digital Age: Tabloid and Broadsheet Newspaper Websites and the Exercise of Political Voice. Journalism 2011, 12, 983–1003. [Google Scholar] [CrossRef]
- Yoon, D.; Cropp, F.; Cameron, G. Building Relationships with Portal Users; The Interplay of Motivation and Relational Factors. J. Interact. Advert. 2002, 3, 1–11. [Google Scholar] [CrossRef]
- Bendary, N.; Al-Sahouly, I. Exploring the Extension of Unified Theory of Acceptance and Use of Technology, UTAUT2, Factors Effect on Perceived Usefulness and Ease of Use on Mobile Commerce in Egypt. J. Bus. Retail Manag. Res. 2018, 12, 60–71. [Google Scholar] [CrossRef]
- Kim, S.C.; Yoon, D.; Han, E.K. Antecedents of Mobile App Usage among Smartphone Users. J. Mark. Commun. 2016, 22, 653–670. [Google Scholar] [CrossRef]
- Franke, T.; Attig, C.; Wessel, D. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. Int. J. Hum.-Comput. Interact. 2019, 35, 456–467. [Google Scholar] [CrossRef]
- Chen, S.; Westman, M.; Eden, D. Impact of Enhanced Resources on Anticipatory Stress and Adjustment to New Information Technology: A Field-Experimental Test of Conservation of Resources Theory. J. Occup. Health Psychol. 2009, 14, 219–230. [Google Scholar] [CrossRef]
- Norman, C.D.; Skinner, H.A. EHealth Literacy: Essential Skills for Consumer Health in a Networked World. J. Med. Internet Res. 2006, 8, e9. [Google Scholar] [CrossRef]
- Poynton, T.A. Computer Literacy across the Lifespan: A Review with Implications for Educators. Comput. Hum. Behav. 2005, 21, 861–872. [Google Scholar] [CrossRef]
- Agarwal, R.; Prasad, J. A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. Inf. Syst. Res. 1998, 9, 204–215. [Google Scholar] [CrossRef]
- Kim, C.; Mirusmonov, M.; Lee, I. An Empirical Examination of Factors Influencing the Intention to Use Mobile Payment. Comput. Hum. Behav. 2010, 26, 310–322. [Google Scholar] [CrossRef]
- Kaplan, S.; Manca, F.; Nielsen, T.A.S.; Prato, C.G. Intentions to Use Bike-Sharing for Holiday Cycling: An Application of the Theory of Planned Behavior. Tour. Manag. 2015, 47, 34–46. [Google Scholar] [CrossRef]
- Bundesverband CarSharing e.V. CarSharing in Deutschland. Available online: https://carsharing.de/sites/default/files/uploads/factsheet_carsharing_in_deutschland_2022.pdf (accessed on 15 September 2022).
- Deutsche Umwelthilfe. Deutsche Umwelthilfe Fordert Mindestens 360 Euro Jahresgebühr für Anwohnerparken. Dtsch. Umwelthilfe E.V. 2022. Available online: https://www.duh.de/presse/pressemitteilungen/pressemitteilung/deutsche-umwelthilfe-fordert-mindestens-360-euro-jahresgebuehr-fuer-anwohnerparken/ (accessed on 15 September 2022).
- Trading Economics Germany Gasoline Prices—April 2022 Data—1995–2021 Historical—May Forecast. Available online: https://tradingeconomics.com/germany/gasoline-prices (accessed on 15 May 2022).
Demographics | Germany | City of Lohmar |
---|---|---|
Age Range [in years] | 18–79 | 20–79 |
Age Mean [in years] | 39 | 51 |
Availabily of Car Sharing [in %] | 56.7 | 0.07 |
Availabily of Bike Sharing [in %] | 52.6 | 35.08 |
Availabily of E-Scooter Sharing [in %] | 56.9 | 57.0 |
Cars in Household [in %] | 80.1 | 99.1 |
Households Mean [total] | - | 3 |
Household with citizens over 18 [in %] | - | 83 |
Citizens [total] | 418 | 114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaefer, C.; Stelter, A.; Holl-Supra, S.; Weber, S.; Niehaves, B. The Acceptance and Use Behavior of Shared Mobility Services in a Rural Municipality. Smart Cities 2022, 5, 1229-1240. https://doi.org/10.3390/smartcities5040062
Schaefer C, Stelter A, Holl-Supra S, Weber S, Niehaves B. The Acceptance and Use Behavior of Shared Mobility Services in a Rural Municipality. Smart Cities. 2022; 5(4):1229-1240. https://doi.org/10.3390/smartcities5040062
Chicago/Turabian StyleSchaefer, Cindy, Aida Stelter, Sonja Holl-Supra, Stephan Weber, and Björn Niehaves. 2022. "The Acceptance and Use Behavior of Shared Mobility Services in a Rural Municipality" Smart Cities 5, no. 4: 1229-1240. https://doi.org/10.3390/smartcities5040062
APA StyleSchaefer, C., Stelter, A., Holl-Supra, S., Weber, S., & Niehaves, B. (2022). The Acceptance and Use Behavior of Shared Mobility Services in a Rural Municipality. Smart Cities, 5(4), 1229-1240. https://doi.org/10.3390/smartcities5040062