This work presents an innovative, energy-efficient IoT routing protocol that combines advanced data fusion grouping and routing strategies to effectively tackle the challenges of data management in smart cities. Our protocol employs hierarchical Data Fusion Head (DFH), relay DFHs, and marine predators algorithm,
[...] Read more.
This work presents an innovative, energy-efficient IoT routing protocol that combines advanced data fusion grouping and routing strategies to effectively tackle the challenges of data management in smart cities. Our protocol employs hierarchical Data Fusion Head (DFH), relay DFHs, and marine predators algorithm, the latter of which is a reliable metaheuristic algorithm which incorporates a fitness function that optimizes parameters such as how closely the Sensor Nodes (SNs) of a data fusion group (DFG) are gathered together, the distance to the sink node, proximity to SNs within the data fusion group, the remaining energy (RE), the Average Scale of Building Occlusions (ASBO), and Primary DFH (PDFH) rotation frequency. A key innovation in our approach is the introduction of data fusion techniques to minimize redundant data transmissions and enhance data quality within DFG. By consolidating data from multiple SNs using fusion algorithms, our protocol reduces the volume of transmitted information, leading to significant energy savings. Our protocol supports both direct routing, where fused data flow straight to the sink node, and multi-hop routing, where a PDF relay is chosen based on an influential relay cost function that considers parameters such as RE, distance to the sink node, and ASBO. Given that the proposed protocol incorporates efficient failure recovery strategies, data redundancy management, and data fusion techniques, it enhances overall system resilience, thereby ensuring high protocol performance even in unforeseen circumstances. Thorough simulations and comparative analysis reveal the protocol’s superior performance across key performance metrics, namely, network lifespan, energy consumption, throughput, and average delay. When compared to the most recent and relevant protocols, including the Particle Swarm Optimization-based energy-efficient clustering protocol (PSO-EEC), linearly decreasing inertia weight PSO (LDIWPSO), Optimized Fuzzy Clustering Algorithm (OFCA), and Novel PSO-based Protocol (NPSOP), our approach achieves very promising results. Specifically, our protocol extends network lifespan by 299% over PSO-EEC, 264% over LDIWPSO, 306% over OFCA, and 249% over NPSOP. It also reduces energy consumption by 254% relative to PSO-EEC, 264% compared to LDIWPSO, 247% against OFCA, and 253% over NPSOP. The throughput improvements reach 67% over PSO-EEC, 59% over LDIWPSO, 53% over OFCA, and 50% over NPSOP. By fusing data and optimizing routing strategies, our protocol sets a new benchmark for energy-efficient IoT DFG, offering a robust solution for diverse IoT deployments.
Full article