What Influences Older Urban Poor’s Attitude towards Online Job Search? Implications for Smart Cities Development
Abstract
:1. Introduction
2. Literature Review: Socio-Economic Factors towards Acceptance of Online Job Searching among Older Demography
3. Research Design
3.1. Study Area
3.2. Participants
3.3. Method for Collecting Data
3.4. Analytical Techniques
3.4.1. Variables
- Dependent variables
- Independent variables
3.4.2. Empirical Model
4. Results
4.1. Participants’ Profiles
4.2. Empirical Results
5. Discussion
5.1. Factors Influencing the Acceptance of Technology for Online Job Searching
5.2. Policy Implications
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aiyar, M.S.; Ebeke, M. The Impact of Workforce Aging on European Productivity; International Monetary Fund: Singapore, 2016. [Google Scholar]
- Dallmeyer, S.; Wicker, P.; Breuer, C. How an aging society affects the economic costs of inactivity in Germany: Empirical evidence and projections. Eur. Rev. Aging Phys. Act. 2017, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.-I.; Okumura, K. The aging society, savings rates, and regional flow of funds in Japan. J. Jpn. Int. Econ. 2021, 62, 101165. [Google Scholar] [CrossRef]
- Osatis, C.; Asavanirandorn, C. An Exploring Human Resource Development in Small and Medium Enterprises in Response to Electric Vehicle Industry Development. World Electr. Veh. J. 2022, 13, 98. [Google Scholar] [CrossRef]
- Asavanirandorn, C.; Pechdin, W.; Trang, N. Identifying Factors Influencing Productivity of Older Workers in Service Sector: A Case Study in Pilot Companies in Thailand. Behav. Sci. 2022, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.; Di Milia, L. Aging and shift work: A complex problem to face. Chronobiol. Int. 2008, 25, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Zacher, H.; Kooij, D.; Beier, M. Active aging at work. Organ. Dyn. 2018, 47, 37–45. [Google Scholar] [CrossRef]
- Khan, H.H.; Malik, M.N.; Zafar, R.; Goni, F.A.; Chofreh, A.G.; Klemeš, J.J.; Alotaibi, Y. Challenges for sustainable smart city development: A conceptual framework. Sustain. Dev. 2020, 28, 1507–1518. [Google Scholar] [CrossRef]
- Caird, S.P.; Hallett, S.H. Towards evaluation design for smart city development. J. Urban Des. 2019, 24, 188–209. [Google Scholar] [CrossRef]
- Brdulak, A. The concept of a smart city in the context of an ageing population. Transp. Econ. Logist. 2017, 68, 65–75. [Google Scholar] [CrossRef]
- Torku, A.; Chan, A.; Yung, E. Implementation of age-friendly initiatives in smart cities: Probing the barriers through a systematic review. Built Environ. Proj. Asset Manag. 2021, 11, 412–426. [Google Scholar] [CrossRef]
- Karaoglu, G.; Hargittai, E.; Nguyen, M. Inequality in online job searching in the age of social media. Inf. Commun. Soc. 2022, 25, 1826–1844. [Google Scholar] [CrossRef]
- Vaportzis, E.; Clausen, M.G.; Gow, A. Older adults perceptions of technology and barriers to interacting with tablet computers: A focus group study. Front. Psychol. 2017, 8, 1687. [Google Scholar] [CrossRef] [PubMed]
- Karácsony, P.; Izsák, T.; Vasa, L. Attitudes of Z generation to job searching through social media. Econ. Sociol. 2020, 13, 227–240. [Google Scholar] [CrossRef]
- Vacchiano, M. Nine mechanisms of job-searching and job-finding through contacts among young adults. Sociol. Res. Online 2022, 27, 361–378. [Google Scholar] [CrossRef]
- Taweesaengsakulthai, S.; Laochankham, S.; Kamnuansilpa, P.; Wongthanavasu, S. Thailand Smart Cities: What is the Path to Success? Asian Politics Policy 2019, 11, 144–156. [Google Scholar] [CrossRef]
- Chirisa, I.; Mutambisi, T.; Chivenge, M.; Mabaso, E.; Matamanda, A.R.; Ncube, R. The urban penalty of COVID-19 lockdowns across the globe: Manifestations and lessons for Anglophone sub-Saharan Africa. GeoJournal 2022, 87, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Kuddus, M.A.; Tynan, E.; McBryde, E. Urbanization: A problem for the rich and the poor? Public Health Rev. 2020, 41, 1–4. [Google Scholar] [CrossRef]
- Van Hoof, J.; Kazak, J.K.; Perek-Białas, J.M.; Peek, S. The Challenges of Urban Ageing: Making Cities Age-Friendly in Europe. Int. J. Environ. Res. Public Health 2018, 15, 2473. [Google Scholar] [CrossRef]
- Hunsaker, A.; Hargittai, E. A review of Internet use among older adults. New Media Soc. 2018, 20, 3937–3954. [Google Scholar] [CrossRef]
- Faberman, R.J.; Kudlyak, M. What does online job search tell us about the labor market. Econ. Perspect. 2016, 40, 1–15. [Google Scholar]
- Le Barbanchon, T.; Rathelot, R.; Roulet, A. Gender differences in job search: Trading off commute against wage. Q. J. Econ. 2021, 136, 381–426. [Google Scholar] [CrossRef]
- Hargittai, E.; Piper, A.; Morris, M. From internet access to internet skills: Digital inequality among older adults. Univers. Access Inf. Soc. 2019, 18, 881–890. [Google Scholar] [CrossRef]
- Hasan, H.M.; Linger, H. Older women online: Engaged, active and independent. In Australasian Conference on Information Systems 2018; Australasian Conference on Information Systems, Ed.; University of Wollongong Australia: Wollongong, NSW, Australia, 2018. [Google Scholar]
- Gao, Q.; Ebert, D.; Chen, X.; Ding, Y. Design of a mobile social community platform for older Chinese people in urban areas. Hum. Factors Ergon. Manuf. Serv. Ind. 2015, 25, 66–89. [Google Scholar] [CrossRef]
- Baker, S.; Warburton, J.; Waycott, J.; Batchelor, F.; Hoang, T.; Dow, B.; Ozanne, E.; Vetere, F. Combatting social isolation and increasing social participation of older adults through the use of technology: A systematic review of existing evidence. Australas. J. Ageing 2018, 37, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T. The impact of social media on muslim society: From islamic perspective. Int. J. Soc. Humanit. Sci. 2019, 3, 95–114. [Google Scholar]
- Salim, S.Y. Media Qualities and Preferences in Da’Wah among Muslim Converts in Borneo. Al-Hikmah 2021, 13, 80–101. [Google Scholar]
- Mitzner, T.L.; Boron, J.B.; Fausset, C.B.; Adams, A.E.; Charness, N.; Czaja, S.J. Older adults talk technology: Technology usage and attitudes. Comput. Hum. Behav. 2010, 26, 1710–1721. [Google Scholar] [CrossRef]
- Campbell, H. Internet and Religion. In The Handbook of Internet Studies; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 232–250. [Google Scholar]
- Kluver, R.; Cheong, P. Technological Modernization, the Internet, and Religion in Singapore. J. Comput. -Mediat. Commun. 2007, 12, 1122–1142. [Google Scholar] [CrossRef]
- Hunsaker, A.; Nguyen, M.H.; Fuchs, J.; Djukaric, T.; Hugentobler, L.; Hargittai, E. “He Explained It to Me and I Also Did It Myself”: How Older Adults Get Support with Their Technology Uses. Socius 2019, 5, 2378023119887866. [Google Scholar] [CrossRef]
- Marler, W.; Hargittai, E. Division of digital labor: Partner support for technology use among older adults. New Media Soc. 2022, 146144482110684. [Google Scholar] [CrossRef]
- Peek, S.T.; Luijkx, K.G.; Rijnaard, M.D.; Nieboer, M.E.; Van Der Voort, C.S.; Aarts, S.; van Hoof, J.; Vrijhoef, H.J.M.; Wouters, E.J.M. Older adults’ reasons for using technology while aging in place. Gerontology 2016, 62, 226–237. [Google Scholar] [CrossRef]
- Hanson, V.L. Influencing technology adoption by older adults. Interact. Comput. 2010, 22, 502–509. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.; Warshaw, P. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univers. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- Green, A.E.; Li, Y.; Owen, D.; De Hoyos, M. Inequalities in use of the Internet for job search: Similarities and contrasts by economic status in Great Britain. Environ. Plan. A 2012, 44, 2344–2358. [Google Scholar] [CrossRef]
- Yang, C.-C.; Li, C.L.; Yeh, T.F.; Chang, Y.C. Assessing Older Adults’ Intentions to Use a Smartphone: Using the Meta–Unified Theory of the Acceptance and Use of Technology. Int. J. Environ. Res. Public Health 2022, 19, 5403. [Google Scholar] [CrossRef] [PubMed]
- Martín-García, A.V.; Redolat, R.; Pinazo-Hernandis, S. Factors Influencing Intention to Technological Use in Older Adults. The TAM Model Aplication. Res. Aging 2022, 44, 573–588. [Google Scholar] [PubMed]
- Yau, Y.; Hsiao, C.-H. The Technology Acceptance Model and Older Adults’ Exercise Intentions—A Systematic Literature Review. Geriatrics 2022, 7, 124. [Google Scholar] [CrossRef]
- Etikan, I.; Musa, S.; Alkassim, R. Comparison of convenience sampling and purposive sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- National Statistical Office. Demography Population and Housing Branch. Available online: http://statbbi.nso.go.th/staticreport/page/sector/en/01.aspx (accessed on 15 December 2022).
- Cramer, J.S. The origins and development of the logit model. Logit Model. Econ. Other Fields 2003, 2003, 1–19. [Google Scholar]
- Lim, Y.; Edelenbos, J.; Gianoli, A. Identifying the results of smart city development: Findings from systematic literature review. Cities 2019, 95, 102397. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Buys, L.; Ioppolo, G.; Sabatini-Marques, J.; da Costa, E.M.; Yun, J.J. Understanding ‘smart cities’: Intertwining development drivers with desired outcomes in a multidimensional framework. Cities 2018, 81, 145–160. [Google Scholar] [CrossRef]
Profile of the Respondents | Bangkok (n = 812) | Pattani (n = 793) | ||
---|---|---|---|---|
45–59 Years Old (n = 572) | 60–69 Years Old (n = 240) | 45–59 Years Old (n = 567) | 60–69 Years Old (n = 226) | |
Gender | ||||
Male | 44.1 | 40.8 | 37.1 | 37.8 |
Female | 55.9 | 59.2 | 62.9 | 62.4 |
Family arrangement (multiple choices) | ||||
Single living | 7.5 | 6.7 | 7.8 | 5.8 |
With spouse | 65.4 | 62.5 | 68.8 | 65.5 |
With children | 64.5 | 66.3 | 72.3 | 81.9 |
Other family members | 42.8 | 49.6 | 32.3 | 39.4 |
Religion | ||||
Buddhism | 100.0 | 99.6 | 28.0 | 38.5 |
Islam | - | - | 72.0 | 61.5 |
Other | - | 0.4 | - | - |
Type of employment * | ||||
Standard employment | 84.83 | 83.19 | 82.87 | 81.25 |
Non-standard employment | 15.17 | 16.81 | 17.13 | 18.75 |
Income factors | ||||
Satisfied with daily expenses | 54.67 | 54.42 | 51.92 | 56.67 |
Dissatisfied with daily expenses | 45.33 | 45.58 | 48.08 | 43.33 |
Total hours per day for using Internet | ||||
Less than two hours | 31.75 | 73.89 | 16.96 | 34.17 |
2–3 h | 16.58 | 3.98 | 11.71 | 10.83 |
3–4 h | 16.93 | 7.96 | 10.31 | 11.67 |
4–5 h | 16.05 | 7.52 | 20.10 | 21.25 |
More than 5 h | 18.69 | 6.64 | 40.91 | 22.08 |
Technology acceptance for online job search | ||||
Acceptance for online job search | 14.51 | 14.17 | 12.76 | 16.81 |
Avoidance for online job search | 85.49 | 85.83 | 86.36 | 83.19 |
No | Factors | Total | 45–59 Years Old | 60–69 Years Old | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bangkok | Pattani | Bangkok | Pattani | Bangkok | Pattani | ||||||||
Mfx 1 | p-Value | Mfx 1 | p-Value | Mfx 1 | p-Value | Mfx 1 | p-Value | Mfx 1 | p-Value | Mfx 1 | p-Value | ||
1 | Gender (male = 1, female = 0) | −0.002 | 0.932 | 0.010 | 0.698 | 0.020 | 0.469 | 0.003 | 0.918 | −0.064 * | 0.101 | 0.040 | 0.698 |
2 | Religion 2 (Buddhism = 1, Islam = 0) | 0.161 ** | 0.00 | 0.096 ** | 0.00 | 0.155 ** | 0.000 | 0.092 ** | 0.002 | 0.164 ** | 0.000 | ||
3 | Family Arrangement | ||||||||||||
With partner (=1) | −0.043 ** | 0.049 | −0.054 ** | 0.027 | −0.035 | 0.194 | −0.055 ** | 0.046 | −0.057 * | 0.105 | 0.002 | 0.919 | |
With son (=1) | 0.026 | 0.365 | 0.043 | 0.249 | 0.009 | 0.798 | 0.053 | 0.224 | 0.054 | 0.284 | 0.011 | 0.752 | |
With daughter (=1) | −0.008 | 0.754 | 0.004 | 0.876 | 0.001 | 0.971 | −0.010 | 0.744 | −0.066 | 0.250 | |||
4 | Income factor (Satisfied with daily expenses = 1, otherwise = 0) | 0.013 | 0.564 | −0.037 | 0.148 | −0.010 | 0.719 | −0.034 | 0.247 | 0.070 ** | 0.081 | −0.016 | 0.671 |
5 | Type of employment (standard employment = 1, otherwise = 0) | −0.007 | 0.782 | −0.014 | 0.572 | −0.005 | 0.873 | −0.022 | 0.453 | −0.006 | 0.868 | 0.024 | 0.684 |
6 | Total usage of Internet per day (hours) | 0.007 | 0.216 | 0.006 | 0.332 | 0.005 | 0.422 | 0.003 | 0.733 | 0.012 | 0.236 | 0.020 | 0.676 |
Pr = 1 Accepting Internet for online job search | N = 812 | N = 793 | N = 572 | N = 567 | N = 240 | N = 226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asavanirandorn, C.; Pechdin, W.; Ngamsomsak, R.; Bhula-Or, R. What Influences Older Urban Poor’s Attitude towards Online Job Search? Implications for Smart Cities Development. Smart Cities 2023, 6, 614-625. https://doi.org/10.3390/smartcities6010028
Asavanirandorn C, Pechdin W, Ngamsomsak R, Bhula-Or R. What Influences Older Urban Poor’s Attitude towards Online Job Search? Implications for Smart Cities Development. Smart Cities. 2023; 6(1):614-625. https://doi.org/10.3390/smartcities6010028
Chicago/Turabian StyleAsavanirandorn, Chonticha, Watchara Pechdin, Ritthikiat Ngamsomsak, and Ruttiya Bhula-Or. 2023. "What Influences Older Urban Poor’s Attitude towards Online Job Search? Implications for Smart Cities Development" Smart Cities 6, no. 1: 614-625. https://doi.org/10.3390/smartcities6010028
APA StyleAsavanirandorn, C., Pechdin, W., Ngamsomsak, R., & Bhula-Or, R. (2023). What Influences Older Urban Poor’s Attitude towards Online Job Search? Implications for Smart Cities Development. Smart Cities, 6(1), 614-625. https://doi.org/10.3390/smartcities6010028