Comparative Analysis of Smart Grid Solar Integration in Urban and Rural Networks
Abstract
:1. Introduction
- To perform power flow analysis during peak-load and no-load conditions for both networks using OpenDSS.
- To examine both networks, the short-circuit currents, and the power losses associated with different levels of PV penetration during no-load and peak-load conditions.
- To compare the impact of PV penetration between urban and rural networks.
- To determine the maximum PV penetration capacity and identify sensitive nodes.
2. Materials and Methods
2.1. System Design and Grid Characteristics
2.2. Power Flow Analysis
2.3. Evaluation Strategy
2.4. Load Demand Profiles
2.5. Solar PV Modelling and Profile
3. Results and Discussion
3.1. Voltage Violation Potential of Each Scenario Investigated
3.2. PV Penetration Power Loss Evaluation
3.3. Fault Analysis in PV Penetration
3.4. Discussion and Validation
4. Conclusions
- The result shows that the maximum power in the investigated urban and rural distribution networks is predicted to be 0.5 MW and 0.125 MW, respectively, from the voltage perspective. Furthermore, this study revealed that the power grid in rural areas is more susceptible to voltage violation when compared to urban areas. This means the rural network is more likely to experience high voltage violations when PV penetration is high due to the length of the feeders.
- The findings show that power loss decreases up to 100% PV penetration; beyond 100% PV penetration, power losses increase due to revised power flow from the PV system into the grid.
- These findings indicate that PV penetration in the distribution network can result in an increased fault current increment. As a result, it is crucial to carefully consider the selection of suitable protection devices and relays during the design and installation of PV systems. This step is necessary to ensure the safe and reliable operation of the overall system.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
List of Abbreviations | |
DG | Distributed generation |
PV | Photovoltaic |
PV DG | Photovoltaic distributed generation |
MV | Medium voltage |
LV | Low voltage |
PPU | Main distribution substation |
PMU | Main intake substation |
QD | Quasi dynamic simulation |
PU | Per unit |
NL | No load |
Nomenclature | |
Vpu | Voltage per unit |
Vmin | Minimum voltage |
Vmax | Maximum voltage |
Vactual | Actual voltage |
V base | Voltage base |
P | Real power |
Q | Reactive power |
Appendix A
- %Define the line properties using following code:
- New Line.MyLineName Phases=3 Bus1=Bus1Name Bus2=Bus2Name Length=lineLengthOhms R1=lineResistancePerUnitLength X1=lineReactancePerUnitLength C1=lineCapacitancePerUnitLength Units=km
- % Add more transformer properties as needed
- %Define the load properties using following code:
- New Load.MyLoadName Bus=BusName Phases=3 kV=LoadVoltage kW=LoadActivePower kvar=LoadReactivePower Model=LoadModel
- % Add more transformer properties as needed
- %Define the PV properties using following code:
- New PVSystem.MyPVSystemName Bus1=BusName Phases=3 kV=PVSystemVoltage kW=PVSystemCapacity Irradiance=PVSystemIrradiance Temp=PVSystemTemperature.
- % Add more transformer properties as needed
- %Define the transformer properties using following code:
- New Transformer.MyTransformer Buses=[Bus1, Bus2] kVA=TransformerkVA kVLL=TransformerkVLL Primary=TransformerPrimary Secondary=TransformerSecondary XHL=TransformerXHL
- % Add more transformer properties as needed
- %After defining the variables, such as the solar PV penetration, load, busbars, transformer, etc., in OpenDSS, the next step is to perform a load flow analysis to calculate the power flow and voltage profile in the grid. Here is an example of how to proceed:
- Set the simulation parameters:
- Set MaxIterations=10
- Set ConvergenceTolerance=0.0001
- %Specify the system configuration and components:
- Redirect PVsystem.dss
- Redirect Loads.dss
- Redirect Transformers.dss
- %Solve the load flow (snapshot mode load flow analysis):
- Solve Mode=Snap
- %Access and analyze the simulation results:
- Export Voltages pu
- Export PDElements
- %To calculate the power loss:
- Losses
- % Specify the fault parameters
- New Fault.Fault1 Bus1=Bus1 Phases=3
- New Circuit.Feeders BasekV=33 pu=1.0 Angle=0 Phases=3 Bus1=Tmn_Duma BaseFreq=50 ISC3=22500
- Set Fault.Fault1=3
- Solve Mode=Fault StudyCase=Fault1
- Show Fault
- Now, use MATLAB to control the parameters and network.
- %Connecting MATLAB to OpenDSS:
- DSSObj = actxserver(‘OpenDSSEngine.DSS’);
- DSSObj.Start(0);
- % Access the Active Circuit, Text, and Solution interfaces
- DSSCircuit = DSSObj.ActiveCircuit;
- DSSText = DSSObj.Text;
- DSSSolution = DSSCircuit.Solution;
- DSSText.command = ‘Compile ‘‘C:\path\to\your\file.dss’’’;
- %Define and control PV penetration size for OpenDSS:
- pvSizes = [20, 40, 60, 80, 100];
- % Loop through each PV system size
- for i = 1:length(pvSizes)
- pvSize = pvSizes(i);
- % Update PV system size in the DSS script
- DSSText.command = [‘Edit PVSystem.PV1 kVA=‘ num2str(pvSize)];
- %Adjust the new PV size with OpenDSS, and return the result:
- % Solve the circuit
- DSSSolution.Solve();
- % Retrieve bus voltages and total power losses
- voltages = DSSCircuit.AllBusVmagPu;
- losses = DSSSolution.Losses;
- faultCurrents = DSSCircuit.ActiveCktElement.CurrentsMagAng(1:2:end);
- faultPower = sum(faultCurrents .^ 2);
- %Display for each PV size:
- filename = [‘Simulation_Results_PV_Size_’ num2str(pvSize) ‘.txt’];
- fid = fopen(filename, ‘w’);
- fprintf(fid, ‘Simulation Results for PV System Size: %.2f%%\n’, pvSize);
- fprintf(fid, ‘Bus Voltages:\n’);
- fprintf(fid, ‘%f\n’, voltages);
- fprintf(fid, ‘Total Power Losses (kW): %.4f\n’, losses);
- fprintf(fid, ‘Fault Analysis Results:\n’);
- fprintf(fid, ‘Fault Currents:\n’);
- fprintf(fid, ‘%f\n’, faultCurrents);
- fprintf(fid, ‘Fault Power (kVA): %.4f\n’, faultPower);
- fclose(fid);
Appendix B
Feeder | P (MW) | Q (MVAR) | Nodes |
---|---|---|---|
1 | 0.085 | 0.043 | 1 |
2 | 2.929 | 1.465 | 2, 3, 4, 5 |
3 | 1.158 | 0.579 | 6, 7, 8,9 |
4 | 0.902 | 0.451 | 10, 11 |
5 | 3.249 | 1.624 | 12, 13, 14 |
6 | 2.169 | 1.085 | 15, 16, 17, 18, 19 |
7 | 0.485 | 0.243 | 20, 21 |
8 | 2.026 | 1.013 | 22, 23, 24, 25, 26, |
9 | 2.502 | 1.251 | 27, 28, 29 |
10 | 1.939 | 0.969 | 30, 31, 32 |
11 | 0.148 | 0.074 | 33 |
12 | 1.740 | 0.870 | 34, 35, 36 |
13 | 0.716 | 0.358 | 37, 38 |
Total | 20.818 | 10.409 |
Feeder | Active | Reactive | Bus No |
---|---|---|---|
1 | 1.048 | 0.525 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
2 | 1.896 | 0.933 | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
3 | 2.174 | 1.088 | 32 33 34 35 36 37 38 39 40 41 42 43 44 |
4 | 2.072 | 1.037 | 45 46 47 48 49 50 51 52 53 |
5 | 1.324 | 0.675 | 54 55 56 57 58 59 60 61 |
6 | 0.783 | 0.395 | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
7 | 1.352 | 0.677 | 80 81 82 83 84 85 86 87 88 89 |
8 | 2.745 | 1.282 | 90 9192 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
Total | 13.394 | 6.612 |
Appendix C
Type | Pos Seq R (ohms/km) | Pos Seq X (ohms/km) | Zero Seq R (ohms/km) | Zero Seq X (ohms/km) | Pos Seq Charging Admittance | Rating |
---|---|---|---|---|---|---|
A11UG240X | 0.1609 | 0.1524 | 0.1814 | 0.0312 | 147.3598 | 350 |
A11UG500X | 0.08 | 0.09 | 1.04 | 0.03 | 199.89 | 570 |
A11UG185 | 0.20 | 0.08 | 2.39 | 0.04 | 218.05 | 250 |
A11UG150X | 0.26 | 0.16 | 0.30 | 0.04 | 119.46 | 280 |
A11UG070 | 0.524 | 0.0938 | 3.936 | 0.0422 | 148 | 160 |
Appendix D
Specification | Value |
---|---|
Maximum Power (Pmax) | 300 W |
Open Circuit Voltage (Voc) | 38.5 V |
Short Circuit Current (Isc) | 9.10 A |
Voltage at Maximum Power (Vmpp) | 31.1 V |
Current at Maximum Power (Impp) | 9.65 A |
Module Efficiency | 18.3% |
Glass Type | Tempered glass |
Frame Material | Anodized aluminum alloy |
Junction Box Protection | IP67 |
PV Module Dimensions | 156.75 mm × 156.75 mm |
References
- Parnianifard, A.; Mumtaz, S.; Chaudhary, S.; Imran, M.A.; Wuttisittikulkij, L. A data driven approach in less expensive robust transmitting coverage and power optimization. Sci. Rep. 2022, 12, 17725. [Google Scholar] [CrossRef]
- Hou, W.; Li, R.Y.M.; Sittihai, T. Management optimization of electricity system with sustainability enhancement. Sustainability 2022, 14, 6650. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kankanamge, N.; Regona, M.; Ruiz Maldonado, A.; Rowan, B.; Ryu, A.; Desouza, K.C.; Corchado, J.M.; Mehmood, R.; Li, R.Y.M. Artificial intelligence technologies and related urban planning and development concepts: How are they perceived and utilized in Australia? J. Open Innov. Technol. Mark. Complex. 2020, 6, 187. [Google Scholar] [CrossRef]
- Fayek, H.H.; Abdalla, O.H. Operation of the Egyptian Power Grid with Maximum Penetration Level of Renewable Energies Using Corona Virus Optimization Algorithm. Smart Cities 2022, 5, 34–53. [Google Scholar] [CrossRef]
- Zhu, Z.; Lu, L.; Yao, X.; Zhang, W.; Liu, W. Global Energy Review. 2021. Available online: https://www.iea.org/reports/global-energy-review-2021/renewables (accessed on 18 July 2023).
- Kassem, Y.; Abdalla, M.H.A. Modeling predictive suitability to identify the potential of wind and solar energy as a driver of sustainable development in the Red Sea State, Sudan. Environ. Sci. Pollut. Res. 2022, 29, 44233–44254. [Google Scholar] [CrossRef]
- Ramachandran, T.; Mourad, A.-H.I.; Hamed, F. A Review on Solar Energy Utilization and Projects: Development in and around the UAE. Energies 2022, 15, 3754. [Google Scholar] [CrossRef]
- Al-Shetwi, A.Q.; Hannan, M.A.; Jern, K.P.; Alkahtani, A.A.; Abas, A.E.P. Power quality assessment of grid-connected PV system in compliance with the recent integration requirements. Electronics 2020, 9, 366. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Lin, J.-H.; Lin, H.-J. Standards and guidelines for grid-connected photovoltaic generation systems: A review and comparison. IEEE Trans. Ind. Appl. 2017, 53, 3205–3216. [Google Scholar] [CrossRef]
- Tan, C.; Teng, X.; Ding, Q.; Xiao, X.; Lan, Q.; Cao, R.; Chang, L. Synergistic balancing control for low-inertia power systems with high PV penetration: Tibet as a case study. Energy Rep. 2022, 8, 2924–2935. [Google Scholar] [CrossRef]
- e Silva, L.E.S.; Vieira, J.P.A. Combined PV-PEV Hosting Capacity Analysis in Low-Voltage Distribution Networks. Electr. Power Syst. Res. 2022, 206, 107829. [Google Scholar] [CrossRef]
- Almeida, D.; Pasupuleti, J.; Raveendran, S.K.; Khan, M.R.B. Monte Carlo analysis for solar PV impact assessment in MV distribution networks. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 23–31. [Google Scholar] [CrossRef]
- Korada, N. Impact of High PV Penetration in a Real Large Feeder Network Using Edge Based Advanced Control and Novel Soft-Switching DC-DC Topologies. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2022. [Google Scholar]
- Ghaffarianfar, M.; Hajizadeh, A.J.E. Voltage stability of low-voltage distribution grid with high penetration of photovoltaic power units. Energies 2018, 11, 1960. [Google Scholar] [CrossRef]
- Karimi, M.; Mokhlis, H.; Naidu, K.; Uddin, S.; Bakar, A. Photovoltaic penetration issues and impacts in distribution network—A review. Renew. Sustain. Energy Rev. 2016, 53, 594–605. [Google Scholar] [CrossRef]
- Chathurangi, D.; Jayatunga, U.; Rathnayake, M.; Wickramasinghe, A.; Agalgaonkar, A.; Perera, S. Potential power quality impacts on LV distribution networks with high penetration levels of solar PV. In Proceedings of the 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 13–16 May 2018. [Google Scholar]
- Liu, Y.J.; Tai, Y.H.; Huang, C.Y.; Su, H.J.; Lan, P.H.; Hsieh, M.K. Assessment of the PV hosting capacity for the medium-voltage 11.4 kV distribution feeder. In Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018. [Google Scholar]
- Khaboot, N.; Chatthaworn, R.; Siritaratiwat, A.; Surawanitkun, C.; Khunkitti, P. Increasing PV penetration level in low voltage distribution system using optimal installation and operation of battery energy storage. Cogent Eng. 2019, 6, 1641911. [Google Scholar] [CrossRef]
- Tang, Y.; Burgos, R.; Li, C.; Boroyevich, D. Impact of PV inverter penetration on voltage profile and power loss in medium voltage distribution systems. In Proceedings of the 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 27–30 June 2016. [Google Scholar]
- Neiva, L.J.R.; Coelho, F.C.R.; Peres, W.; Flávio, S.A.; Dias, L.R. Analysis of Power Flow Reversion in Distribution Transformers Due to Medium-Voltage Fault and Distributed Generation in Secondary Networks. J. Control. Autom. Electr. Syst. 2021, 32, 1718–1727. [Google Scholar] [CrossRef]
- Alsafasfeh, Q.; Saraereh, O.A.; Khan, I.; Kim, S. Solar PV Grid Power Flow Analysis. Sustainability 2019, 11, 1744. [Google Scholar] [CrossRef]
- Nousdilis, A.I.; Chrysochos, A.I.; Papagiannis, G.K.; Christoforidis, G.C. The impact of Photovoltaic Self-Consumption Rate on voltage levels in LV distribution grids. In Proceedings of the 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Cadiz, Spain, 4–6 April 2017. [Google Scholar]
- Hasheminamin, M.; Agelidis, V.G.; Heidari, A. Impact study of high PV penetration in low and medium-voltage networks when considering residential and industrial load profile. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20–23 October 2013. [Google Scholar]
- Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, R.; Hoff, T.E.; Norris, B.L.; Parkins, A.; et al. Integrating high penetrations of PV into Southern California. In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition (26th EU PVSEC), Hamburg, Germany, 5–6 September 2011; pp. 4197–4200. [Google Scholar]
- Singh, R.; Tripathi, P.; Yatendra, K. Impact of solar photovoltaic penetration in distribution network. In Proceedings of the 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 10–11 October 2019. [Google Scholar]
- Almeida, D.; Pasupuleti, J.; Raveendran, S.K.; Khan, M.R.B. Performance evaluation of solar PV inverter controls for overvoltage mitigation in MV distribution networks. Electronics 2021, 10, 1456. [Google Scholar] [CrossRef]
- Kenneth, A.P.; Folly, K. Voltage rise issue with high penetration of grid connected PV. IFAC Proc. Vol. 2014, 47, 4959–4966. [Google Scholar] [CrossRef]
- Reno, M.J.; Coogan, K. Grid Integrated Distributed PV (GridPV), Version 2; Sandia National Lab.(SNL-NM): Albuquerque, NM, USA, 2014. [Google Scholar]
- Almeida, D.; Pasupuleti, J.; Ekanayake, J. Performance evaluation of PV penetration at different locations in a LV distribution network connected with an off-load tap changing transformer. Indones. J. Electr. Eng. Comput. Sci. 2021, 21, 987–993. [Google Scholar] [CrossRef]
- Maghami, M.R.; Pasupuleti, J.; Ling, C.M. A static and dynamic analysis of photovoltaic penetration into MV distribution network. Processes 2023, 11, 1172. [Google Scholar] [CrossRef]
- Namin, M.H.; Agelidis, V.G. Voltage sensitivity study of LV/MV networks under high penetration of photovoltaic generation considering residential and industrial load profiles. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013. [Google Scholar]
- Maghami, M.R.; Pasupuleti, J.; Ling, C.M. Impact of Photovoltaic Penetration on Medium Voltage Distribution Network. Sustainability 2023, 15, 5613. [Google Scholar] [CrossRef]
- Aziz, T.; Ketjoy, N. PV penetration limits in low voltage networks and voltage variations. IEEE Access 2017, 5, 16784–16792. [Google Scholar] [CrossRef]
Ref | Load Type | Network std/Level | Objective | Software | Voltage Limit |
---|---|---|---|---|---|
[22] | Residential 5 kWp | IEEE European LV network | This paper aims to examine the impact of prosumers’ self-consumption rate (SCR) in an LV feeder on voltage quality. | OpenDSS, MATLAB | 0.95–1.05 |
[17] | 14 MW Industrial | MV network in Taiwan | To find the best location and size of solar PV penetration, control by volt, var | OpenDSS, MATLAB | Peak at 1.03 (EUT) |
[23] | Residential, industrial | IEEE 13 Busbar/ MV and LV network | To find maximum solar PV penetration without any violation | DigSilent | 0.85–1.1 pu |
[24] | Industrial PV from 0.5–5 MW National Library USA | 1EEE 34 Busbar, MV/LV network | Impact of PV penetration and allowable level in an urban and rural area | Real-Time Digital Simulator | Upper limit 1.05 |
[19] | Rural area load, PV from 0 to 5 MW | IEEE 33 bus and IEEE 45 bus | Investigate power losses, voltage violation maximum PV penetration, and mitigation | MATLAB/PSS/E | Upper limit 1.05 |
[25] | 1 MW and 2 MW level penetration | IEEE 13 Busbar | To find the feeders with high potential for violation and mitigation by OLTC | OpenDSS, MATLAB | Upper limit 1.05 |
[26] | Residential, commercial, industrial load | Typical MV network | Impact of PV penetration and mitigation with volt/var | OpenDSS /MATLAB | 0.95–1.05 |
[27] | 270 kW PV | 16 Busbar, LV network | Focus on the issues of sudden voltage rise and reverse power flow and mitigate these problems that arise due to increased PV integration in LV grids | MATLAB | 0.95–1.05 |
[20] | Residential load | 390 Busbar and 81 Busbar | Considering fault side MV and PV located LV side On different loading levels (0.5, 1, and 1.5), two faults were applied on the MV side: 3-phase grounded and phase-to-phase grounded | OpenDSS/MATLAB | Operating voltage 220 V |
Network Topology | Urban Network | Rural Network |
---|---|---|
Transformer rating | 30 MVA, 33/11 kV | 15 MVA, 132/11 kV |
Number of feeders | 13 | 8 |
Number of nodes | 38 | 110 |
Number of PV | 38 | 99 |
Number of nodes without PV | 0 | 11 |
Names of nodes without PV | 0 | 6, 9, 14, 34, 36, 38, 50, 52, 63, 64, 66 |
PV Penetration (%) | Urban Network (MW) | Rural Network (MW) |
---|---|---|
0 | 0.00 | 0.00 |
20 | 0.10 | 0.02 |
40 | 0.20 | 0.04 |
60 | 0.30 | 0.06 |
80 | 0.40 | 0.08 |
100 | 0.50 | 0.10 |
Max allowable PV for no load | 2 MW (at 200%) | 0.125 MW at 125%, |
Max allowable voltage for peak load | 4 MW (at 800%) | 0.300 MW at 300% |
Urban Network | Rural Network | ||||||||
---|---|---|---|---|---|---|---|---|---|
PV Penetration | Power Losses (MW) | PV Penetration | Power Losses (MW) | ||||||
% | MW | Case 1 | Case 2 | Case 3 | % | MW | Case 1 | Case 2 | Case 3 |
0 | 0.0 | 0.131 | 0.131 | 0.151 | 0 | 0.000 | 0.215 | 0.216 | 0.224 |
20 | 0.1 | 0.093 | 0.094 | 0.106 | 20 | 0.020 | 0.157 | 0.157 | 0.161 |
40 | 0.2 | 0.065 | 0.066 | 0.073 | 40 | 0.040 | 0.113 | 0.113 | 0.114 |
60 | 0.3 | 0.064 | 0.047 | 0.051 | 60 | 0.060 | 0.082 | 0.283 | 0.082 |
80 | 0.4 | 0.038 | 0.038 | 0.041 | 80 | 0.080 | 0.065 | 0.066 | 0.065 |
100 | 0.5 | 0.038 | 0.038 | 0.042 | 100 | 0.100 | 0.061 | 0.061 | 0.063 |
400 | 2.0 | 1.110 | 1.117 | 1.467 | 125 | 0.125 | 0.073 | 0.074 | 0.080 |
800 | 4.0 | 5.576 | 5.898 | 8.242 | 300 | 0.300 | 0.672 | 0.673 | 0.802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghami, M.R.; Pasupuleti, J.; Ling, C.M. Comparative Analysis of Smart Grid Solar Integration in Urban and Rural Networks. Smart Cities 2023, 6, 2593-2618. https://doi.org/10.3390/smartcities6050117
Maghami MR, Pasupuleti J, Ling CM. Comparative Analysis of Smart Grid Solar Integration in Urban and Rural Networks. Smart Cities. 2023; 6(5):2593-2618. https://doi.org/10.3390/smartcities6050117
Chicago/Turabian StyleMaghami, Mohammad Reza, Jagadeesh Pasupuleti, and Chee Mei Ling. 2023. "Comparative Analysis of Smart Grid Solar Integration in Urban and Rural Networks" Smart Cities 6, no. 5: 2593-2618. https://doi.org/10.3390/smartcities6050117
APA StyleMaghami, M. R., Pasupuleti, J., & Ling, C. M. (2023). Comparative Analysis of Smart Grid Solar Integration in Urban and Rural Networks. Smart Cities, 6(5), 2593-2618. https://doi.org/10.3390/smartcities6050117