A Smart City Is a Safe City: Analysis and Evaluation of the State of Crime and Safety in Polish Cities
Abstract
:1. Introduction
- (1)
- What was the change dynamics in terms of studied offenses in 16 Polish cities between 2013–2022 and what was their concentration in relation to their population?
- (2)
- What was the overall level of safety and the specific levels of concentration of offenses in relation to the studied population?
2. Literature Studies
2.1. From Smart City to Human Smart City
- (1)
- Smart People—refers to an open society, i.e., city residents who have access to smart solutions offered by the city and are able to use them, ready to improve their skills, learn, cooperate and be creative and involved in the life of the city. This society should rationally and consciously manage available resources for the benefit of present and future generations [54,55,56,57];
- (2)
- Smart Living—defines a high quality of life in a safe and friendly urban environment with universal access to public services and educational, cultural, health and social infrastructure [25];
- (3)
- Smart Mobility—defines a transport system in cities that is both safe for people and goods and environmentally friendly; the system provides all current and future stakeholders with fast, convenient, hassle-free and efficient movement by various means of transport (in particular, this applies to urban mass public transport using ecological rolling stock) [58,59];
- (4)
- Smart Environment—includes the use of environmental resources by residents in a sustainable manner, the use of renewable energy sources and concern for the quality of all environmental components, including water, air and biodiversity. It also includes environmental education of the urban community [60,61];
- (5)
- (6)
2.2. Public Safety in the Concept of Smart Cities
3. Research Methodology
3.1. Research Area
3.2. Data
3.3. Methods
- –
- Class I—low concentration of crime (3):
- –
- Class II—medium–low concentration of crime (4):
- –
- Class III—medium–high concentration of crime (5):
- –
- Class IV—high concentration of crime (6):
- (1)
- Identify criteria for assessing city safety in terms of crime concentration relative to population;
- (2)
- Based on the identified evaluation criteria, create a decision matrix:
- (3)
- Since the evaluation criteria may have different units of measurement, it is necessary to normalize the values of the evaluation criteria to make them comparable, according to Equation (8):
- (4)
- The normalized matrix is used to create a weighted matrix that takes into account the weights given to each evaluation criterion, according to Equation (9):
- (5)
- Determine the model coordinates of the ideal solution (A+) and the anti-ideal solution (A−):
- (6)
- Determine the positive distance () and negative distance () of each evaluated variant (city):
- (7)
- Calculate the safety index, that is, the value of the coefficient of relative proximity for each alternative:
- (8)
- Create a ranking of alternatives based on the value of the relative proximity coefficient () in the descending direction;
- (9)
- Determine the level of safety in cities based on the value of the safety index (.
- –
- Economic offenses, LQe (weight = 0.1);
- –
- Criminal traffic offenses, LQt (weight = 0.125);
- –
- Criminal offenses against life and health, LQl&h (weight = 0.25);
- –
- Criminal offenses against property, LQp (weight = 0.15);
- –
- Criminal offenses against liberty, freedom of conscience, sexual freedom and morality, LQf (weight = 0.12);
- –
- Criminal offenses against family and guardianship, LQf&c (weight = 0.13);
- –
- Criminal offenses against general security and safety in communications, LQps (weight = 0.125).
4. Results
4.1. Analysis of Offenses and Their Concentration Relative to the Population of the Cities Studied
4.2. Assessment of the Level of Security in the Surveyed Cities
5. Discussion and Conclusions
- –
- Over the 10 years studied (2013–2022), the entire study population of 16 cities saw a 22% decrease in total offenses. The largest decrease occurred in Poznań (by nearly 40%). By contrast, two cities, Warsaw and Katowice, registered an increase in offenses, by 0.2% and about 5%, respectively;
- –
- In the case of criminal offenses, there was a decrease of about 36% in the entire population studied. All cities reduced the number of criminal offenses, with the largest decrease recorded in Opole (by about 55%). The smallest decrease in this group of offenses, over the decade studied, took place in Gdańsk—by about 11%;
- –
- The number of economic offenses in the studied cities increased by 74% on average. The decrease in economic offenses occurred in two cities: in Poznań and Szczecin (by nearly 40%). The largest increase, on the other hand, occurred in Olsztyn (by nearly four times);
- –
- The concentration of total offenses (relative to the population) was highest, on an average annual basis, in Katowice (1.67) and the lowest, in Rzeszów (0.64). As for offenses of a criminal nature, the worst situation was in Wrocław (1.10) and the best was in Katowice and Kielce (0.82). On the other hand, the concentration of economic offenses was highest in Szczecin (2.04) and lowest in Katowice (0.43);
- –
- Among the surveyed cities, Gdańsk has the highest value of the safety index in terms of the concentration of crimes in relation to the number of residents, and Szczecin has the lowest. These cities occupy the first and last positions, respectively, in the created safety ranking;
- –
- The studied populations of cities in the vast majority (11 out of 16 cities) had high and medium–high levels of safety. There was a high level of safety in Gdańsk and a medium–high level of safety in Bydgoszcz, Olsztyn, Zielona Góra, Poznań, Łódź, Rzeszów, Warsaw, Kielce, Kraków and Katowice. There was a medium–low level of safety in four cities (Lublin, Opole, Wrocław and Białystok) and a low level in one (Szczecin).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.42 | 1.05 | 0.49 | 1.23 | 1.07 | 1.60 | 0.68 | 1.39 | 1.39 |
Bydgoszcz | 0.78 | 0.89 | 1.92 | 0.61 | 1.06 | 0.88 | 1.49 | 0.61 | 1.06 |
Lublin | 0.84 | 1.02 | 0.84 | 1.25 | 1.07 | 0.81 | 2.67 | 0.35 | 1.09 |
Zielona Góra | 0.92 | 0.92 | 1.31 | 1.44 | 0.80 | 0.64 | 1.68 | 0.97 | 1.06 |
Lodz | 0.93 | 1.05 | 0.72 | 1.27 | 1.30 | 0.82 | 1.22 | 0.69 | 1.00 |
Krakow | 1.07 | 1.07 | 0.59 | 1.62 | 0.84 | 1.18 | 0.81 | 1.30 | 0.85 |
Warsaw | 0.84 | 1.04 | 0.74 | 1.50 | 0.70 | 1.25 | 0.94 | 0.81 | 1.34 |
Opole | 1.18 | 0.96 | 0.92 | 2.03 | 0.73 | 0.80 | 0.49 | 1.34 | 2.31 |
Rzeszow | 0.65 | 0.96 | 1.05 | 1.56 | 0.88 | 0.71 | 1.09 | 0.87 | 1.48 |
Bialystok | 0.60 | 0.91 | 1.04 | 2.52 | 0.92 | 0.37 | 2.11 | 0.77 | 1.64 |
Gdansk | 0.98 | 0.83 | 2.84 | 0.32 | 1.11 | 1.29 | 0.40 | 1.23 | 1.28 |
Katowice | 1.57 | 0.95 | 1.51 | 0.40 | 1.66 | 1.10 | 0.82 | 0.63 | 0.95 |
Kielce | 0.98 | 0.81 | 2.58 | 0.58 | 1.10 | 0.69 | 1.12 | 0.72 | 1.45 |
Olsztyn | 0.71 | 1.02 | 0.84 | 1.38 | 1.81 | 0.45 | 0.93 | 1.34 | 0.88 |
Poznan | 1.41 | 1.01 | 1.14 | 0.61 | 1.32 | 1.03 | 0.96 | 1.03 | 0.67 |
Szczecin | 0.95 | 1.01 | 0.84 | 1.39 | 0.98 | 0.78 | 1.16 | 3.08 | 0.33 |
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.31 | 1.07 | 0.72 | 1.01 | 0.97 | 1.44 | 0.58 | 0.98 | 1.26 |
Bydgoszcz | 0.67 | 0.92 | 1.27 | 1.19 | 0.66 | 1.00 | 1.03 | 1.31 | 1.11 |
Lublin | 0.87 | 0.93 | 1.42 | 0.81 | 1.26 | 0.64 | 1.13 | 2.74 | 0.41 |
Zielona Góra | 1.19 | 0.85 | 1.72 | 1.20 | 0.58 | 0.87 | 1.11 | 1.11 | 1.61 |
Lodz | 0.90 | 1.03 | 0.77 | 1.49 | 1.20 | 0.77 | 0.70 | 1.11 | 1.40 |
Krakow | 1.07 | 1.05 | 0.74 | 1.11 | 1.26 | 0.93 | 0.89 | 1.20 | 0.80 |
Warsaw | 0.90 | 1.06 | 0.69 | 1.38 | 0.71 | 1.47 | 0.66 | 1.31 | 1.09 |
Opole | 1.21 | 0.95 | 1.14 | 1.23 | 0.84 | 0.92 | 0.51 | 0.54 | 4.69 |
Rzeszow | 0.68 | 0.94 | 1.07 | 1.69 | 0.84 | 0.68 | 0.89 | 0.75 | 2.63 |
Bialystok | 0.56 | 0.99 | 0.80 | 1.99 | 1.60 | 0.33 | 1.48 | 2.21 | 0.58 |
Gdansk | 0.83 | 0.98 | 1.19 | 0.75 | 1.08 | 1.12 | 0.59 | 1.16 | 1.23 |
Katowice | 1.80 | 0.82 | 2.54 | 0.31 | 1.55 | 0.92 | 0.60 | 1.71 | 0.68 |
Kielce | 0.97 | 0.90 | 1.56 | 0.87 | 1.02 | 0.56 | 1.44 | 1.66 | 0.74 |
Olsztyn | 0.86 | 0.90 | 1.47 | 1.06 | 0.91 | 0.76 | 1.11 | 0.83 | 1.56 |
Poznan | 1.26 | 1.04 | 0.85 | 0.79 | 1.13 | 1.31 | 2.25 | 0.32 | 0.94 |
Szczecin | 1.06 | 0.95 | 1.18 | 1.00 | 0.82 | 0.92 | 2.65 | 0.42 | 1.20 |
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.35 | 1.08 | 0.70 | 0.99 | 0.92 | 1.61 | 0.71 | 0.67 | 1.40 |
Bydgoszcz | 0.67 | 0.94 | 1.07 | 1.16 | 0.81 | 0.97 | 1.50 | 1.09 | 0.85 |
Lublin | 0.77 | 1.02 | 0.79 | 1.78 | 0.97 | 0.63 | 1.55 | 1.68 | 0.60 |
Zielona Góra | 1.13 | 0.87 | 1.52 | 1.23 | 0.79 | 0.66 | 1.55 | 1.08 | 1.13 |
Lodz | 0.94 | 1.01 | 0.92 | 1.23 | 1.05 | 0.90 | 0.81 | 1.14 | 1.14 |
Krakow | 1.09 | 1.00 | 1.06 | 0.79 | 0.90 | 1.29 | 1.01 | 0.89 | 0.98 |
Warsaw | 0.96 | 1.05 | 0.77 | 1.15 | 0.81 | 1.37 | 0.77 | 1.09 | 1.13 |
Opole | 1.34 | 0.97 | 1.11 | 1.16 | 0.90 | 0.81 | 0.93 | 0.47 | 2.91 |
Rzeszow | 0.65 | 0.90 | 1.26 | 1.59 | 1.00 | 0.49 | 1.02 | 0.89 | 2.22 |
Bialystok | 0.59 | 0.90 | 1.23 | 1.55 | 1.21 | 0.41 | 1.79 | 1.45 | 0.76 |
Gdansk | 0.82 | 1.00 | 1.01 | 0.99 | 0.99 | 1.07 | 0.84 | 0.93 | 1.16 |
Katowice | 1.49 | 0.90 | 1.61 | 0.63 | 1.35 | 0.78 | 0.98 | 1.52 | 0.63 |
Kielce | 0.86 | 0.87 | 1.63 | 0.91 | 1.18 | 0.50 | 2.24 | 1.08 | 0.69 |
Olsztyn | 0.89 | 0.92 | 1.40 | 0.84 | 1.31 | 0.72 | 1.17 | 1.17 | 0.74 |
Poznan | 1.25 | 1.00 | 1.13 | 0.57 | 1.35 | 1.21 | 0.96 | 0.82 | 0.75 |
Szczecin | 1.00 | 0.94 | 1.21 | 1.03 | 1.15 | 0.63 | 1.89 | 0.49 | 1.48 |
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.33 | 1.11 | 0.55 | 1.22 | 1.03 | 1.44 | 0.75 | 0.74 | 1.16 |
Bydgoszcz | 0.70 | 0.97 | 1.09 | 1.01 | 1.08 | 0.85 | 1.52 | 1.39 | 0.55 |
Lublin | 0.77 | 0.95 | 1.10 | 1.33 | 0.98 | 0.65 | 1.72 | 1.44 | 0.59 |
Zielona Góra | 0.89 | 0.93 | 1.08 | 1.58 | 1.13 | 0.49 | 1.72 | 1.26 | 0.88 |
Lodz | 0.88 | 1.06 | 0.62 | 1.78 | 1.04 | 0.86 | 0.90 | 0.90 | 1.33 |
Krakow | 1.14 | 0.95 | 1.31 | 0.71 | 0.88 | 1.12 | 1.00 | 0.93 | 1.14 |
Warsaw | 1.02 | 1.00 | 1.03 | 0.85 | 0.82 | 1.48 | 0.79 | 0.99 | 1.10 |
Opole | 1.17 | 0.95 | 1.04 | 1.46 | 0.74 | 0.85 | 0.75 | 0.81 | 2.57 |
Rzeszow | 0.61 | 0.93 | 1.02 | 2.14 | 0.81 | 0.57 | 1.08 | 0.30 | 6.21 |
Bialystok | 0.61 | 0.92 | 1.16 | 1.64 | 1.13 | 0.45 | 1.27 | 1.56 | 0.92 |
Gdansk | 0.89 | 0.97 | 1.23 | 0.78 | 1.08 | 1.07 | 0.93 | 0.92 | 0.99 |
Katowice | 1.36 | 0.92 | 1.51 | 0.80 | 1.20 | 0.76 | 0.83 | 1.47 | 0.83 |
Kielce | 0.96 | 0.81 | 2.30 | 0.55 | 1.08 | 0.65 | 1.88 | 0.85 | 0.96 |
Olsztyn | 0.97 | 0.93 | 1.40 | 0.82 | 1.34 | 0.73 | 0.90 | 1.89 | 0.57 |
Poznan | 1.13 | 1.10 | 0.57 | 1.04 | 1.56 | 0.98 | 1.23 | 0.75 | 0.76 |
Szczecin | 0.98 | 0.97 | 1.04 | 1.21 | 0.84 | 0.87 | 1.48 | 0.81 | 1.18 |
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.20 | 1.14 | 0.52 | 1.64 | 0.76 | 1.66 | 0.68 | 0.91 | 1.19 |
Bydgoszcz | 0.67 | 1.02 | 0.85 | 1.29 | 1.14 | 0.79 | 1.27 | 1.58 | 0.56 |
Lublin | 0.83 | 0.91 | 1.34 | 0.98 | 1.17 | 0.72 | 1.11 | 1.96 | 0.53 |
Zielona Góra | 0.97 | 0.97 | 1.09 | 1.12 | 1.18 | 0.68 | 1.72 | 0.96 | 0.73 |
Lodz | 0.85 | 1.07 | 0.68 | 1.73 | 0.95 | 0.95 | 0.70 | 1.48 | 1.06 |
Krakow | 1.45 | 0.75 | 2.49 | 0.35 | 0.92 | 1.13 | 0.80 | 0.79 | 1.56 |
Warsaw | 0.95 | 1.10 | 0.63 | 1.28 | 0.78 | 1.59 | 0.78 | 1.06 | 1.03 |
Opole | 0.97 | 1.06 | 0.62 | 2.48 | 0.89 | 0.77 | 0.37 | 0.95 | 4.17 |
Rzeszow | 0.65 | 0.89 | 1.30 | 1.48 | 0.81 | 0.66 | 0.90 | 0.59 | 3.50 |
Bialystok | 0.57 | 1.00 | 0.76 | 2.44 | 1.18 | 0.43 | 1.57 | 1.47 | 0.79 |
Gdansk | 0.92 | 0.94 | 1.29 | 0.79 | 1.18 | 0.86 | 0.69 | 1.30 | 1.07 |
Katowice | 1.48 | 0.94 | 1.27 | 0.84 | 1.47 | 0.76 | 0.72 | 1.30 | 0.93 |
Kielce | 0.91 | 0.81 | 1.89 | 0.70 | 1.38 | 0.46 | 1.42 | 1.51 | 0.80 |
Olsztyn | 0.86 | 0.98 | 1.07 | 1.02 | 1.47 | 0.68 | 0.96 | 1.13 | 0.86 |
Poznan | 1.08 | 1.02 | 0.96 | 0.76 | 1.41 | 0.97 | 0.93 | 1.02 | 0.81 |
Szczecin | 0.95 | 1.14 | 0.36 | 3.44 | 0.80 | 0.72 | 4.70 | 0.33 | 1.12 |
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.19 | 1.12 | 0.59 | 1.21 | 0.93 | 1.56 | 0.59 | 0.61 | 1.84 |
Bydgoszcz | 0.80 | 0.90 | 1.41 | 0.72 | 0.74 | 1.33 | 1.25 | 1.50 | 0.58 |
Lublin | 0.77 | 0.99 | 0.97 | 1.36 | 1.10 | 0.58 | 1.17 | 3.31 | 0.38 |
Zielona Góra | 1.22 | 0.92 | 1.33 | 0.95 | 0.99 | 0.78 | 1.02 | 2.06 | 0.66 |
Lodz | 0.84 | 1.01 | 0.90 | 1.46 | 1.03 | 0.84 | 0.60 | 0.92 | 2.08 |
Krakow | 0.91 | 1.05 | 0.79 | 1.17 | 0.80 | 1.30 | 0.64 | 0.96 | 1.64 |
Warsaw | 1.03 | 1.04 | 0.88 | 0.88 | 1.05 | 1.29 | 0.59 | 1.35 | 0.95 |
Opole | 0.96 | 1.02 | 0.77 | 2.15 | 0.75 | 0.76 | 0.62 | 1.56 | 1.71 |
Rzeszow | 0.63 | 0.86 | 1.50 | 1.34 | 0.84 | 0.68 | 0.92 | 0.71 | 2.78 |
Bialystok | 0.80 | 0.74 | 2.52 | 0.76 | 1.22 | 0.39 | 1.15 | 1.10 | 1.59 |
Gdansk | 0.90 | 1.04 | 0.83 | 1.29 | 1.12 | 0.87 | 0.83 | 1.43 | 0.88 |
Katowice | 1.37 | 0.92 | 1.36 | 0.77 | 1.42 | 0.66 | 0.81 | 1.98 | 0.67 |
Kielce | 1.03 | 0.83 | 1.96 | 0.59 | 1.26 | 0.69 | 0.85 | 2.56 | 0.56 |
Olsztyn | 0.87 | 0.86 | 1.75 | 0.82 | 0.61 | 1.50 | 0.69 | 0.77 | 1.96 |
Poznan | 1.15 | 0.93 | 1.50 | 0.50 | 1.30 | 0.99 | 0.84 | 1.74 | 0.53 |
Szczecin | 1.32 | 1.04 | 0.54 | 2.09 | 0.69 | 0.90 | 6.04 | 0.11 | 2.33 |
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.10 | 1.06 | 0.78 | 1.16 | 0.73 | 1.73 | 0.34 | 1.34 | 1.67 |
Bydgoszcz | 0.88 | 0.79 | 2.23 | 0.47 | 0.84 | 1.49 | 0.39 | 4.50 | 0.47 |
Lublin | 0.78 | 0.90 | 1.38 | 1.05 | 0.96 | 0.68 | 0.57 | 5.72 | 0.46 |
Zielona Góra | 1.26 | 0.80 | 2.11 | 0.53 | 1.37 | 0.81 | 0.38 | 3.88 | 0.64 |
Lodz | 0.78 | 0.99 | 0.95 | 1.43 | 1.25 | 0.66 | 0.39 | 1.86 | 1.65 |
Krakow | 0.89 | 1.04 | 0.84 | 1.08 | 1.48 | 0.75 | 0.36 | 1.50 | 1.69 |
Warsaw | 1.00 | 1.03 | 0.90 | 0.93 | 0.67 | 1.98 | 0.27 | 2.92 | 0.97 |
Opole | 1.00 | 0.80 | 1.95 | 0.94 | 0.74 | 0.87 | 0.28 | 1.75 | 3.11 |
Rzeszow | 0.56 | 0.95 | 0.97 | 2.05 | 1.14 | 0.38 | 0.65 | 2.87 | 1.17 |
Bialystok | 0.71 | 0.83 | 1.70 | 1.18 | 1.08 | 0.59 | 0.41 | 3.19 | 1.20 |
Gdansk | 1.05 | 0.86 | 1.75 | 0.61 | 1.04 | 1.23 | 0.53 | 1.50 | 0.96 |
Katowice | 1.24 | 0.98 | 0.95 | 1.17 | 1.20 | 0.66 | 0.33 | 4.58 | 0.85 |
Kielce | 1.09 | 0.75 | 2.52 | 0.44 | 1.40 | 0.55 | 0.65 | 3.81 | 0.54 |
Olsztyn | 0.78 | 0.87 | 1.66 | 0.74 | 1.23 | 0.79 | 0.47 | 1.35 | 1.58 |
Poznan | 0.90 | 1.12 | 0.55 | 1.38 | 1.49 | 0.81 | 0.51 | 3.30 | 0.52 |
Szczecin | 2.01 | 1.20 | 0.32 | 2.34 | 0.71 | 0.69 | 13.28 | 0.07 | 2.29 |
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.12 | 1.13 | 0.53 | 1.57 | 0.79 | 1.59 | 0.69 | 0.58 | 1.94 |
Bydgoszcz | 0.89 | 0.89 | 1.55 | 0.64 | 0.78 | 1.28 | 1.46 | 1.30 | 0.56 |
Lublin | 0.78 | 0.94 | 1.21 | 0.96 | 1.25 | 0.64 | 1.86 | 1.11 | 0.61 |
Zielona Góra | 1.24 | 0.93 | 1.23 | 0.98 | 1.17 | 0.66 | 1.49 | 1.23 | 0.69 |
Lodz | 0.96 | 0.94 | 1.25 | 0.94 | 1.22 | 0.73 | 0.89 | 0.80 | 1.54 |
Krakow | 0.91 | 1.05 | 0.84 | 0.88 | 1.03 | 1.10 | 1.36 | 0.35 | 1.98 |
Warsaw | 1.02 | 1.02 | 0.94 | 0.91 | 0.74 | 1.67 | 0.80 | 0.99 | 1.01 |
Opole | 0.82 | 0.95 | 0.97 | 1.95 | 0.59 | 0.85 | 0.80 | 1.17 | 2.04 |
Rzeszow | 0.72 | 0.88 | 1.35 | 1.37 | 1.15 | 0.44 | 1.69 | 1.02 | 1.15 |
Bialystok | 0.83 | 0.94 | 1.11 | 1.42 | 1.14 | 0.51 | 1.43 | 1.90 | 0.65 |
Gdansk | 1.01 | 1.03 | 0.87 | 1.05 | 1.13 | 1.06 | 0.75 | 1.13 | 0.97 |
Katowice | 1.42 | 1.02 | 0.98 | 0.70 | 1.70 | 0.88 | 0.72 | 1.87 | 0.52 |
Kielce | 1.10 | 0.73 | 2.54 | 0.54 | 1.21 | 0.60 | 1.41 | 1.23 | 0.83 |
Olsztyn | 0.94 | 0.77 | 2.32 | 0.50 | 0.97 | 0.97 | 0.95 | 0.84 | 1.28 |
Poznan | 1.04 | 1.01 | 1.01 | 0.75 | 1.56 | 0.86 | 1.04 | 1.52 | 0.48 |
Szczecin | 1.09 | 1.03 | 0.68 | 2.65 | 0.77 | 0.60 | 1.43 | 0.58 | 2.50 |
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.08 | 1.14 | 0.57 | 1.61 | 0.88 | 1.18 | 0.64 | 0.72 | 2.04 |
Bydgoszcz | 0.88 | 0.95 | 1.11 | 0.99 | 0.97 | 0.77 | 1.30 | 1.86 | 0.58 |
Lublin | 0.89 | 0.91 | 1.35 | 0.82 | 1.30 | 0.72 | 1.15 | 2.40 | 0.39 |
Zielona Góra | 1.14 | 0.85 | 1.53 | 0.84 | 1.00 | 0.92 | 0.95 | 1.69 | 0.67 |
Lodz | 0.88 | 1.07 | 0.75 | 1.59 | 1.35 | 0.61 | 0.73 | 0.90 | 1.81 |
Krakow | 0.85 | 1.03 | 0.96 | 0.77 | 1.12 | 1.24 | 1.12 | 0.39 | 1.77 |
Warsaw | 0.94 | 1.10 | 0.72 | 1.16 | 0.79 | 1.42 | 0.57 | 1.80 | 0.87 |
Opole | 1.08 | 0.76 | 1.95 | 0.89 | 0.83 | 0.60 | 0.73 | 1.18 | 2.41 |
Rzeszow | 0.77 | 0.82 | 1.66 | 1.04 | 0.96 | 0.63 | 1.12 | 1.29 | 1.16 |
Bialystok | 0.69 | 0.94 | 1.03 | 1.78 | 0.99 | 0.47 | 1.10 | 2.23 | 0.90 |
Gdansk | 1.02 | 1.04 | 0.88 | 0.97 | 1.11 | 1.14 | 0.71 | 1.01 | 1.10 |
Katowice | 2.50 | 0.51 | 4.59 | 0.20 | 1.13 | 2.23 | 0.31 | 1.72 | 0.75 |
Kielce | 1.24 | 0.78 | 1.94 | 0.69 | 0.93 | 1.04 | 0.87 | 1.16 | 1.08 |
Olsztyn | 0.67 | 0.93 | 1.18 | 1.02 | 1.17 | 0.68 | 0.92 | 1.01 | 1.30 |
Poznan | 0.95 | 1.17 | 0.53 | 1.29 | 1.54 | 0.82 | 0.79 | 2.00 | 0.49 |
Szczecin | 1.11 | 1.24 | 0.23 | 6.54 | 0.68 | 0.56 | 7.24 | 0.16 | 2.20 |
Grand Total | Criminal Offense | Economic Offense | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Against Freedom | Against Public Safety and Safety in Transport | |
---|---|---|---|---|---|---|---|---|---|
Wroclaw | 1.23 | 1.11 | 0.68 | 1.21 | 1.06 | 1.16 | 0.59 | 0.55 | 2.42 |
Bydgoszcz | 0.80 | 0.83 | 1.62 | 0.94 | 0.72 | 0.94 | 1.22 | 1.22 | 1.03 |
Lublin | 0.71 | 0.96 | 1.09 | 1.18 | 1.22 | 0.60 | 1.58 | 1.32 | 0.66 |
Zielona Góra | 1.11 | 1.04 | 0.75 | 1.99 | 0.78 | 0.80 | 1.62 | 1.25 | 0.76 |
Lodz | 0.73 | 1.06 | 0.76 | 1.61 | 1.22 | 0.68 | 0.72 | 1.16 | 1.41 |
Krakow | 0.95 | 1.07 | 0.82 | 0.96 | 0.93 | 1.32 | 2.27 | 0.14 | 2.59 |
Warsaw | 1.07 | 1.06 | 0.83 | 0.95 | 0.74 | 1.67 | 0.58 | 1.78 | 0.79 |
Opole | 0.90 | 0.91 | 1.23 | 1.36 | 1.00 | 0.66 | 0.83 | 0.96 | 1.86 |
Rzeszow | 0.81 | 0.74 | 1.74 | 0.94 | 1.29 | 0.46 | 1.24 | 1.38 | 0.94 |
Bialystok | 0.62 | 0.90 | 1.16 | 1.82 | 0.87 | 0.55 | 0.95 | 2.53 | 0.89 |
Gdansk | 1.11 | 1.02 | 0.98 | 0.91 | 1.15 | 1.04 | 0.66 | 1.45 | 0.88 |
Katowice | 2.12 | 0.56 | 3.81 | 0.25 | 1.28 | 1.14 | 0.58 | 1.61 | 0.75 |
Kielce | 0.98 | 0.91 | 1.32 | 0.89 | 1.15 | 0.65 | 1.12 | 1.82 | 0.69 |
Olsztyn | 0.79 | 0.71 | 2.33 | 0.68 | 0.99 | 1.04 | 0.57 | 0.77 | 2.11 |
Poznan | 0.93 | 1.16 | 0.56 | 1.14 | 1.82 | 0.83 | 0.81 | 1.72 | 0.49 |
Szczecin | 0.89 | 1.22 | 0.27 | 5.65 | 0.74 | 0.65 | 3.09 | 0.43 | 1.52 |
Appendix B
Case 1 (Expert Method—Method Included in the Study) | Case 2 (Change in Weight Values from Expert Method by +/−5%) | Case 3 (Standard Deviation Method) | Case 4 (Method of Equal Weights of Indicators) | |
---|---|---|---|---|
Economic offenses | 0.100 | 0.105 | 0.101 | 0.143 |
Criminal traffic offenses | 0.125 | 0.131 | 0.129 | 0.143 |
Criminal offenses against life and health | 0.250 | 0.213 | 0.251 | 0.143 |
Criminal offenses against property | 0.150 | 0.158 | 0.133 | 0.143 |
Criminal offenses against liberty, freedom of conscience, sexual freedom and morality | 0.120 | 0.126 | 0.101 | 0.143 |
Criminal offenses against family and guardianship | 0.130 | 0.137 | 0.151 | 0.143 |
Criminal offenses against general security and safety in communications | 0.125 | 0.131 | 0.134 | 0.143 |
Tested Parameters | Spearman Rank | p < 0.05 |
---|---|---|
Case 1 and Case 2 | 0.997 | 0.00000 |
Case 1 and Case 3 | 0.985 | 0.00000 |
Case 1 and Case 4 | 0.862 | 0.00002 |
Tested Parameters | Spearman Rank | p < 0.05 |
---|---|---|
TOPSIS and EDAS | 0.871 | 0.00001 |
References
- Yu, D.; Fang, C. The dynamics of public safety in cities: A case study of Shanghai from 2010 to 2025. Habitat Int. 2017, 69, 104–113. [Google Scholar] [CrossRef]
- Biłozor, A.; Cieślak, I. Review of Experience in Recent Studies on the Dynamics of Land Urbanisation. Land 2021, 10, 1117. [Google Scholar] [CrossRef]
- Nuissl, H.; Siedentop, S. Urbanisation and Land Use Change. In Sustainable Land Management in a European Context. Human-Environment Interactions; Weith, T., Barkmann, T., Gaasch, N., Rogga, S., Strauß, C., Zscheischler, J., Eds.; Springer: Cham, Switzerland, 2021; Volume 8. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, E.; Kärrholm, M. Compact city planning and development: Emerging practices and strategies for achieving the goals of sustainability. Dev. Built Environ. 2020, 4, 100021. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects: 2017 Revision; Department of Economic and Social Affairs: New York, NY, USA, 2022; Available online: https://population.un.org/wpp/ (accessed on 19 September 2023).
- Sustainable Urban Development in Poland: National Urban Policy in the Context of the 2030 Agenda’s Goal 11 and the New Urban Agenda. Available online: https://www.funduszeeuropejskie.gov.pl/media/72570/raport_en_final.pdf (accessed on 19 September 2023).
- Maslow, A.H. A theory of human motivation. Psychol. Rev. 1943, 50, 370–396. [Google Scholar] [CrossRef]
- Ajdari, B.; Asgharpour, S.E. Human security and development, emphasizing on sustainable development. Procedia Soc. Behav. Sci. 2011, 19, 41–46. [Google Scholar] [CrossRef]
- Kollarova, M.; Granak, T.; Strelcova, S.; Ristvej, J. Conceptual Model of Key Aspects of Security and Privacy Protection in a Smart City in Slovakia. Sustainability 2023, 15, 6926. [Google Scholar] [CrossRef]
- Pak, A.; Gannon, B. The effect of neighbourhood and spatial crime rates on mental wellbeing. Empir. Econ. 2023, 64, 99–134. [Google Scholar] [CrossRef]
- Mataković, H.; Mataković, I. The impact of crime on security in tourism. Secur. Def. Q. 2019, 27, 1–20. [Google Scholar] [CrossRef]
- Onyeneke, C.C.; Karam, A.H. An Exploratory Study of Crime: Examining Lived Experiences of Crime through Socioeconomic, Demographic, and Physical Characteristics. Urban Sci. 2022, 6, 43. [Google Scholar] [CrossRef]
- Prieto Curiel, R.; Bishop, S.R. A metric of the difference between perception of security and victimisation rates. Crime Sci. 2016, 5, 12. [Google Scholar] [CrossRef]
- Caridade, S.; Magalhães, M.; Azevedo, V.; Dinis, M.A.P.; Maia, R.L.; Estrada, R.; Sani, A.I.; Nunes, L.M. Predicting Frequent and Feared Crime Typologies: Individual and Social/Environmental Variables, and Incivilities. Soc. Sci. 2022, 11, 126. [Google Scholar] [CrossRef]
- Park, M.-S.; Lee, H. Smart City Crime Prevention Services: The Incheon Free Economic Zone Case. Sustainability 2020, 12, 5658. [Google Scholar] [CrossRef]
- Ma, C. Smart city and cyber-security; technologies used, leading challenges and future recommendations. Energy Rep. 2021, 7, 7999–8012. [Google Scholar] [CrossRef]
- Brzeziński, Ł.; Wyrwicka, M.K. Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland. Energies 2022, 15, 8213. [Google Scholar] [CrossRef]
- Moch, N.; Wereda, W. Smart Security in the Smart City. Sustainability 2020, 12, 9900. [Google Scholar] [CrossRef]
- Szczepańska, A.; Kaźmierczak, R.; Myszkowska, M. Smart City Solutions from a Societal Perspective—A Case Study. Int. J. Environ. Res. Public Health 2023, 20, 5136. [Google Scholar] [CrossRef]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in Smart Cities: A Survey of Technologies, Practices and Challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Tura, N.; Ojanen, V. Sustainability-oriented innovations in smart cities: A systematic review and emerging themes. Cities 2022, 126, 103716. [Google Scholar] [CrossRef]
- Gracias, J.S.; Parnell, G.S.; Specking, E.; Pohl, E.A.; Buchanan, R. Smart Cities—A Structured Literature Review. Smart Cities 2023, 6, 1719–1743. [Google Scholar] [CrossRef]
- Angelidou, M.; Psaltoglou, A.; Komninos, N.; Kakderi, C.; Tsarchopoulos, P.; Panori, A. Enhancing sustainable urban development through smart city applications. J. Sci. Technol. Policy Manag. 2018, 9, 146–169. [Google Scholar] [CrossRef]
- Attaran, H.; Kheibari, N.; Bahrepour, D. Toward integrated smart city: A new model for implementation and design challenges. GeoJournal 2022, 87 (Suppl. S4), 511–526. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Smith, M.K. Residents’ Quality of Life in Smart Cities: A Systematic Literature Review. Land 2023, 12, 876. [Google Scholar] [CrossRef]
- Giffinger, R.; Fertner, C.; Kramar, H.; Kalasek, R.; Pichler-Milanovic, N.; Meijers, E. Smart Cities—Ranking of European Medium-Sized Cities; Centre of Regional Science: Vienna, Austria, 2007; Available online: http://www.smart-cities.eu (accessed on 19 September 2023).
- Keshavarzi, G.; Yalcin, Y.; Arefi, M. Does scale matter? An overview of the “smart cities” literature. Sustain. Cities Soc. 2021, 74, 103151. [Google Scholar] [CrossRef]
- Su, Y.; Fan, S. Smart cities and sustainable development. Reg. Stud. 2023, 57, 722–738. [Google Scholar] [CrossRef]
- Mora, L.; Deakin, M.; Zhang, X.; Batty, M.; de Jong, M.; Santi, P.; Appio, F.P. Assembling Sustainable Smart City Transitions: An Interdisciplinary Theoretical Perspective. J. Urban Technol. 2020, 28, 1–27. [Google Scholar] [CrossRef]
- Bhattacharya, T.R.; Bhattacharya, A.; Mclellan, B.; Tezuka, T. Sustainable smart city development framework for developing countries. Urban Res. Pract. 2020, 13, 180–212. [Google Scholar] [CrossRef]
- Del-Real, C.; Ward, C.; Sartipi, M. What do people want in a smart city? Exploring the stakeholders’ opinions, priorities and perceived barriers in a medium-sized city in the United States. Int. J. Urban Sci. 2021, 27, 50–74. [Google Scholar] [CrossRef]
- Chen, C.W. From smart cities to a happy and sustainable society: Urban happiness as a critical pathway toward sustainability transitions. Local Environ. 2022, 27, 1536–1545. [Google Scholar] [CrossRef]
- Aurigi, A.; Odendaal, N. From “Smart in the Box” to “Smart in the City”: Rethinking the Socially Sustainable Smart City in Context. J. Urban Technol. 2021, 28, 55–70. [Google Scholar] [CrossRef]
- IMD. Smart City Index. 2023. Available online: https://imd.cld.bz/IMD-Smart-City-Index-Report-20231/10/ (accessed on 19 September 2023).
- IESE. Cities in Motion Index. 2022. Available online: https://media.iese.edu/research/pdfs/ST-0633-E.pdf (accessed on 19 September 2023).
- Smart Cities. Ranking of European Medium-Sized Cities. Available online: https://www.smart-cities.eu/download/smart_cities_final_report.pdf (accessed on 19 September 2023).
- Lim, Y.; Edelenbos, J.; Gianoli, A. Identifying the results of smart city development: Findings from systematic literature review. Cities 2019, 95, 102397. [Google Scholar] [CrossRef]
- Zheng, C.; Yuan, J.; Zhu, L.; Zhang, Y.; Shao, Q. From digital to sustainable: A scientometric review of smart city literature between 1990 and 2019. J. Clean. Prod. 2020, 258, 120689. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Zavadskas, E.K.; Radzeviciene, I.; Ubarte, A.; Podviezko, V.; Podvezko, A.; Kuzminske, A.; Banaitis, A.; Binkyte, A.; Bucinskas, V. Quality of city life multiple criteria analysis. Cities 2018, 72 Pt A, 82–93. [Google Scholar] [CrossRef]
- Campisi, T.; Severino, A.; Al-Rashid, M.A.; Pau, G. The Development of the Smart Cities in the Connected and Autonomous Vehicles (CAVs) Era: From Mobility Patterns to Scaling in Cities. Infrastructures 2021, 6, 100. [Google Scholar] [CrossRef]
- Baran, M.; Kłos, M.; Chodorek, M.; Marchlewska-Patyk, K. The Resilient Smart City Model–Proposal for Polish Cities. Energies 2022, 15, 1818. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- De Marco, A.; Mangano, G. Evolutionary trends in smart city initiatives. Sustain. Futures 2021, 3, 100052. [Google Scholar] [CrossRef]
- Wall, R.S.; Stavropoulos, S. Smart cities within world city networks. Appl. Econ. Lett. 2016, 23, 875–879. [Google Scholar] [CrossRef]
- Yadav, G.; Mangla, S.K.; Luthra, S.; Rai, D.P. Developing a sustainable smart city framework for developing economies: An Indian context Sustain. Cities Soc. 2019, 47, 101462. [Google Scholar] [CrossRef]
- Martin, C.J.; Evans, J.; Karvonen, A. Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America. Technol. Forecast. Soc. Chang. 2018, 133, 269–278. [Google Scholar] [CrossRef]
- Marchetti, D.; Oliveira, R.; Figueira, A.R. Are global north smart city models capable to assess Latin American cities? A model and indicators for a new context. Cities 2019, 92, 197–207. [Google Scholar] [CrossRef]
- Shayan, S.; Kim, K.P.; Ma, T.; Nguyen, T.H.D. The First Two Decades of Smart City Research from a Risk Perspective. Sustainability 2020, 12, 9280. [Google Scholar] [CrossRef]
- Oliveira, Á.; Campolargo, M. From Smart Cities to Human Smart Cities. In Proceedings of the 2015 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 2336–2344. [Google Scholar] [CrossRef]
- Kuzior, A.; Sobotka, B. The role of social capital in the development of smart cities. Sci. Pap. Silesian Univ. Technol. Organ. Manag. Ser. 2019, 134, 109–119. [Google Scholar] [CrossRef]
- Kummitha, R.K.R.; Crutzen, N. Smart cities and the citizen-driven internet of things: A qualitative inquiry into an emerging smart city. Technol. Forecast. Soc. Chang. 2019, 140, 44–53. [Google Scholar] [CrossRef]
- Fu, S. Smart Café Cities: Testing human capital externalities in the Boston metropolitan area. J. Urban Econ. 2007, 61, 86–111. [Google Scholar] [CrossRef]
- Sheikh, H.; Mitchell, P.; Foth, M. More-than-human smart urban governance: A research agenda. Digit. Geogr. Soc. 2023, 4, 100045. [Google Scholar] [CrossRef]
- Mun Chye, C.; Fahmy-Abdullah, M.; Sufahani, S.F.; Bin Ali, M.K. A Study of Smart People Toward Smart Cities Development. In Proceedings of the Third International Conference on Trends in Computational and Cognitive Engineering, Batu Pahat, Malaysia, 21–22 October 2021; Kaiser, M.S., Ray, K., Bandyopadhyay, A., Jacob, K., Long, K.S., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2022; Volume 348. [Google Scholar] [CrossRef]
- Kim, S.-C.; Hong, P.; Lee, T.; Lee, A.; Park, S.-H. Determining Strategic Priorities for Smart City Development: Case Studies of South Korean and International Smart Cities. Sustainability 2022, 14, 10001. [Google Scholar] [CrossRef]
- Bednarska-Olejniczak, D.; Olejniczak, J.; Svobodová, L. Towards a Smart and Sustainable City with the Involvement of Public Participation—The Case of Wroclaw. Sustainability 2019, 11, 332. [Google Scholar] [CrossRef]
- McKenna, H.P. Human-Smart Environment Interactions in Smart Cities: Exploring Dimensionalities of Smartness. Future Internet 2020, 12, 79. [Google Scholar] [CrossRef]
- Bıyık, C.; Abareshi, A.; Paz, A.; Ruiz, R.A.; Battarra, R.; Rogers, C.D.F.; Lizarraga, C. Smart Mobility Adoption: A Review of the Literature. J. Open Innov. Technol. Mark. Complex. 2021, 7, 146. [Google Scholar] [CrossRef]
- Paiva, S.; Ahad, M.A.; Tripathi, G.; Feroz, N.; Casalino, G. Enabling Technologies for Urban Smart Mobility: Recent Trends, Opportunities and Challenges. Sensors 2021, 21, 2143. [Google Scholar] [CrossRef]
- Almihat, M.G.M.; Kahn, M.T.E.; Aboalez, K.; Almaktoof, A.M. Energy and Sustainable Development in Smart Cities: An Overview. Smart Cities 2022, 5, 1389–1408. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Smart environment design planning for smart city based on deep learning. Sustain. Energy Technol. Assess. 2021, 47, 101425. [Google Scholar] [CrossRef]
- Popova, Y.; Popovs, S. Impact of Smart Economy on Smart Areas and Mediation Effect of National Economy. Sustainability 2022, 14, 2789. [Google Scholar] [CrossRef]
- Micozzi, N.; Yigitcanlar, T. Understanding Smart City Policy: Insights from the Strategy Documents of 52 Local Governments. Sustainability 2022, 14, 10164. [Google Scholar] [CrossRef]
- Akande, A.; Cabral, P.; Casteleyn, S. Understanding the sharing economy and its implication on sustainability in smart cities. J. Clean. Prod. 2020, 277, 124077. [Google Scholar] [CrossRef]
- Kuzior, A.; Pakhnenko, O.; Tiutiunyk, I.; Lyeonov, S. E-Governance in Smart Cities: Global Trends and Key Enablers. Smart Cities 2023, 6, 1663–1689. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, S.; Gu, J. Public Participation in Smart-City Governance: A Qualitative Content Analysis of Public Comments in Urban China. Sustainability 2020, 12, 8605. [Google Scholar] [CrossRef]
- Tan, S.Y.; Taeihagh, A. Smart City Governance in Developing Countries: A Systematic Literature Review. Sustainability 2020, 12, 899. [Google Scholar] [CrossRef]
- Laurini, R. A primer of knowledge management for smart city governance. Land Use Policy 2020, 111, 104832. [Google Scholar] [CrossRef]
- Mouratidis, K. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities 2021, 115, 103229. [Google Scholar] [CrossRef]
- Sypion-Dutkowska, N.; Leitner, M.; Dutkowski, M. Impact of metropolization on the crime structure (case study of provincial capitals in Poland). Cities 2021, 119, 103359. [Google Scholar] [CrossRef]
- Hooghe, M.; Vanhoutte, B.; Hardyns, W.; Bircan, T. Unemployment, inequality, poverty and crime: Spatial distribution patterns of criminal acts in Belgium, 2001–2006. Br. J. Criminol. 2011, 51, 1–20. [Google Scholar] [CrossRef]
- Zembroski, D. Sociological theories of crime and delinquency. J. Hum. Behav. Soc. Environ. 2011, 21, 240–254. [Google Scholar] [CrossRef]
- Cameron, S. Killing for money and the economic theory of crime. Rev. Soc. Econ. 2014, 21, 28–41. [Google Scholar] [CrossRef]
- Eriksson, K.H.; Hjalmarsson, R.; Lindquist, M.J.; Sandberg, A. The importance of family background and neighborhood effects as determinants of crime. J. Popul. Econ. 2016, 29, 219–262. [Google Scholar] [CrossRef]
- Sypion-Dutkowska, N.; Leitner, M. Land use influencing the spatial distribution of urban crime: A case study of Szczecin Poland. ISPRS Int. J. Geoinf. 2017, 6, 74. [Google Scholar] [CrossRef]
- Wolfe, M.K.; Mennis, J. Does vegetation encourage or suppress urban crime? Evidence from Philadelphia, PA. Landsc. Urban Plan. 2012, 108, 112–122. [Google Scholar] [CrossRef]
- Neilson, W.; Winter, H. On criminals’ risk attitudes. Econ. Lett. 1997, 55, 97–102. [Google Scholar] [CrossRef]
- Chuqiao, Y.V.; Papachristos, A.V.; Abrams, D.M. Modeling the origin of urban-output scaling laws. Phys. Rev. E 2019, 100, 302–306. [Google Scholar]
- Oliveira, M.; Bastos-Filho, C.; Menezes, R. The scaling of crime concentration in cities. PLoS ONE 2017, 12, e0183110. [Google Scholar] [CrossRef]
- Pyka, R. Minimizing the side effects of the metropolization as a condition for maintenance of transition and resilience in post-industrial agglomerations. J. Econ. Manag. 2013, 10, 121–136. [Google Scholar]
- Dabrowski, A.P.; Matczak, A.W.; Leitner, M. Identification of experimental and control areas for CCTV effectiveness assessment—The issue of spatially aggregated data. ISPRS Int. J. Geo-Inf. 2018, 7, 471. [Google Scholar] [CrossRef]
- Kourtit, K.; Nijkamp, P.; Susuzki, S. Comparative urban performance assessment of safe cities through data envelopment analysis. Reg. Sci. Policy Pract. 2021, 13, 591–602. [Google Scholar] [CrossRef]
- Allam, Z.; Sharifi, A.; Bibri, S.E.; Jones, D.S.; Krogstie, J. The Metaverse as a Virtual Form of Smart Cities: Opportunities and Challenges for Environmental, Economic, and Social Sustainability in Urban Futures. Smart Cities 2022, 5, 771–801. [Google Scholar] [CrossRef]
- Kaur, A. Maslow’s need hierarchy theory: Applications and criticisms. Glob. J. Manag. Bus. Stud. 2013, 3, 1061–1064. [Google Scholar]
- Harrendorf, S.; Heiskanen, M.; Malby, S. (Eds.) International Statistics on Crime and Justice; European Institute for Crime Prevention and Control, Affiliated with the United Nations (HEUNI): Helsinki, Finland, 2010; Available online: https://www.unodc.org/documents/data-and-analysis/Crime-statistics/International_Statistics_on_Crime_and_Justice.pdf (accessed on 19 September 2023).
- Kościołek, A. Przestępstwa i dezorganizacja społeczna a Smart City—Na podstawie strategii z miast średniej wielkości w Polsce. Stud. Sociol. 2019, 11, 175–189. [Google Scholar]
- Risdiana, D.M.; Susanto, T.D. The Safe City: Conceptual Model Development—A Systematic Literature Review. Procedia Comput. Sci. 2019, 161, 291–299. [Google Scholar] [CrossRef]
- Neumannová, M. Smart Districts: New Phenomenon in Sustainable Urban Development. Case Study of Špitálka in Brno, Czech Republic. Folia Geogr. 2021, 63, 27–48. [Google Scholar]
- Matlovicová, K.; Mocák, P.; Kolesárová, J. Environment of estates and crime prevention through urban environment formation and modification. Geogr. Pannonica 2016, 20, 168–180. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.; Zhao, D.; Ji, L.; Gu, H.; Sun, L.; Li, X. Explore the Correlation between Environmental Factors and the Spatial Distribution of Property Crime. ISPRS Int. J. Geo-Inf. 2022, 11, 428. [Google Scholar] [CrossRef]
- Chiodi, S.I. Crime prevention through urban design and planning in the smart city era: The challenge of disseminating CP-UDP in Italy: Learning from Europe. J. Place Manag. Dev. 2016, 9, 137–152. [Google Scholar] [CrossRef]
- Eurostat Database. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 19 September 2023).
- Christaller, W. Central Places in Southern Germany; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Bank Danych Lokalnych. Available online: https://bdl.stat.gov.pl/bdl/start (accessed on 19 September 2023).
- Yue, H.; Zhu, X.; Ye, X.; Guo, W. The Local Colocation Patterns of Crime and Land-Use Features in Wuhan, China. ISPRS Int. J. Geo-Inf. 2017, 6, 307. [Google Scholar] [CrossRef]
- Brantingham, P.L.; Brantingham, P.J. Location quotients and crime hot spots in the city. In Crime Analysis through Computer Mapping; Criminal Justice Information Authority: Chicago, IL, USA, 1993. [Google Scholar]
- Piquero, A.R.; Brame, R.W. Assessing the Race–Crime and Ethnicity–Crime Relationship in a Sample of Serious Adolescent Delinquents. Crime Delinq. 2008, 54, 390–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, L.; Gu, T.; Yin, J.; Hao, E. CRITIC-TOPSIS-Based Evaluation of Smart Community Safety: A Case Study of Shenzhen, China. Buildings 2023, 13, 476. [Google Scholar] [CrossRef]
- Hajduk, S.; Jelonek, D. A Decision-Making Approach Based on TOPSIS Method for Ranking Smart Cities in the Context of Urban Energy. Energies 2021, 14, 2691. [Google Scholar] [CrossRef]
- Kim, H.M.; Sabri, S.; Kent, A. Chapter 2—Smart cities as a platform for technological and social innovation in productivity, sustainability, and livability: A conceptual framework. In Smart Cities for Technological and Social Innovation; Case Studies, Current Trends, and Future Steps; Elsevier: Amsterdam, The Netherlands, 2021; pp. 9–28. [Google Scholar]
- Fabrègue, B.F.G.; Bogoni, A. Privacy and Security Concerns in the Smart City. Smart Cities 2023, 6, 586–613. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Improving Smart Cities Safety Using Sound Events Detection Based on Deep Neural Network Algorithms. Informatics 2020, 7, 23. [Google Scholar] [CrossRef]
- Woetzel, J.; Remes, J.; Boland, B.; Lv, K.; Sinha, S.; Strube, G.; Means, J.; Law, J.; Cadena, A.; von der Tann, V. Smart Cities: Digital Solutions for a More Livable Future. 2018. Available online: https://www.mckinsey.com/~/media/McKinsey/Industries/Public%20and%20Social%20Sector/Our%20Insights/Smart%20cities%20Digital%20solutions%20for%20a%20more%20livable%20future/MGI-Smart-Cities-Executive-summary.pdf (accessed on 19 September 2023).
- Hegedűs, L.D.; Túri, Z.; Apáti, N.; Pénzes, J. Analysis of the Intra-Urban Suburbanization with GIS Methods. The Case of Debrecen Since the 1980s. Folia Geograph. 2023, 65, 23–39. [Google Scholar]
- Pawlusinski, R. Managing of the Night-Time Economy: Challenges for a Sustainable Urban Policy The case of Krakow (Poland). Folia Geograph. 2023, 65, 5–22. [Google Scholar]
- Mocak, P.; Matlovicova, K.; Matlovic, R.; Penzes, J.; Pachura, P.; Mishra, P.; Kostilnikova, K.; Demkova, M. 15-minute City Concept as a Sustainable Urbandevelopment Alternative: A Brief Outlineof Conceptual Frameworks and Slovakcities as a Case. Folia Geograph. 2022, 64, 69–89. [Google Scholar]
- Perrot, P. What about AI in criminal intelligence? From predictive policing to AI perspectives. Eur. Law Enforc. Res. Bull. 2017, 16, 65–75. [Google Scholar]
- Dakalbab, F.; Talib, M.A.; Waraga, O.; Nassif, A.; Abbas, S.; Nasir, Q. Artificial intelligence & crime prediction: A systematic literature review. Soc. Sci. Humanit. Open 2022, 6, 100342. [Google Scholar]
- Zhao, H. Artificial intelligence-based public safety data resource management in smart cities. Open Comput. Sci. 2023, 13, 20220271. [Google Scholar] [CrossRef]
- Prislan, K.; Slak, B. Analysis of the Relationship Between Smart Cities, Policing and Criminal Investigation. J. Crim. Justice Secur. 2020, 4, 389–413. [Google Scholar]
- Byrne, J.; Marx, G. Technological Innovations in Crime Prevention and Policing. A Review of the Research on Implementation and Impact. Cah. Politiestud. Jaargang 2011, 3, 17–40. [Google Scholar]
- Roses, R.; Kadar, C.; Malleson, N. A data-driven agent-based simulation to predict crime patterns in an urban environment. Comput. Environ. Urban Syst. 2021, 89, 101660. [Google Scholar] [CrossRef]
- Gawkowski, K.K. Smart Robi Różnicę. Available online: https://aspolska.pl/smart-robi-roznice/ (accessed on 19 September 2023).
- Ammara, U.; Rasheed, K.; Mansoor, A.; Al-Fuqaha, A.; Qadir, J. Smart Cities from the Perspective of Systems. Systems 2022, 10, 77. [Google Scholar] [CrossRef]
- Branny, A.; Moller, M.; Korpilo, S.; McPhearson, T.; Gulsrud, N.; Olafsson, A.; Raymond, C.; Andersson, E. Smarter greener cities through a social-ecological-technological systems approach. Curr. Opin. Environ. Sustain. 2022, 55, 101168. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
City | Inhabitants | Surface, km2 | Population Density, Persons/km² | Character of the City |
---|---|---|---|---|
Wrocław | 632,067 | 293 | 2302.1 | A city aspiring to be a metropolitan city |
Bydgoszcz | 359,428 | 176 | 1875.6 | Large regional center |
Lublin | 343,598 | 148 | 2246.5 | Large regional center |
Zielona Góra | 118,405 | 278 | 500.5 | Small regional center |
Łódź | 711,332 | 293 | 2245.3 | A city aspiring to be a metropolitan city |
Kraków | 758,992 | 327 | 2457.6 | A city aspiring to be a metropolitan city |
Warsaw | 1,724,404 | 517 | 3600.1 | Metropolitan city |
Opole | 120,146 | 149 | 848.5 | Small regional center |
Rzeszów | 183,108 | 129 | 1528.4 | Large regional center |
Białystok | 295,282 | 102 | 2865.0 | Large regional center |
Gdańsk | 461,531 | 266 | 1829.3 | Large regional center |
Katowice | 304,362 | 165 | 1700.9 | Large regional center |
Kielce | 199,870 | 110 | 1677.0 | Large regional center |
Olsztyn | 174,675 | 88 | 1904.6 | Large regional center |
Poznań | 548,028 | 262 | 2066.8 | A city aspiring to be a metropolitan city |
Szczecin | 408,172 | 301 | 1302.5 | Large regional center |
City | Total Offenses | Criminal Offenses | Economic Offenses |
---|---|---|---|
% | |||
Wrocław | 67.72 | 59.36 | 222.21 |
Bydgoszcz | 80.35 | 61.95 | 140.22 |
Lublin | 66.27 | 51.29 | 179.86 |
Zielona Góra | 93.82 | 87.45 | 135.07 |
Łódź | 61.13 | 51.01 | 145.13 |
Kraków | 69.65 | 57.59 | 214.35 |
Warsaw | 100.23 | 84.87 | 257.09 |
Opole | 59.47 | 46.52 | 167.33 |
Rzeszów | 96.60 | 62.11 | 278.01 |
Białystok | 80.87 | 65.86 | 198.26 |
Gdańsk | 88.06 | 89.40 | 82.63 |
Katowice | 104.84 | 51.26 | 347.77 |
Kielce | 78.25 | 72.71 | 100.21 |
Olsztyn | 87.15 | 50.58 | 376.97 |
Poznań | 51.53 | 49.16 | 64.83 |
Szczecin | 73.11 | 72.68 | 62.63 |
Total (studied city population) | 78.0 | 64.44 | 173.44 |
Cities Studied | Average Annual Number of Offenses for the Period from 2013 to 2022 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Total | Criminal | Economic | Traffic Offense | Against Life and Health | Against Property | Against Family and Guardianship | Criminal Offenses against Freedom, Freedom of Conscience, Sexual Freedom and Morality | Against Public Safety and Safety in Transport | |
Wrocław | 23,215.60 | 18,624.80 | 3078.50 | 945.10 | 315.6 | 16,536.4 | 333.3 | 691.5 | 1226.3 |
Bydgoszcz | 7884.80 | 5183.30 | 2003.40 | 410.00 | 131 | 4538.4 | 375.1 | 329.5 | 478.3 |
Lublin | 7936.00 | 5537.10 | 1716.00 | 463.5 | 189.6 | 4474.1 | 543.3 | 350.1 | 516.3 |
Zielona Góra | 4251.50 | 2781.80 | 1045.70 | 282.8 | 96.8 | 2439 | 201.8 | 195.5 | 319.4 |
Łódź | 17,601.50 | 13,274.50 | 2912.60 | 1018.6 | 431.5 | 11,817.5 | 400.5 | 543.7 | 1138.3 |
Kraków | 23,213.70 | 16,920.30 | 4795.10 | 973.6 | 358.2 | 13835 | 369.8 | 908.5 | 1130 |
Warsaw | 49,765.00 | 37,920.40 | 8520.80 | 2231.7 | 632 | 32,940.3 | 1309.5 | 1360.6 | 2549.6 |
Opole | 3844.60 | 2632.00 | 809.10 | 285.3 | 82.9 | 2296.8 | 62.6 | 90.2 | 314.8 |
Rzeszów | 3693.70 | 2377.60 | 866.40 | 295.9 | 103.1 | 2056.3 | 107.7 | 137.8 | 329.8 |
Białystok | 5614.10 | 3675.50 | 1249.90 | 480.9 | 195.8 | 2986.9 | 289.6 | 234.9 | 534.9 |
Gdańsk | 12,978.40 | 9048.70 | 3078.30 | 577.1 | 231.9 | 8787 | 339.5 | 410.9 | 650.9 |
Katowice | 14,188.70 | 8462.50 | 4853.50 | 511.8 | 264.6 | 8767.7 | 408.3 | 327.8 | 580.2 |
Kielce | 5723.10 | 3415.70 | 1837.10 | 301.1 | 127.1 | 2825.8 | 235.8 | 211 | 349.1 |
Olsztyn | 4160.00 | 2717.80 | 1107.30 | 229.2 | 100.5 | 2637.7 | 94.1 | 148.5 | 250.2 |
Poznań | 17,726.70 | 13,642.80 | 3073.70 | 627.8 | 324.1 | 11,296.7 | 607.8 | 743.7 | 717.1 |
Szczecin | 13,226.00 | 10,351.00 | 1596.10 | 842.9 | 247.6 | 6316.9 | 283.1 | 2514.5 | 938.8 |
Total for the studied cities | 215,023.40 | 156,565.80 | 42,543.50 | 10,477.30 | 3832.30 | 134,552.50 | 5961.80 | 9198.70 | 12,024.00 |
Cities Studied | Dynamics of Change in Criminal Offenses | |||||
---|---|---|---|---|---|---|
Against General Security and Safety in Communications—Road Traffic | Against Life and Health | Against Property | Against the Family and Guardianship | Against Freedom, Freedom of Conscience, Sexual Freedom and Morality | Against General Security and Safety in Communications | |
% | ||||||
Wrocław | 74.31 | 70.63 | 66.73 | 57.88 | 51.95 | 31.77 |
Bydgoszcz | 73.52 | 47.79 | 67.26 | 122.01 | 112.31 | 85.28 |
Lublin | 57.53 | 62.81 | 61.21 | 87.21 | 127.33 | 65.07 |
Zielona Góra | 62.86 | 58.41 | 95.54 | 210.91 | 119.35 | 68.52 |
Łódź | 62.19 | 55.79 | 60.46 | 75.85 | 65.13 | 68.60 |
Kraków | 42.83 | 44.94 | 65.81 | 48.32 | 177.78 | 49.64 |
Warsaw | 55.17 | 55.76 | 97.23 | 194.40 | 92.76 | 62.41 |
Opole | 37.96 | 49.64 | 53.54 | 157.14 | 83.58 | 41.41 |
Rzeszów | 56.68 | 78.69 | 66.31 | 189.53 | 107.84 | 60.74 |
Białystok | 48.52 | 44.21 | 86.74 | 180.50 | 63.78 | 55.73 |
Gdańsk | 78.23 | 77.94 | 81.97 | 358.02 | 137.39 | 87.78 |
Katowice | 73.27 | 53.87 | 73.09 | 151.81 | 102.25 | 83.86 |
Kielce | 51.96 | 51.83 | 64.67 | 215.04 | 111.73 | 61.57 |
Olsztyn | 62.46 | 32.65 | 98.19 | 85.33 | 56.86 | 67.50 |
Poznań | 40.85 | 53.70 | 56.87 | 150.11 | 58.10 | 47.03 |
Szczecin | 86.26 | 62.05 | 67.34 | 141.54 | 72.68 | 91.92 |
Total for the surveyed cities | 58.64 | 56.00 | 73.32 | 91.70 | 133.90 | 58.78 |
Cities Studied | Grand Total LQT | Criminal Offense LQc | Economic Offense LQe | Traffic Offense LQtc | Against Life and Health LQl&h | Against Property LQp | Against Family and Guardianship LQf&c | Against Freedom LQf | Against Public Safety and Safety in Transport LQps |
---|---|---|---|---|---|---|---|---|---|
Wrocław | 1.24 | 1.10 | 0.61 | 1.25 | 0.91 | 1.49 | 0.45 | 1.34 | 1.36 |
Bydgoszcz | 0.82 | 0.90 | 1.42 | 0.83 | 0.87 | 0.99 | 1.87 | 0.57 | 1.11 |
Lublin | 0.81 | 0.96 | 1.14 | 1.10 | 1.12 | 0.67 | 2.74 | 0.42 | 1.13 |
Zielona Góra | 1.04 | 0.90 | 1.38 | 1.10 | 0.94 | 0.72 | 1.87 | 0.63 | 1.25 |
Łódź | 0.90 | 1.04 | 0.81 | 1.42 | 1.16 | 0.78 | 0.76 | 0.88 | 1.60 |
Kraków | 1.02 | 1.00 | 1.04 | 0.82 | 1.01 | 1.10 | 0.60 | 1.59 | 0.95 |
Warsaw | 0.95 | 1.05 | 0.83 | 1.06 | 0.77 | 1.48 | 0.90 | 0.67 | 1.43 |
Opole | 1.03 | 0.94 | 1.13 | 1.43 | 0.79 | 0.79 | 0.62 | 0.93 | 2.67 |
Rzeszów | 0.64 | 0.88 | 1.34 | 1.39 | 0.95 | 0.57 | 1.18 | 0.83 | 1.83 |
Białystok | 0.65 | 0.90 | 1.25 | 1.56 | 1.11 | 0.43 | 2.19 | 0.53 | 1.74 |
Gdańsk | 0.95 | 0.96 | 1.25 | 0.76 | 1.10 | 1.08 | 0.87 | 0.78 | 1.21 |
Katowice | 1.67 | 0.82 | 2.11 | 0.43 | 1.41 | 0.94 | 1.05 | 0.52 | 1.35 |
Kielce | 1.02 | 0.82 | 1.98 | 0.67 | 1.15 | 0.63 | 1.88 | 0.58 | 1.27 |
Olsztyn | 0.84 | 0.90 | 1.50 | 0.84 | 1.20 | 0.75 | 0.81 | 1.02 | 1.29 |
Poznań | 1.14 | 1.06 | 0.83 | 0.83 | 1.41 | 0.99 | 1.21 | 0.79 | 0.74 |
Szczecin | 1.14 | 1.07 | 0.57 | 2.14 | 0.80 | 0.73 | 1.01 | 3.89 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutak, M.; Brodny, J. A Smart City Is a Safe City: Analysis and Evaluation of the State of Crime and Safety in Polish Cities. Smart Cities 2023, 6, 3359-3392. https://doi.org/10.3390/smartcities6060149
Tutak M, Brodny J. A Smart City Is a Safe City: Analysis and Evaluation of the State of Crime and Safety in Polish Cities. Smart Cities. 2023; 6(6):3359-3392. https://doi.org/10.3390/smartcities6060149
Chicago/Turabian StyleTutak, Magdalena, and Jarosław Brodny. 2023. "A Smart City Is a Safe City: Analysis and Evaluation of the State of Crime and Safety in Polish Cities" Smart Cities 6, no. 6: 3359-3392. https://doi.org/10.3390/smartcities6060149
APA StyleTutak, M., & Brodny, J. (2023). A Smart City Is a Safe City: Analysis and Evaluation of the State of Crime and Safety in Polish Cities. Smart Cities, 6(6), 3359-3392. https://doi.org/10.3390/smartcities6060149