SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
Abstract
Highlights
- Integrating higher spatiotemporal resolution in solar energy modelling reveals significant differences in annual rooftop solar energy assessment results.
- The Spatial Digital Twins (SDT) framework serves as a basis to streamline dynamic modelling and systemic energy potential analysis for future solar energy planning.
- A proof-of-concept SDT framework (SDT4Solar) designed for solar energy assessments has been developed to present an integrated approach that enables dynamic solar potential analysis.
- Results from the prototype deployment of SDT4Solar demonstrate that annual rooftop PV energy generation estimates are less than half of those reported in previous studies that used lower spatiotemporal resolution datasets.
- The SDT4Solar prototype demonstrates the feasibility of using dynamic solar components in energy planning and the potential for integrating datasets, enabling more accurate estimations of solar potential to support more effective rooftop energy planning and future deployment.
- The results from this study highlight the importance of considering the spatiotemporal component in solar modelling and the utility of unified databases to improve the accuracy of potential energy assessments in solar energy planning.
Abstract
1. Introduction
1.1. Persistent Challenges in Solar Rooftop Spatial Planning
1.1.1. Limitations of Conventional Urban Modelling Approaches
1.1.2. Fragmentation of Solar Energy Assessment-Related Datasets
1.1.3. Inadequate Integration of Dynamic Solar Modelling Techniques
1.1.4. Insufficient Support for Collaborative Decision-Making
1.2. Spatial Digital Twins (SDT) as a New Paradigm for Spatial Solar Modelling and Planning
- Develop the SDT4Solar technical framework by defining key parameters, methods, and workflows for integrating geospatial databases, 3D city models, and solar modelling techniques within a Spatial Digital Twin environment.
- Establish an integrated urban energy database that enables seamless data flow, supports semantic interoperability, and manages multi-source datasets including 3D building geometries, land use, and meteorological data.
- Model rooftop suitability, solar irradiance, and PV energy potential dynamically across urban scales to support realistic and scalable rooftop PV deployment scenarios.
- Design and implement a web-based interactive SDT4Solar prototype, providing a user-friendly interface and decision-support functionalities for urban planners, policymakers, and stakeholders engaged in solar energy planning.
2. Materials and Methods
2.1. Methodological Framework
2.2. Urban Spatial Representation
2.3. Integration of Datasets into a Central Database
2.4. 3D Solar Rooftop Potential Modelling
2.4.1. Calculation of Slope Effect
2.4.2. Determination of Shadowing Loss
2.4.3. Calculation of Urban-Adjusted Solar Radiation, Annual Rooftop PV Energy, and Carbon Offset Potential
2.5. Development of SDT4Solar Prototype Web-Based Interface
2.6. Case Study Implementation
3. Results
3.1. SDT4Solar Technical Deployment
3.1.1. Modelling of the Urban Environment
3.1.2. Integrated Database
3.1.3. Dynamic 3D Solar Potential Modelling
3.1.4. Prototype SDT4Solar Web Application Interface
3.2. Ballarat East Operational Implementation Insights
3.2.1. Urban Environment Model, Roof Schematics, and Building 3D Model
3.2.2. Ballarat East SDT4Solar Integrated Database
3.2.3. Ballarat East Rooftop Solar Potential and Environmental Impact
3.3. Comparison of SDT4Solar and Conventional Spatial Assessment Results
4. Discussion
4.1. Key Contributions
4.2. Comparison with Existing Approaches
4.3. Technical Implementation
4.4. Significance of SDT4Solar in Ballarat East
4.5. Role of SDT in City-Scale Solar Energy Planning
4.6. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
SDT | Spatial Digital Twin |
SDT4Solar | Spatial Digital Twin for Solar Energy Planning |
3D | Three Dimensional |
TMY | Typical Meteorological Year |
PV | Photovoltaic |
DSM | Digital Surface Model |
DTM | Digital Terrain Model |
DBM | Digital Building Model |
DVM | Digital Vegetation Model |
DEM | Digital Elevation Model |
LoD | Level Of Detail |
SA1 | Statistical Area Level 1 |
IoT | Internet Of Things |
SlopeRedLoss | Slope Reduction Factor |
SolRadSensor | Solar Radiation Sensor Observations |
PointSolRad | Adjusted Solar Radiation |
ShadowedIntFreq | Total Number of Daylight Hours Affected by Shadowing |
DaylightIntFreq | Total Number of Daylight Hours |
PointElecPot | Potential PV Electricity |
RoofPower | Roof Power Generation |
RoofEnergy | Rooftop Energy Generation |
t CO2-e | Carbon Emissions Offset in Tons |
GWh | Gigawatt-hour |
kWh | Kilowatt-hour |
m | Meter |
References
- Teofilo, A.; Sun, Q. Towards Sustainable Urban Rooftop Solar Energy Planning Through Spatial Digital Twins Paradigm: A Systematic Literature Review. In Digital Twin Computing for Urban Intelligence; Ardakani, S.P., Cheshmehzangi, A., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 15–51. [Google Scholar]
- Akrofi, M.M.; Okitasari, M. Integrating solar energy considerations into urban planning for low carbon cities: A systematic review of the state-of-the-art. Urban Gov. 2022, 2, 157–172. [Google Scholar] [CrossRef]
- Kanters, J.; Dubois, M.-C.; Wall, M. Architects’ design process in solar-integrated architecture in Sweden. Archit. Sci. Rev. 2012, 56, 141–151. [Google Scholar] [CrossRef]
- Ren, H.; Ma, Z.; Chan, A.B.; Sun, Y. Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities. Energy 2023, 263, 125686. [Google Scholar] [CrossRef]
- Kausika, B.B.; van Sark, W.G.J.H.M. Calibration and Validation of ArcGIS Solar Radiation Tool for Photovoltaic Potential Determination in the Netherlands. Energies 2021, 14, 1865. [Google Scholar] [CrossRef]
- Villa-Ávila, E.; Arévalo, P.; Ochoa-Correa, D.; Villa-Ávila, M.; Sempértegui-Moscoso, E.; Jurado, F. A New Methodology for Estimating the Potential for Photovoltaic Electricity Generation on Urban Building Rooftops for Self-Consumption Applications. Smart Cities 2024, 7, 3798–3822. [Google Scholar] [CrossRef]
- Oh, M.; Park, H.-D. Optimization of Solar Panel Orientation Considering Temporal Volatility and Scenario-Based Photovoltaic Potential: A Case Study in Seoul National University. Energies 2019, 12, 3262. [Google Scholar] [CrossRef]
- Sánchez-Aparicio, M.; Martín-Jiménez, J.; Del Pozo, S.; González-González, E.; Lagüela, S. Ener3DMap-SolarWeb roofs: A geospatial web-based platform to compute photovoltaic potential. Renew. Sustain. Energy Rev. 2021, 135, 110203. [Google Scholar] [CrossRef]
- Widodo, D.A.; Purwanto, P.; Hermawan, H. Potential of Solar Energy in Residential Rooftop Surface Area in Semarang City, Indonesia. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 397–404. [Google Scholar] [CrossRef]
- Šúri, M.; Hofierka, J. A New GIS-based Solar Radiation Model and Its Application to Photovoltaic Assessments. Trans. GIS 2004, 8, 175–190. [Google Scholar] [CrossRef]
- Melius, J.; Margolis, R.; Ong, S. Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques. National Renewable Energy Laboratory Prepared Under Task No. SS13.1010 2013. Available online: https://www.nrel.gov/docs/fy14osti/60593.pdf (accessed on 11 November 2024).
- Al-Quraan, A.; Al-Mahmodi, M.; Al-Asemi, T.; Bafleh, A.; Bdour, M.; Muhsen, H.; Malkawi, A. A New Configuration of Roof Photovoltaic System for Limited Area Applications-A Case Study in KSA. Buildings 2022, 12, 92. [Google Scholar] [CrossRef]
- Schallenberg-Rodríguez, J. Photovoltaic techno-economical potential on roofs in regions and islands: The case of the Canary Islands. Methodological review and methodology proposal. Renew. Sustain. Energy Rev. 2013, 20, 219–239. [Google Scholar] [CrossRef]
- Pitt, D.; Michaud, G. Modeling local distributed solar energy potential: A case study from Virginia, USA. Energy Sources Part B Econ. Plan. Policy 2025, 20, 15. [Google Scholar] [CrossRef]
- Chen, B.Y.; Che, Y.B.; Wang, J.K.; Li, H.F.; Yu, L.J.; Wang, D.C. An estimation framework of regional rooftop photovoltaic potential based on satellite remote sensing images. Glob. Energy Interconnect. China 2022, 5, 281–292. [Google Scholar] [CrossRef]
- Teofilo, A.; Sun, Q.; Radosevic, N.; Tao, Y.G.; Iringan, J.; Liu, C.Y. Investigating potential rooftop solar energy generated by Leased Federal Airports in Australia: Framework and implications. J. Build. Eng. 2021, 41, 102390. [Google Scholar] [CrossRef]
- Kalyan, S.; Sun, Q. Interrogating the Installation Gap and Potential of Solar Photovoltaic Systems Using GIS and Deep Learning. Energies 2022, 15, 3740. [Google Scholar] [CrossRef]
- Asif, M.; Hassanain, M.A.; Nahiduzzaman, K.M.; Sawalha, H. Techno-economic assessment of application of solar PV in building sector A case study from Saudi Arabia. Smart Sustain. Built Environ. 2019, 8, 34–52. [Google Scholar] [CrossRef]
- Zubair, M.; Ghuffar, S.; Shoaib, M.; Awan, A.B.; Bhatti, A.R. Assessment of Photovoltaic Capabilities in Urban Environments: A Case Study of Islamabad, Pakistan. J. Sol. Energy Eng. Trans. Asme 2020, 142, 061006. [Google Scholar] [CrossRef]
- Verso, A.; Martin, A.; Amador, J.; Dominguez, J. GIS-based method to evaluate the photovoltaic potential in the urban environments: The particular case of Miraflores de la Sierra. Sol. Energy 2015, 117, 236–245. [Google Scholar] [CrossRef]
- Izquierdo, S.; Rodrigues, M.; Fueyo, N. A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Sol. Energy 2008, 82, 929–939. [Google Scholar] [CrossRef]
- Doorga, J.R.S.; Tannoo, R.; Rughooputh, S.D.D.V.; Boojhawon, R. Exploiting the rooftop solar photovoltaic potential of a tropical island state: Case of the Mascarene Island of Mauritius. Int. J. Energy Environ. Eng. 2021, 12, 401–418. [Google Scholar] [CrossRef]
- Cuesta-Fernández, I.; Vargas-Salgado, C.; Alfonso-Solar, D.; Gómez-Navarro, T. The contribution of metropolitan areas to decarbonize the residential stock in Mediterranean cities: A GIS-based assessment of rooftop PV potential in Valencia, Spain. Sustain. Cities Soc. 2023, 97, 104727. [Google Scholar] [CrossRef]
- Joksić, D.; Bajat, B. Elements of spatial data quality as information technology support for sustainable development planning. Spatium 2004, 2004, 77–83. [Google Scholar] [CrossRef]
- Keirstead, J.; Jennings, M.; Sivakumar, A. A review of urban energy system models: Approaches, challenges and opportunities. Renew. Sustain. Energy Rev. 2012, 16, 3847–3866. [Google Scholar] [CrossRef]
- Chow, A.; Li, S.; Fung, A.S. Modeling urban solar energy with high spatiotemporal resolution: A case study in Toronto, Canada. Int. J. Green Energy 2016, 13, 1090–1101. [Google Scholar] [CrossRef]
- Choi, Y.; Suh, J.; Kim, S.-M. GIS-Based Solar Radiation Mapping, Site Evaluation, and Potential Assessment: A Review. Appl. Sci. 2019, 9, 1960. [Google Scholar] [CrossRef]
- Gassar, A.A.A.; Cha, S.H. Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales. Appl. Energy 2021, 291, 116817. [Google Scholar] [CrossRef]
- Sakti, A.D.; Ihsan, K.T.N.; Anggraini, T.S.; Shabrina, Z.; Sasongko, N.A.; Fachrizal, R.; Aziz, M.; Aryal, J.; Yuliarto, B.; Hadi, P.O.; et al. Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia. Remote Sens. 2022, 14, 2796. [Google Scholar] [CrossRef]
- Anselmo, S.; Ferrara, M. Trends and Evolution of the GIS-Based Photovoltaic Potential Calculation. Energies 2023, 16, 7760. [Google Scholar] [CrossRef]
- Fakhraian, E.; Forment, M.A.; Dalmau, F.V.; Nameni, A.; Guerrero, M.J.C. Determination of the urban rooftop photovoltaic potential: A state of the art. Energy Rep. 2021, 7, 176–185. [Google Scholar] [CrossRef]
- Freitas, S.; Catita, C.; Redweik, P.; Brito, M.C. Modelling solar potential in the urban environment: State-of-the-art review. Renew. Sustain. Energy Rev. 2015, 41, 915–931. [Google Scholar] [CrossRef]
- Cieślak, I.; Eźlakowski, B. The use of GIS tools for decision-making support in sustainable energy generation on the example of solar photovoltaic technology. Bull. Geogr. Socio-Econ. Ser. 2023, 66, 157–171. [Google Scholar] [CrossRef]
- Baghani, A. Assessment of Rooftop Solar Power Potential in Rural Areas using UAV Photogrammetry and GIS. Renew. Energy Res. Appl. 2023, 4, 251–258. [Google Scholar]
- Jo, J.H.; Rose, Z.; Cross, J.; Daebel, E.; Verderber, A.; Kostelnick, J.C. Application of Airborne LiDAR Data and Geographic Information Systems (GIS) to Develop a Distributed Generation System for the Town of Normal, IL. Aims Energy 2015, 3, 173–183. [Google Scholar] [CrossRef]
- Kouhestani, F.M.; Byrne, J.; Johnson, D.; Spencer, L.; Hazendonk, P.; Brown, B. Evaluating solar energy technical and economic potential on rooftops in an urban setting: The city of Lethbridge, Canada. Int. J. Energy Environ. Eng. 2019, 10, 13–32. [Google Scholar] [CrossRef]
- Mishra, T.; Rabha, A.; Kumar, U.; Arunachalam, K.; Sridhar, V. Assessment of solar power potential in a hill state of India using remote sensing and Geographic Information System. Remote Sens. Appl. Soc. Environ. 2020, 19, 100370. [Google Scholar] [CrossRef]
- Dehwah, A.H.A.; Asif, M.; Rahman, M.T. Prospects of PV application in unregulated building rooftops in developing countries: A perspective from Saudi Arabia. Energy Build. 2018, 171, 76–87. [Google Scholar] [CrossRef]
- Massano, M.; Macii, E.; Lanzini, A.; Patti, E.; Bottaccioli, L. A GIS Open-Data Co-Simulation Platform for Photovoltaic Integration in Residential Urban Areas. Engineering 2023, 26, 198–213. [Google Scholar] [CrossRef]
- McIntyre, J.H. Community-scale assessment of rooftop-mounted solar energy potential with meteorological, atlas, and GIS data: A case study of Guelph, Ontario (Canada). Energy Sustain. Soc. 2012, 2, 23. [Google Scholar] [CrossRef]
- Mikovits, C.; Schauppenlehner, T.; Scherhaufer, P.; Schmidt, J.; Schmalzl, L.; Dworzak, V.; Hampl, N.; Sposato, R.G. A Spatially Highly Resolved Ground Mounted and Rooftop Potential Analysis for Photovoltaics in Austria. ISPRS Int. J. Geo-Inf. 2021, 10, 418. [Google Scholar] [CrossRef]
- Adjiski, V.; Kaplan, G.; Mijalkovski, S. Assessment of the solar energy potential of rooftops using LiDAR datasets and GIS based approach. Int. J. Eng. Geosci. 2023, 8, 188–199. [Google Scholar] [CrossRef]
- Margolis, R.; Gagnon, P.; Melius, J.; Phillips, C.; Elmore, R. Using GIS-based methods and lidar data to estimate rooftop solar technical potential in US cities. Environ. Res. Lett. 2017, 12, 074013. [Google Scholar] [CrossRef]
- An, Y.N.; Chen, T.Y.; Shi, L.; Heng, C.K.; Fan, J.L. Solar energy potential using GIS-based urban residential environmental data: A case study of Shenzhen, China. Sustain. Cities Soc. 2023, 93, 104547. [Google Scholar] [CrossRef]
- Boulahia, M.; Djiar, K.A.; Amado, M. Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria. Energies 2021, 14, 1626. [Google Scholar] [CrossRef]
- Thebault, M.; Desthieux, G.; Castello, R.; Berrah, L. Large-scale evaluation of the suitability of buildings for photovoltaic integration: Case study in Greater Geneva. Appl. Energy 2022, 316, 119127. [Google Scholar] [CrossRef]
- Quirós, E.; Pozo, M.; Ceballos, J. Solar potential of rooftops in Cáceres city, Spain. J. Maps 2018, 14, 44–51. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.Q.; Wu, B.; Chen, L.; Mao, W.Q.; Zhao, F.; Wu, J.P.; Wu, J.H.; Yu, B.L. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data. Remote Sens. 2015, 7, 17212–17233. [Google Scholar] [CrossRef]
- Yang, Y.; Campana, P.E.; Stridh, B.; Yan, J.Y. Potential analysis of roof-mounted solar photovoltaics in Sweden. Appl. Energy 2020, 279, 115786. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Nwakanma, K.C. Solar energy harvesting on building’s rooftops: A case of a Nigeria cosmopolitan city. Renew. Energy Focus 2021, 38, 57–70. [Google Scholar] [CrossRef]
- Alvarado, R.G.; Troncoso, L.; Campos, P. Residential Solar Energy Potential for Public Dissemination: A Case Study in Concepcion, Chile. J. Green Build. 2016, 11, 118–133. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Lisowska, M.M.; Saretta, E.; Bonomo, P.; Frontini, F. A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale. Energies 2019, 12, 3554. [Google Scholar] [CrossRef]
- Kodysh, J.B.; Omitaomu, O.A.; Bhaduri, B.L.; Neish, B.S. Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems. Sustain. Cities Soc. 2013, 8, 31–41. [Google Scholar] [CrossRef]
- Shirinyan, E.; Petrova-Antonova, D. Large-Scale Solar Potential Analysis in a 3D CAD Framework as a Use Case of Urban Digital Twins. Remote Sens. 2024, 16, 2700. [Google Scholar] [CrossRef]
- Ali, M.E.; Cheema, M.A.; Hashem, T.; Ulhaq, A.; Babar, M.A. Enabling Spatial Digital Twins: Technologies, Challenges, and Future Research Directions. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2024, 92, 761–778. [Google Scholar] [CrossRef]
- Diakité, A.; Rahimi, M.; Barton, J.; Rigby, M.; Williams, K.; Zlatanova, S. Final Report (RG202877): Liveable City Digital Twin Analytics for Agile Decision Making. 2022. Available online: https://www.unsw.edu.au/content/dam/pdfs/grid/RG202877_Final_Report_20220907.pdf (accessed on 11 November 2024).
- Turner, R.; Sun, Q.C. Near Real-Time Responsive Flood Event Representation: An Open-Source Interactive Web Application Architecture. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, 10, 365–372. [Google Scholar] [CrossRef]
- Aghaei, M.; Kolahi, M.; Esmailifar, S.M.; Moradi Sizkouhi, A.; Nedaei, A.; Manni, M.; Eskandari, A.; Lobaccaro, G. Digital twin technology in solar energy. In Digital Twin Technology for the Energy Sector; Elsevier: Amsterdam, The Netherlands, 2025; pp. 191–212. [Google Scholar]
- Kavousi-Fard, A.; Dabbaghjamanesh, M.; Jafari, M.; Fotuhi-Firuzabad, M.; Dong, Z.Y.; Jin, T. Digital Twin for mitigating solar energy resources challenges: A Perspective. Sol. Energy 2024, 274, 10. [Google Scholar] [CrossRef]
- Olayiwola, O.; Cali, U.; Elsden, M.; Yadav, P. Enhanced Solar Photovoltaic System Management and Integration: The Digital Twin Concept. Solar 2025, 5, 7. [Google Scholar] [CrossRef]
- Sharma, P.; Bora, B.J.; Deepanraj, B.; Jarin, T. Overview of Digital Twins in Renewable Energy. In Proceedings of the 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST), Kochi, India, 11–13 April 2024; pp. 1–6. [Google Scholar]
- Song, Z.; Hackl, C.M.; Anand, A.; Thommessen, A.; Petzschmann, J.; Kamel, O.; Braunbehrens, R.; Kaifel, A.; Roos, C.; Hauptmann, S. Digital Twins for the Future Power System: An Overview and a Future Perspective. Sustainability 2023, 15, 5259. [Google Scholar] [CrossRef]
- Bocullo, V.; Martišauskas, L.; Gatautis, R.; Vonžudaitė, O.; Bakas, R.; Milčius, D.; Venčaitis, R.; Pupeikis, D. A Digital Twin Approach to City Block Renovation Using RES Technologies. Sustainability 2023, 15, 9307. [Google Scholar] [CrossRef]
- Bolton, A.; Butler, L.; Dabson, I.; Enzer, M.; Evans, M.; Fenemore, T.; Harradence, F.; Keaney, E.; Kemp, A.; Luck, A.; et al. Gemini Principles. Cambridge: CDBB 2018. Available online: https://www.cdbb.cam.ac.uk/DFTG/GeminiPrinciples (accessed on 7 April 2025).
- Allen, B.D. Digital Twins and Living Models at NASA. 2021. Available online: https://ntrs.nasa.gov/citations/20210023699 (accessed on 7 April 2025).
- ANZLIC. Principles for Spatially Enabled Digital Twins of the Built and Natural Environment in Australia. 2019. Available online: https://www.anzlic.gov.au/sites/default/files/files/principles_for_spatially_enabled_digital_twins_of_the_built_and_natural_.pdf (accessed on 7 April 2025).
- Gröger, G.; Kolbe, T.H.; Czerwinski, A. Candidate OpenGIS® CityGML Implementation Specification. 2006. Available online: https://portal.ogc.org/files/?artifact_id=16675 (accessed on 31 October 2024).
- Yilmaz, S.; Ozcalik, H.R.; Dincer, F. The analysis on the impact of the roof angle on electricity energy generation of photovoltaic panels in Kahramanmaras, Turkey—A case study for all seasons. J. Renew. Sustain. Energy 2015, 7, 023133. [Google Scholar] [CrossRef]
- NREL’s PVWatts® Calculator. 2024. Available online: https://pvwatts.nrel.gov/ (accessed on 31 October 2024).
- Jacobson, M.Z.; Jadhav, V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- Lukac, N.; Zlaus, D.; Seme, S.; Zalik, B.; Stumberger, G. Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data. Appl. Energy 2013, 102, 803–812. [Google Scholar] [CrossRef]
- City of Ballarat. City of Ballarat Data Exchange. 2020. Available online: https://data.ballarat.vic.gov.au/pages/homepage/ (accessed on 8 January 2024).
- Cros, S.; Mayer, D.; Wald, L. The Availability of Irradiation Data. Report IEA-PVPS T2-04: 2004. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/ar_2004.pdf (accessed on 11 November 2024).
- DCCEEW. Annual Climate Change Statement. 2024. Available online: https://www.dcceew.gov.au/sites/default/files/documents/annual-climate-change-statement-2024.pdf (accessed on 20 November 2024).
- Committee for Ballarat. Push to Make Ballarat the First Australian City to be 100% Powered by Renewables. 2024. Available online: https://committeeforballarat.com/news/push-to-make-ballarat-the-first-australian-city-to-be-100-powered-by-renewables/ (accessed on 6 November 2024).
- City of Ballarat. Neighbourhood Character Study. 2024. Available online: https://www.ballarat.vic.gov.au/sites/default/files/2025-01/Neighbourhood%20Character%20Study.pdf (accessed on 6 November 2024).
- City of Ballarat. A Greener More Vibrant and Connected Ballarat. Ballarat Strategy—July 2015. Available online: https://www.ballarat.vic.gov.au/sites/default/files/2019-04/Ballarat%20Strategy%202040.pdf (accessed on 6 November 2024).
- Geoscience Australia. ELVIS Elevation and Depth. 2021. Available online: https://elevation.fsdf.org.au/ (accessed on 9 January 2024).
- State Government of Victoria. Discover and Access Victorian Government Open Data. 2025. Available online: https://www.data.vic.gov.au/ (accessed on 9 January 2024).
- Li, J.; Li, Y.; Chapman, M. High-Resolution Satellite Image Sources for Disaster Management in Urban Areas. In Geo-Information for Disaster Management, Van Oosterom; Zlatanova, S., Fendel, E.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1055–1070. [Google Scholar]
- Australian Bureau of Statistics. 1270.0.55.001—Australian Statistical Geography Standard (ASGS): Volume 1—Main Structure and Greater Capital City Statistical Areas, July 2016. Available online: https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.001July%202016?OpenDocument (accessed on 19 September 2024).
- NCC. Part J9: Energy Monitoring and on-Site Distributed Energy Resources. National Construction Code. 2022. Available online: https://ncc.abcb.gov.au/editions/ncc-2022/adopted/volume-one/j-energy-efficiency/part-j9-energy-monitoring-and-site-distributed-energy-resources (accessed on 3 October 2024).
- Gagnon, P.; Margolis, R.; Melius, J.; Phillips, C.; Elmore, R. Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment. 2016. Available online: https://www.nrel.gov/docs/fy16osti/65298.pdf (accessed on 3 October 2024).
- Roberts, M.; Nagrath, K.; Briggs, C.; Copper, J.; Bruce, A.; Mckibben, J. How Much Rooftop Solar Can Be Installed in Australia? 2019. Available online: https://www.cefc.com.au/media/rcalz41c/isf-rooftop-solar-potential-report-final_.pdf (accessed on 11 November 2024).
- Ntsoane, M. Rooftop Solar PV Potential Assessment in the City of Johannesburg. Master’s Thesis, Philosophy in Sustainable Development. Stellenbosch University, Stellenbosch, South Africa, March 2017. [Google Scholar]
- Clausen, C.S.B.; Ma, Z.G.; Jørgensen, B.N. Can we benefit from game engines to develop digital twins for planning the deployment of photovoltaics? Energy Inform. 2022, 5, 42. [Google Scholar] [CrossRef]
- Polo, J.; Martín-Chivelet, N.; Sanz-Saiz, C. BIPV Modeling with Artificial Neural Networks: Towards a BIPV Digital Twin. Energies 2022, 15, 4173. [Google Scholar] [CrossRef]
- Choi, Y.; Rayl, J.; Tammineedi, C.; Brownson, J.R.S. PV Analyst: Coupling ArcGIS with TRNSYS to assess distributed photovoltaic potential in urban areas. Sol. Energy 2011, 85, 2924–2939. [Google Scholar] [CrossRef]
- Amado, M.; Poggi, F. Towards Solar Urban Planning: A New Step for Better Energy Performance. Energy Procedia 2012, 30, 1261–1273. [Google Scholar] [CrossRef]
- Sun, Y.W.; Hof, A.; Wang, R.; Liu, J.; Lin, Y.J.; Yang, D.W. GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province. Energy Policy 2013, 58, 248–259. [Google Scholar] [CrossRef]
- Koo, C.; Hong, T.; Park, H.S.; Yun, G. Framework for the analysis of the potential of the rooftop photovoltaic system to achieve the net-zero energy solar buildings. Prog. Photovolt. 2014, 22, 462–478. [Google Scholar] [CrossRef]
- Gooding, J.; Edwards, H.; Giesekam, J.; Crook, R. Solar City Indicator: A methodology to predict city level PV installed capacity by combining physical capacity and socio-economic factors. Sol. Energy 2013, 95, 325–335. [Google Scholar] [CrossRef]
- Brito, M.C.; Redweik, P.; Catita, C.; Freitas, S.; Santos, M. 3D Solar Potential in the Urban Environment: A Case Study in Lisbon. Energies 2019, 12, 3457. [Google Scholar] [CrossRef]
- Desthieux, G.; Carneiro, C.; Camponovo, R.; Ineichen, P.; Morello, E.; Boulmier, A.; Abdennadher, N.; Dervey, S.; Ellert, C. Solar Energy Potential Assessment on Rooftops and Facades in Large Built Environments Based on LiDAR Data, Image Processing, and Cloud Computing. Methodological Background, Application, and Validation in Geneva (Solar Cadaster). Front. Built Environ. 2018, 4, 14. [Google Scholar] [CrossRef]
- Jakubiec, J.A.; Reinhart, C.F. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Sol. Energy 2013, 93, 127–143. [Google Scholar] [CrossRef]
Reference | Assumption and Rationale | Impact |
---|---|---|
[9,15] | Shading is not considered. | Overestimates surface solar irradiation values. |
Relied on broad classifications with roof slopes. | Misleading solar potential, especially on sub-optimal roofs. | |
[16] | Use of both manually measured and default building heights due to limited data access. | Misrepresentation of suitable roofs. |
Excluded slope and shading on the assumption that airport roofs are flat with minimal vegetation. | Fail to capture granular solar potential variability. | |
[17] | Only slopes less than 45° were considered as steeper slopes were assumed to receive less irradiation. | Misleading solar potential, especially on sub-optimal roofs. |
Excluded shading due to the remote characteristic of the study area, with low-rise and shade-free. | Fail to capture granular solar potential variability. | |
[18] | Omitted both slope and shading with the assumption that uniformity in building design and height would eliminate shading effects. | Fail to capture granular solar potential variability. |
[19] | Adopted a uniform building height value of 30ft to align with the local building codes | Fail to capture granular solar potential variability. |
Shadowing was excluded due to software limitations. | Overestimates surface solar irradiation values. | |
Air temperature substitutes for the effect of shading. | Inaccurate solar potential estimation, as air temperature is unrelated to solar access. | |
[20,21,22,23] | Used shading coefficient | Either overestimates or underestimates surface solar irradiation values. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teofilo, A.; Sun, Q.; Amati, M. SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments. Smart Cities 2025, 8, 128. https://doi.org/10.3390/smartcities8040128
Teofilo A, Sun Q, Amati M. SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments. Smart Cities. 2025; 8(4):128. https://doi.org/10.3390/smartcities8040128
Chicago/Turabian StyleTeofilo, Athenee, Qian (Chayn) Sun, and Marco Amati. 2025. "SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments" Smart Cities 8, no. 4: 128. https://doi.org/10.3390/smartcities8040128
APA StyleTeofilo, A., Sun, Q., & Amati, M. (2025). SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments. Smart Cities, 8(4), 128. https://doi.org/10.3390/smartcities8040128