Diels–Alder Cycloaddition of N-Azobenzene Maleimides with Furan and Electrochemical Study of Redox Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Synthesis of Azocompounds
2.1.1. (E)-1-(4-((4-Amino-2,6-dimethylphenyl)diazenyl)phenyl)ethan-1-one (1a)
2.1.2. (E)-1-(3-((4-Amino-2,6-dimethylphenyl)diazenyl)phenyl)ethan-1-one (1b)
2.1.3. (E)-3,5-Dimethyl-4-(phenyldiazenyl)aniline (1c)
2.1.4. (E)-3,5-Dimethyl-4-((4-nitrophenyl)diazenyl)aniline (1d)
2.1.5. (E)-4-((4-Methoxyphenyl)diazenyl)-3,5-dimethylaniline (1e)
2.1.6. (E)-4-((4-Amino-2,6-dimethylphenyl)diazenyl)benzoic acid (1f)
2.2. General Synthesis of Azo-Maleimides
2.2.1. Step 1: Formation of Amic Acid
2.2.2. Step 2: Formation of Maleimide
2.2.3. (E)-1-(4-((4-Acetylphenyl)diazenyl)-3,5-dimethylphenyl)-1H-pyrrole-2,5-dione (2a)
2.2.4. (E)-1-(4-((3-Acetylphenyl)diazenyl)-3,5-dimethylphenyl)-1H-pyrrole-2,5-dione (2b)
2.2.5. (E)-1-(3,5-Dimethyl-4-(phenyldiazenyl)phenyl)-1H-pyrrole-2,5-dione (2c)
2.2.6. (E)-1-(3,5-Dimethyl-4-((4-nitrophenyl)diazenyl)phenyl)-1H-pyrrole-2,5-dione (2d)
2.2.7. (E)-1-(4-((4-Methoxyphenyl)diazenyl)-3,5-dimethylphenyl)-1H-pyrrole-2,5-dione (2e)
2.2.8. (E)-4-((4-(2,5-Dioxo-2,5-dihihydro-1H-pyrro-1-yl)-2,6-dimethylphenyl)diazinyl) benzoic acid (2f)
2.3. General Procedure of Azo-Oxanorbornenes
2.3.1. (E)-2-(4-((4-Acetylphenyl)diazenyl)-3,5-dimethylphenyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (3a)
2.3.2. (E)-2-(4-((3-Acetylphenyl)diazenyl)-3,5-dimethylphenyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (3b)
2.3.3. (E)-2-(3,5-Dimethyl-4-(phenyldiazenyl)phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (3c)
2.3.4. (E)-2-(3,5-Dimethyl-4-((4-nitrophenyl)diazenyl)phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (3d)
2.3.5. (E)-2-(4-((4-Methoxyphenyl)diazenyl)-3,5-dimethylphenyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (3e)
2.3.6. (E)-4-((4-(1,3-Dioxo-2,3,3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindol-2(3H)-yl)-2,6-dimethylphenyl)diazenyl) benzoic acid (3f)
2.4. Electrochemical Analysis
2.5. Characterization of Compounds
3. Results and Discussion
3.1. Synthesis and Characterization of Azocompounds (1a–3f)
3.2. Electrochemical Study of the Redox Reactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diels, O.; Alder, K. Synthesen in Der Hydroaromatischen Reihe. Liebigs Ann. Chem. 1928, 460, 98–122. [Google Scholar] [CrossRef]
- Li, W.; Zhou, L.; Zhang, J. Recent Progress in Dehydro(Genative) Diels–Alder Reaction. Chem. Eur. J. 2016, 22, 1558–1571. [Google Scholar] [CrossRef]
- Briou, B.; Améduri, B.; Boutevin, B. Trends in the Diels–Alder Reaction in Polymer Chemistry. Chem. Soc. Rev. 2021, 50, 11055–11097. [Google Scholar] [CrossRef]
- Funel, J.; Abele, S. Industrial Applications of the Diels–Alder Reaction. Angew. Chem. Int. Ed. 2013, 52, 3822–3863. [Google Scholar] [CrossRef]
- Gregoritza, M.; Brandl, F.P. The Diels–Alder Reaction: A Powerful Tool for the Design of Drug Delivery Systems and Biomaterials. Eur. J. Pharm. Biopharm. 2015, 97, 438–453. [Google Scholar] [CrossRef]
- LaMondia, J.A.; Douglas, S.M. Sensitivity of Botrytis cinerea from Connecticut Greenhouses to Benzimidazole and Dicarboximide Fungicides. Plant Dis. 1997, 81, 729–732. [Google Scholar] [CrossRef]
- Vetcher, L.; Menzella, H.G.; Kudo, T.; Motoyama, T.; Katz, L. The Antifungal Polyketide Ambruticin Targets the HOG Pathway. Antimicrob. Agents Chemother. 2007, 51, 3734–3736. [Google Scholar] [CrossRef]
- Sun, J.; Pang, C.; Cheng, X.; Yang, B.; Jin, B.; Jin, L.; Qi, Y.; Sun, Y.; Chen, X.; Liu, W.; et al. Investigation of the Antifungal Activity of the Dicarboximide Fungicide Iprodione against Bipolaris Maydis. Pestic. Biochem. Physiol. 2023, 190. [Google Scholar] [CrossRef]
- Sang, H.; Popko, J.T.; Chang, T.; Jung, G. Molecular Mechanisms Involved in Qualitative and Quantitative Resistance to the Dicarboximide Fungicide Iprodione in Sclerotinia Homoeocarpa Field Isolates. Phytopathology 2017, 107, 198–207. [Google Scholar] [CrossRef]
- Yamaguchi, I.; Fujimura, M. Recent Topics on Action Mechanisms of Fungicides. J. Pestic. Sci. 2005, 30, 67–74. [Google Scholar] [CrossRef]
- Ma, Z.; Qiu, S.; Zhang, D.; Guo, X.; Lu, Y.; Fan, Y.; Chen, X. Design, Synthesis, and Antifungal Activity of Novel Dithiin Tetracarboximide Derivatives as Potential Succinate Dehydrogenase Inhibitors. Pest. Manag. Sci. 2023, 79, 1922–1930. [Google Scholar] [CrossRef]
- Singh, R.N.; Kumar, P.; Kumar, N.; Singh, D.K. Efficacy of binary combination of deltamethrin+MGK-264 on levels of biochemical changes in the snail lymnaea acuminata. Int. J. Pharm. Pharm. Sci 2020, 111–116. [Google Scholar] [CrossRef]
- Chen, L.H.; Wilson, M.E.; Schlagenhauf, P. Prevention of Malaria in Long-Term Travelers. JAMA 2006, 296, 2234. [Google Scholar] [CrossRef]
- Katz, T.M.; Miller, J.H.; Hebert, A.A. Insect Repellents: Historical Perspectives and New Developments. J. Am. Acad. Dermatol. 2008, 58, 865–871. [Google Scholar] [CrossRef]
- Hurley, P.M. Mode of Carcinogenic Action of Pesticides Inducing Thyroid Follicular Cell Tumors in Rodents. Environ. Health Perspect. 1998, 106, 437–445. [Google Scholar] [CrossRef]
- Matsumoto, M.; Furukawa, M.; Kobayashi, K.; Iso, T.; Igarashi, T.; Yamada, T.; Hirose, A. A 28-Day Repeated Oral-Dose Toxicity Study of Insecticide Synergist N-(2-Ethylhexyl)-1-Isopropyl-4-Methylbicyclo [2.2.2] Oct-5-Ene-2,3-Dicarboximide in Rats. Fundam. Toxicol. Sci. 2018, 5, 1–11. [Google Scholar] [CrossRef]
- Colt, J.S.; Cyr, M.J.; Zahm, S.H.; Tobias, G.S.; Hartge, P. Inferring Past Pesticide Exposures: A Matrix of Individual Active Ingredients in Home and Garden Pesticides Used in Past Decades. Environ. Health Perspect. 2007, 115, 248–254. [Google Scholar] [CrossRef]
- Jones, B.A.; Ahrens, M.J.; Yoon, M.H.; Facchetti, A.; Marks, T.J.; Wasielewski, M.R. High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility: Dicyanoperylene-3,4:9,10-Bis(Dicarboximides). Angew. Chem. Int. Ed. 2004, 43, 6363–6366. [Google Scholar] [CrossRef]
- Chen, Z.; Debije, M.G.; Debaerdemaeker, T.; Osswald, P.; Würthner, F. Tetrachloro-Substituted Perylene Bisimide Dyes as Promising n-Type Organic Semiconductors: Studies on Structural, Electrochemical and Charge Transport Properties. ChemPhysChem 2004, 5, 137–140. [Google Scholar] [CrossRef]
- Paterson, A.F.; Savva, A.; Wustoni, S.; Tsetseris, L.; Paulsen, B.D.; Faber, H.; Emwas, A.H.; Chen, X.; Nikiforidis, G.; Hidalgo, T.C.; et al. Water Stable Molecular N-Doping Produces Organic Electrochemical Transistors with High Transconductance and Record Stability. Nat. Commun. 2020, 11, 3004. [Google Scholar] [CrossRef]
- Dai, G.; Chang, J.; Jing, L.; Chi, C. Diacenopentalene Dicarboximides as New N-Type Organic Semiconductors for Field-Effect Transistors. J. Mater. Chem. C Mater. 2016, 4, 8758–8764. [Google Scholar] [CrossRef]
- Hayes, R.T.; Wasielewski, M.R.; Gosztola, D. Ultrafast Photoswitched Charge Transmission through the Bridge Molecule in a Donor-Bridge-Acceptor System. J. Am. Chem. Soc. 2000, 122, 5563–5567. [Google Scholar] [CrossRef]
- Lukas, A.S.; Bushard, P.J.; Wasielewski, M.R. Ultrafast Molecular Logic Gate Based on Optical Switching between Two Long-Lived Radical Ion Pair States. J. Am. Chem. Soc. 2001, 123, 2440–2441. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Navarro, M.J.; Harbuzaru, A.; Martínez-Fernández, M.; Pérez Camero, P.; López Navarrete, J.T.; Ramos, M.M.; Ponce Ortiz, R.; Segura, J.L. Synthesis and Electronic Properties of Nitrogen-Doped π-Extended Polycyclic Aromatic Dicarboximides with Multiple Redox Processes. J. Mater. Chem. C Mater. 2021, 9, 7936–7949. [Google Scholar] [CrossRef]
- Tomizaki, K.-y.; Loewe, R.S.; Kirmaier, C.; Schwartz, J.K.; Retsek, J.L.; Bocian, D.F.; Holten, D.; Lindsey, J.S. Synthesis and Photophysical Properties of Light-Harvesting Arrays Comprised of a Porphyrin Bearing Multiple Perylene-Monoimide Accessory Pigments. J. Org. Chem. 2002, 67, 6519–6534. [Google Scholar] [CrossRef]
- Boobalan, G.; Imran, P.M.; Nagarajan, S. Self-Assembly and Optical Properties of N, N -Bis(4-(1-Benzylpiperidine)) Perylene-3,4,9,10-Tetracarboxylic Diimide. Supramol. Chem. 2012, 24, 238–246. [Google Scholar] [CrossRef]
- Loewe, R.S.; Tomizaki, K.Y.; Youngblood, W.J.; Bo, Z.; Lindsey, J.S. Synthesis of Perylene-Porphyrin Building Blocks and Rod-like Oligomers for Light-Harvesting Applications. J. Mater. Chem. 2002, 12, 3438–3451. [Google Scholar] [CrossRef]
- Abinaya, K.; Karthikaikumar, S.; Sudha, K.; Sundharamurthi, S.; Elangovan, A.; Kalimuthu, P. Synergistic Effect of 9-(Pyrrolidin-1-Yl)Perylene-3,4-Dicarboximide Functionalization of Amino Graphene on Photocatalytic Hydrogen Generation. Sol. Energy Mater. Sol. Cells 2018, 185, 431–438. [Google Scholar] [CrossRef]
- Gregg, B.A.; Cormier, R.A. Doping Molecular Semiconductors: N-Type Doping of a Liquid Crystal Perylene Diimide. J. Am. Chem. Soc. 2001, 123, 7959–7960. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Y.; Li, Z.; Qiao, L.; Xiong, Q.; Deng, L.; Zhang, Z.; Long, R.; Zhou, Q.; Du, Y.; et al. Marked Passivation Effect of Naphthalene-1,8-Dicarboximides in High-Performance Perovskite Solar Cells. Adv. Mater. 2021, 33, 2008405. [Google Scholar] [CrossRef]
- Al Kurdi, K.; McCarthy, D.P.; McMeekin, D.P.; Furer, S.O.; Tremblay, M.H.; Barlow, S.; Bach, U.; Marder, S.R. A Naphthalene Diimide Side-Chain Polymer as an Electron-Extraction Layer for Stable Perovskite Solar Cells. Mater. Chem. Front. 2021, 5, 450–457. [Google Scholar] [CrossRef]
- Angadi, M.A.; Gosztola, D.; Wasielewski, M.R. Organic Light Emitting Diodes Using Poly(Phenylenevinylene) Doped with Perylenediimide Electron Acceptors. Mater. Sci. Eng. B 1999, 63, 191–194. [Google Scholar] [CrossRef]
- Basyouni, M.Z.; Radwan, M.F.; Abdu, M.E.; Spring, A.M. Synthesis, Characterization, and Optical Properties of Carbazole-Functionalized Poly(Norbornene-Dicarboximide) by ROMP. Evergreen 2024, 11, 207–213. [Google Scholar] [CrossRef]
- Huang, Z.; Bin, Z.; Su, R.; Yang, F.; Lan, J.; You, J. Molecular Design of Non-Doped OLEDs Based on a Twisted Heptagonal Acceptor: A Delicate Balance between Rigidity and Rotatability. Angew. Chem. Int. Ed. 2020, 59, 9992–9996. [Google Scholar] [CrossRef]
- Nakaya, K.; Funabiki, K.; Shibata, K.; Matsui, M. Chiral N-Substituted Perylene-3,4-Dicarboximides as Fluorescent Labeling Reagents. Bull. Chem. Soc. Jpn. 2001, 74, 549–554. [Google Scholar] [CrossRef]
- Wu, Z.H.; Zhu, X.; Yang, Q.; Zagranyarski, Y.; Mishra, K.; Strickfaden, H.; Wong, R.P.; Basché, T.; Koynov, K.; Bonn, M.; et al. Near-Infrared Perylenecarboximide Fluorophores for Live-Cell Super-Resolution Imaging. J. Am. Chem. Soc. 2024, 146, 7135–7139. [Google Scholar] [CrossRef]
- Huth, K.; Heek, T.; Achazi, K.; Kühne, C.; Urner, L.H.; Pagel, K.; Dernedde, J.; Haag, R. Noncharged and Charged Monodendronised Perylene Bisimides as Highly Fluorescent Labels and Their Bioconjugates. Chem. Eur. J. 2017, 23, 4849–4862. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, Y.; Deng, W.; Wang, X. The Photoinduced Surface-Relief-Grating Formation Behavior of Side-Chain Azo Polymers with Narrow Mr Distribution. Dye Pigment. 2009, 82, 286–292. [Google Scholar] [CrossRef]
- Spiridon, M.C.; Iliopoulos, K.; Jerca, F.A.; Jerca, V.V.; Vuluga, D.M.; Vasilescu, D.S.; Gindre, D.; Sahraoui, B. Novel Pendant Azobenzene/Polymer Systems for Second Harmonic Generation and Optical Data Storage. Dye. Pigment. 2015, 114, 24–32. [Google Scholar] [CrossRef]
- Zarins, E.; Balodis, K.; Ruduss, A.; Kokars, V.; Ozols, A.; Augustovs, P.; Saharovs, D. Molecular Glasses of Azobenzene for Holographic Data Storage Applications. Opt. Mater. 2018, 79, 45–52. [Google Scholar] [CrossRef]
- Sun, B.; Ngai, J.H.L.; Zhou, G.; Zhou, Y.; Li, Y. Voltage-Controlled Conversion from CDS to MDS in an Azobenzene-Based Organic Memristor for Information Storage and Logic Operations. ACS Appl. Mater. Interfaces 2022, 14, 41304–41315. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T. Rewritable High-Density Optical Recording on Azobenzene Polymer Thin Film. Opt. Rev. 2005, 12, 126–129. [Google Scholar] [CrossRef]
- Xie, S.; Natansohn, A.; Rochon, P. Reviews Recent Developments in Aromatic Azo Polymers Research. Chem. Mater. 1993, 5, 403. [Google Scholar] [CrossRef]
- Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002, 102, 4139–4175. [Google Scholar] [CrossRef] [PubMed]
- Manea-Saghin, A.M.; Ion, A.E.; Kajzar, F.; Nica, S. Second Order Nonlinear Optical Properties of Poled Films Containing Azobenzenes Tailored with Azulen-1-Yl-Pyridine. Heliyon 2023, 9, e17360. [Google Scholar] [CrossRef]
- Cuétara-Guadarrama, F.; Vonlanthen, M.; Sorroza-Martínez, K.; González-Méndez, I.; Rivera, E. Photoisomerizable Azobenzene Dyes Incorporated into Polymers and Dendrimers. Influence of the Molecular Aggregation on the Nonlinear Optical Properties. Dye Pigment. 2021, 194, 109551. [Google Scholar] [CrossRef]
- Tonnelé, C.; Champagne, B.; Muccioli, L.; Castet, F. Nonlinear Optical Contrast in Azobenzene-Based Self-Assembled Monolayers. Chem. Mater. 2019, 31, 6759–6769. [Google Scholar] [CrossRef]
- Iftime, G.; Lagugné Labarthet, F.; Natansohn, A.; Rochon, P.; Murti, K. Main Chain-Containing Azo-Tetraphenyldiaminobiphenyl Photorefractive Polymers. Chem. Mater. 2002, 14, 168–174. [Google Scholar] [CrossRef]
- Tsutsumi, N. Recent Advances in Photorefractive and Photoactive Polymers for Holographic Applications. Polym. Int. 2017, 62, 167–174. [Google Scholar] [CrossRef]
- Airinei, A.; Fifere, N.; Homocianu, M.; Gaina, C.; Gaina, V.; Simionescu, B.C. Optical Properties of Some New Azo Photoisomerizable Bismaleimide Derivatives. Int. J. Mol. Sci. 2011, 12, 6176–6193. [Google Scholar] [CrossRef]
- Kienzler, M.A.; Reiner, A.; Trautman, E.; Yoo, S.; Trauner, D.; Isacoff, E.Y. A Red-Shifted, Fast-Relaxing Azobenzene Photoswitch for Visible Light Control of an Ionotropic Glutamate Receptor. J. Am. Chem. Soc. 2013, 135, 17683–17686. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Dong, M.; Collins, C.V.; Babalhavaeji, A.; Woolley, G.A. A Red-Light Azobenzene Di-Maleimide Photoswitch: Pros and Cons. Adv. Opt. Mater. 2016, 4, 1402–1409. [Google Scholar] [CrossRef]
- Hien, L.T.; Schierling, B.; Ryazanova, A.Y.; Zatsepin, T.S.; Volkov, E.M.; Kubareva, E.A.; Velichko, T.I.; Pingoud, A.; Oretskaya, T.S. New Azobenzene Derivatives for Directed Modification of Proteins. Russ. J. Bioorg Chem. 2009, 35, 549–555. [Google Scholar] [CrossRef]
- Venton, B.J.; Cao, Q. Fundamentals of Fast-Scan Cyclic Voltammetry for Dopamine Detection. Analyst 2020, 145, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Puthongkham, P.; Venton, B.J. Recent Advances in Fast-Scan Cyclic Voltammetry. Analyst 2020, 145, 1087–1102. [Google Scholar] [CrossRef]
- Roberts, J.G.; Sombers, L.A. Fast-Scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond. Anal. Chem. 2018, 90, 490–504. [Google Scholar] [CrossRef] [PubMed]
- Alatraktchi, F.; Breum Andersen, S.; Krogh Johansen, H.; Molin, S.; Svendsen, W. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry. Sensors 2016, 16, 408. [Google Scholar] [CrossRef]
- Espinoza, E.M.; Clark, J.A.; Soliman, J.; Derr, J.B.; Morales, M.; Vullev, V.I. Practical Aspects of Cyclic Voltammetry: How to Estimate Reduction Potentials When Irreversibility Prevails. J. Electrochem. Soc. 2019, 166, H3175–H3187. [Google Scholar] [CrossRef]
- Petkovska, S.; Gulaboski, R. Theoretical Analysis of a Surface Catalytic Mechanism Associated with Reversible Chemical Reaction Under Conditions of Cyclic Staircase Voltammetry. Electroanalysis 2020, 32, 992–1004. [Google Scholar] [CrossRef]
- Schindler, S.; Bechtold, T. Mechanistic Insights into the Electrochemical Oxidation of Dopamine by Cyclic Voltammetry. J. Electroanal. Chem. 2019, 836, 94–101. [Google Scholar] [CrossRef]
- Sandford, C.; Edwards, M.A.; Klunder, K.J.; Hickey, D.P.; Li, M.; Barman, K.; Sigman, M.S.; White, H.S.; Minteer, S.D. A Synthetic Chemist’s Guide to Electroanalytical Tools for Studying Reaction Mechanisms. Chem. Sci. 2019, 10, 6404–6422. [Google Scholar] [CrossRef] [PubMed]
- Deshaies, S.; Garcia, L.; Veran, F.; Mouls, L.; Saucier, C.; Garcia, F. Red Wine Oxidation Characterization by Accelerated Ageing Tests and Cyclic Voltammetry. Antioxidants 2021, 10, 1943. [Google Scholar] [CrossRef] [PubMed]
- José Jara-Palacios, M.; Luisa Escudero-Gilete, M.; Miguel Hernández-Hierro, J.; Heredia, F.J.; Hernanz, D. Cyclic Voltammetry to Evaluate the Antioxidant Potential in Winemaking By-Products. Talanta 2017, 165, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Bringans, C.; Hickey, A.J.R.; Windsor, J.A.; Kilmartin, P.A.; Phillips, A.R.J. Cyclic Voltammetry in Biological Samples: A Systematic Review of Methods and Techniques Applicable to Clinical Settings. Signals 2021, 2, 138–158. [Google Scholar] [CrossRef]
- Mitrasov, Y.N.; Avryuskaya, A.A.; Kondrat’eva, O.V. Condensation of Nitro- and Amino-Substituted Phenylmaleimides with Furfuryl Alcohol. Russ. J. Gen. Chem. 2015, 85, 75–78. [Google Scholar] [CrossRef]
- Daeffler, C.S.; Miyake, G.M.; Li, J.; Grubbs, R.H. Partial Kinetic Resolution of Oxanorbornenes by Ring-Opening Metathesis Polymerization with a Chiral Ruthenium Initiator. ACS Macro Lett. 2014, 3, 102–104. [Google Scholar] [CrossRef]
- France, M.B.; Alty, L.T.; Earl, T.M. Synthesis of a 7-Oxanorbornene Monomer: A Two-Step Sequence Preparation for the Organic Laboratory. J. Chem. Educ. 1999, 76, 659. [Google Scholar] [CrossRef]
- Kamezawa, N.; Sakashita, K.; Hayamizu, K. Nuclear Magnetic Resonance Studies of 5,6-dicarboxy-2-norbornene Derivatives. Org. Magn. Reson. 1969, 1, 405–414. [Google Scholar] [CrossRef]
- Vasudevan, D.; Wendt, H. Electroreduction of Oxygen in Aprotic Media. J. Electroanal. Chem. 1995, 392, 69–74. [Google Scholar] [CrossRef]
- Sun, K.; Xu, Y.; Dumur, F.; Morlet-Savary, F.; Chen, H.; Dietlin, C.; Graff, B.; Lalevée, J.; Xiao, P. In Silico Rational Design by Molecular Modeling of New Ketones as Photoinitiators in Three-Component Photoinitiating Systems: Application in 3D Printing. Polym. Chem. 2020, 11, 2230–2242. [Google Scholar] [CrossRef]
- Sharma, L.R.; Manchanda, A.K.; Singh, G.; Verma, R.S. Cyclic Voltammetry of Aromatic Amines in Aqueous and Non-Aqueous Media. Electrochim. Acta 1982, 27, 223–233. [Google Scholar] [CrossRef]
- Akbulut, U.; Hacioǧlu, B. Electronitiated Polymerization of Maleic Anhydride by Direct Electron Transfer. J. Polym. Sci. A Polym. Chem. 1991, 29, 219–224. [Google Scholar] [CrossRef]
- Sadatnabi, A.; Mohamadighader, N.; Nematollahi, D. Convergent Paired Electrochemical Synthesis of Azoxy and Azo Compounds: An Insight into the Reaction Mechanism. Org. Lett. 2021, 23, 6488–6493. [Google Scholar] [CrossRef] [PubMed]
Compound | Yield % | M.m (g/mol) | Molecular Formula | Color | m.p. °C | ν (cm−1) | ||
---|---|---|---|---|---|---|---|---|
-N=N- | N-H | C=O | ||||||
1a | 81 | 267.1 | C16H17N3O | reddish | 100–102 | 1487 | 3209, 3357 | 1668 |
1b | 78 | 267.1 | C16H17N3O | orange | 98–100 | 1481 | 3348, 3444 | 1672 |
1c | 74 | 225.3 | C14H15N3 | orange | 55–56 | 1488 | 3205, 3342 | - |
1d | 96 | 270.3 | C14H14N4O2 | dark red | 159–161 | 1508 | 3228, 3338 | - |
1e | 88 | 255.3 | C15H17N3O | red | 87–88 | 1498 | 3213, 3369 | - |
1f | 86 | 269.3 | C15H15N3O2 | bright red | 167–169 | 1498 | 3207, 3367 | 1681 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venegas-Villalvazo, D.F.; Figueroa-Hernández, D.A.; Pineda-Contreras, A.; Flores-Alvarez, J.M.; García-Ortega, H.; González-González, J.S. Diels–Alder Cycloaddition of N-Azobenzene Maleimides with Furan and Electrochemical Study of Redox Reactions. Reactions 2024, 5, 928-946. https://doi.org/10.3390/reactions5040049
Venegas-Villalvazo DF, Figueroa-Hernández DA, Pineda-Contreras A, Flores-Alvarez JM, García-Ortega H, González-González JS. Diels–Alder Cycloaddition of N-Azobenzene Maleimides with Furan and Electrochemical Study of Redox Reactions. Reactions. 2024; 5(4):928-946. https://doi.org/10.3390/reactions5040049
Chicago/Turabian StyleVenegas-Villalvazo, David Fernando, David Abraham Figueroa-Hernández, Armando Pineda-Contreras, José Manuel Flores-Alvarez, Héctor García-Ortega, and Juan Saulo González-González. 2024. "Diels–Alder Cycloaddition of N-Azobenzene Maleimides with Furan and Electrochemical Study of Redox Reactions" Reactions 5, no. 4: 928-946. https://doi.org/10.3390/reactions5040049
APA StyleVenegas-Villalvazo, D. F., Figueroa-Hernández, D. A., Pineda-Contreras, A., Flores-Alvarez, J. M., García-Ortega, H., & González-González, J. S. (2024). Diels–Alder Cycloaddition of N-Azobenzene Maleimides with Furan and Electrochemical Study of Redox Reactions. Reactions, 5(4), 928-946. https://doi.org/10.3390/reactions5040049