Previous Issue
Volume 5, September
 
 

Reactions, Volume 5, Issue 4 (December 2024) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 3924 KiB  
Article
Synthesis of Nanostructured Mg2Ni for Hydrogen Storage by Mechanical Alloying via High-Pressure Torsion
by Edgar Ignacio López Gómez, Joaquín Gonzalez, Jorge M. Cubero-Sesin and Jacques Huot
Reactions 2024, 5(4), 651-663; https://doi.org/10.3390/reactions5040033 - 24 Sep 2024
Viewed by 294
Abstract
Mg2Ni is a highly promising candidate for solid-state hydrogen storage due to its high storage capacity. However, its synthesis is challenging due to the high melting point of Ni (1455 °C) and the boiling point of Mg (1090 °C). In this [...] Read more.
Mg2Ni is a highly promising candidate for solid-state hydrogen storage due to its high storage capacity. However, its synthesis is challenging due to the high melting point of Ni (1455 °C) and the boiling point of Mg (1090 °C). In this study, elemental powder mixtures of Mg and 30 at% Ni were processed by high-pressure torsion (HPT) to synthesize the Mg2Ni intermetallic compound through mechanical methods. The formation of 11 wt% of Mg2Ni after 50 turns of HPT was confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS), reaching a maximum of 59 wt% after 100 turns. Rietveld refinement confirmed a nanocrystalline size for the Mg2Ni phase synthesized via HPT. Hydrogenation tests showed that the Mg-Ni synthesized by HPT can absorb hydrogen at 350 °C even after several weeks of air exposure. Furthermore, a maximum absorption capacity of 3.8 wt% was reached after 20 h of hydrogen exposure for the sample with 100 turns. This capacity is close to the theoretical capacity of 3.9 wt% for this composition. The results confirm that combining HPT with subsequent heat treatment is an efficient strategy to increase the Mg2Ni fraction after HPT processing. Full article
(This article belongs to the Special Issue Hydrogen Production and Storage, 2nd Edition)
Show Figures

Figure 1

Previous Issue
Back to TopTop