Studies on a New 1,3,4-Oxadiazole Bixin Dimer for Potential Application in Dye-Sensitized Solar Cells
Abstract
1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. General
3.2. Bixin Extraction (Dye 1)
3.3. Synthesis of 1,3,4-Oxadiazole Bixin Diester Hybrid (Dye 2)
3.4. Synthesis of 1,3,4-Oxadiazole Bixin Diacid Hybrid (Dye 3)
3.5. Adsorption
3.6. Photostability
3.7. Electrochemistry
3.8. Computational Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Morgade, M.S.; Pellejà, L.; Torres, T.; Palomares, E. Ti (IV) phthalocyanines for dye sensitized solar cells. J. Porphyr. Phthalocyanines 2013, 17, 814–820. [Google Scholar] [CrossRef]
- Fernandes, S.S.M.; Castro, M.C.R.; Pereira, A.I.; Mendes, A.; Serpa, C.; Pina, J.; Justino, L.L.G.; Burrows, H.D.; Raposo, M.M.M. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push–Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells. ACS Omega 2017, 2, 9268–9279. [Google Scholar] [CrossRef] [PubMed]
- Grätzel, M. Recent Advances in Sensitized Mesoscopic Solar Cells. Acc. Chem. Res. 2009, 42, 1788–1798. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Yang, X. A recent (2009–2021) perspective on sustainable color and textile coloration using natural plant resources. Heliyon 2022, 8, e10979. [Google Scholar] [CrossRef] [PubMed]
- Hagan, E.; Poulin, J. Statistics of the early synthetic dye industry. Herit. Sci. 2021, 9, 33. [Google Scholar] [CrossRef]
- Pizzicato, B.; Pacifico, S.; Cayuela, D.; Mijas, G.; Riba-Moliner, M. Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules 2023, 28, 5954. [Google Scholar] [CrossRef]
- Huamán, A.A.; Celestino, M.R.; Quintana, M.E. Theoretical and experimental study of solar cells based on nanostructured films of TiO2 sensitized with natural dyes extracted from Zea mays and Bixa orellana. RSC Adv. 2021, 11, 9086–9097. [Google Scholar] [CrossRef]
- Rahmalia, W.; Silalahi, I.H.; Usman, T.; Fabre, J.-F.; Mouloungui, Z.; Zissis, G. Stability, reusability, and equivalent circuit of TiO2/treated metakaolinite-based dye-sensitized solar cell: Effect of illumination intensity on Voc and Isc values. Mater. Renew. Sustain. Energy 2021, 10, 10. [Google Scholar] [CrossRef]
- Carvalho, I.C.; Barbosa, M.L.; Costa, M.J.S.; Longo, E.; Cavalcante, L.S.; Viana, V.G.F.; Santos, R.S. TiO2-based dye-sensitized solar cells prepared with bixin and norbixin natural dyes: Effect of 2,2′-bipyridine additive on the current and voltage. Optik 2020, 218, 165236. [Google Scholar] [CrossRef]
- Rahmalia, W.; Fabre, J.-F.; Usman, T.; Mouloungui, Z. Aprotic solvents effect on the UV–visible absorption spectra of bixin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 131, 455–460. [Google Scholar] [CrossRef]
- Pitasse-Santos, P.; Sueth-Santiago, V.; Lima, M. 1,2,4- and 1,3,4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents. J. Braz. Chem. Soc. 2017, 29, 435–456. [Google Scholar] [CrossRef]
- Dick, A.; Cocklin, S. Bioisosteric Replacement as a Tool in Anti-HIV Drug Design. Pharmaceuticals 2020, 13, 36. [Google Scholar] [CrossRef]
- Kumar, D.; Aggarwal, N.; Deep, A.; Kumar, H.; Chopra, H.; Marwaha, R.K.; Cavalu, S. An Understanding of Mechanism-Based Approaches for 1,3,4-Oxadiazole Scaffolds as Cytotoxic Agents and Enzyme Inhibitors. Pharmaceuticals 2023, 16, 254. [Google Scholar] [CrossRef]
- Bolton, O.; Kim, J. Design principles to tune the optical properties of 1,3,4-oxadiazole-containing molecules. J. Mater. Chem. 2007, 17, 1981. [Google Scholar] [CrossRef]
- Najare, M.S.; Patil, M.K.; Nadaf, A.A.; Mantur, S.; Inamdar, S.R.; Khazi, I.A.M. Synthesis, characterization and photophysical properties of a new class of pyrene substituted 1,3,4-oxadiazole derivatives. Opt. Mater. 2019, 88, 256–265. [Google Scholar] [CrossRef]
- Maniyar, A.K.; Nadaf, Y.F.; Khasim, S.; Hamdallah, T.A.; Murugendrappa, M.V. Photophysical studies on donor-p-acceptor substituted 1,3,4-oxadiazole derivatives for optoelectronic application: Experimental and theoretical analysis. J. Opt. 2024. [Google Scholar] [CrossRef]
- Naik, L.; Khazi, I.A.M.; Malimath, G.H. Studies on photosensitization of TiO2 nanoparticles by novel 1,3,4-oxadiazoles derivatives. Optik 2019, 183, 732–741. [Google Scholar] [CrossRef]
- Paun, A.; Hadade, N.D.; Paraschivescu, C.C.; Matache, M. 1,3,4-Oxadiazoles as luminescent materials for organic light emitting diodes via cross-coupling reactions. J. Mater. Chem. C 2016, 4, 8596–8610. [Google Scholar] [CrossRef]
- Taham, T.; Cabral, F.A.; Barrozo, M.A.S. Extraction of bixin from annatto seeds using combined technologies. J. Supercrit. Fluids 2015, 100, 175–183. [Google Scholar] [CrossRef]
- Jandl, B.; Zheng, R.; Muttenthaler, M.; Baell, J. Novel Diacyl-hydrazide Compounds as Potential Therapeutics for Visceral Leishmaniasis. ACS Omega 2024, 9, 37170–37182. [Google Scholar] [CrossRef]
- Lamani, R.S.; Nagendra, G.; Sureshbabu, V.V. A facile synthesis of N-Z/Boc-protected 1,3,4-oxadiazole-based peptidomimetics employing peptidyl thiosemicarbazides. Tetrahedron Lett. 2010, 51, 4705–4709. [Google Scholar] [CrossRef]
- Dolman, S.J.; Gosselin, F.; O’Shea, P.D.; Davies, I.W. Superior Reactivity of Thiosemicarbazides in the Synthesis of 2-Amino-1,3,4-oxadiazoles. J. Org. Chem. 2006, 71, 9548–9551. [Google Scholar] [CrossRef]
- Scotter, M. The chemistry and analysis of annatto food colouring: A review. Food Addit. Contam. Part A 2009, 26, 1123–1145. [Google Scholar] [CrossRef]
- Lima, I.T.; da Silva Crispim, J.; de Sá Neto, O.P.; de Sousa Júnior, R.T.; Ribeiro Júnior, L.A.; da Silva Filho, D.A. Organic Electronics from Nature: Computational Investigation of the Electronic and Optical Properties of the Isomers of Bixin and Norbixin Present in the Achiote Seeds. Molecules 2022, 27, 2138. [Google Scholar] [CrossRef]
- Malik, P.K. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: A case study of Acid Yellow 36. Dyes Pigment. 2003, 56, 239–249. [Google Scholar] [CrossRef]
- Yu, H.; Irie, H.; Hashimoto, K. Conduction Band Energy Level Control of Titanium Dioxide: Toward an Efficient Visible-Light-Sensitive Photocatalyst. J. Am. Chem. Soc. 2010, 132, 6898–6899. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; López, C.S.; Vinu Mohan, A.M.; Yin, L.; Kumar, R.; Wang, J. All-printed magnetically self-healing electrochemical devices. Sci. Adv. 2016, 2, e1601465. [Google Scholar] [CrossRef]
- REITH, J.F.; GIELEN, J.W. Properties of bixin and norbixin and the composition of annatto extracts. J. Food Sci. 1971, 36, 861–864. [Google Scholar] [CrossRef]
- Ramos-Hernández, R.; Calvo, F.D.; Pérez-Gutiérrez, E.; Percino, M.J. Large area small-molecule thin films deposited by the doctor blade technique implemented with computer numerical control machine. Thin Solid Film. 2023, 771, 139787. [Google Scholar] [CrossRef]
- Monteiro, C.J.P.; Jesus, P.; Davies, M.L.; Ferreira, D.; Arnaut, L.G.; Gallardo, I.; Pereira, M.M.; Serpa, C. Control of the distance between porphyrin sensitizers and the TiO2 surface in solar cells by designed anchoring groups. J. Mol. Struct. 2019, 1196, 444–454. [Google Scholar] [CrossRef]
- Fernandes, S.S.M.; Belsley, M.; Pereira, A.I.; Ivanou, D.; Mendes, A.; Justino, L.L.G.; Burrows, H.D.; Raposo, M.M.M. Push–Pull N,N-Diphenylhydrazones Bearing Bithiophene or Thienothiophene Spacers as Nonlinear Optical Second Harmonic Generators and as Photosensitizers for Nanocrystalline TiO2 Dye-Sensitized Solar Cells. ACS Omega 2018, 3, 12893–12904. [Google Scholar] [CrossRef]
- Rodrigues, A.C.B.; Eckert, A.; Pina, J.; Scherf, U.; Seixas de Melo, J.S. Polymeric near infrared emitters with bay-annulated indigo moieties. Mater. Adv. 2021, 2, 3736–3743. [Google Scholar] [CrossRef]
- Chaves, O.A.; Sueth-Santiago, V.; Pinto, D.C.d.A.; Netto-Ferreira, J.C.; Decote-Ricardo, D.; Lima, M.E.F. 2-Chloro-4,6-bis{(E)-3-methoxy-4-[(4-methoxybenzyl)oxy]styryl}pyrimidine: Synthesis, Spectroscopic and Computational Evaluation. Molbank 2021, 2021, M1276. [Google Scholar] [CrossRef]
Dyes | |||
---|---|---|---|
Order | Parameters | 1 | 3 |
Pseudo- first | q1 | 0.422 ± 0.002 | 0.398 ± 0.002 |
k1 | 0.310 ± 0.003 | 0.655 ± 0.034 | |
R2 | 0.9997 | 0.9994 | |
Pseudo- second | q2 | 0.544 ± 0.017 | 0.328 ± 0.008 |
k2 | 0.0470 ± 0.002 | 0.0423 ± 0.0004 | |
R2 | 0.9919 | 0.9856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velez, A.S.M.M.; Pinheiro, D.; Serpa, C.; Castro, R.N.; Lima, M.E.F.d.; Chaves, O.A. Studies on a New 1,3,4-Oxadiazole Bixin Dimer for Potential Application in Dye-Sensitized Solar Cells. Reactions 2025, 6, 39. https://doi.org/10.3390/reactions6030039
Velez ASMM, Pinheiro D, Serpa C, Castro RN, Lima MEFd, Chaves OA. Studies on a New 1,3,4-Oxadiazole Bixin Dimer for Potential Application in Dye-Sensitized Solar Cells. Reactions. 2025; 6(3):39. https://doi.org/10.3390/reactions6030039
Chicago/Turabian StyleVelez, Afonso Santine M. M., Daniela Pinheiro, Carlos Serpa, Rosane Nora Castro, Marco Edilson Freire de Lima, and Otávio Augusto Chaves. 2025. "Studies on a New 1,3,4-Oxadiazole Bixin Dimer for Potential Application in Dye-Sensitized Solar Cells" Reactions 6, no. 3: 39. https://doi.org/10.3390/reactions6030039
APA StyleVelez, A. S. M. M., Pinheiro, D., Serpa, C., Castro, R. N., Lima, M. E. F. d., & Chaves, O. A. (2025). Studies on a New 1,3,4-Oxadiazole Bixin Dimer for Potential Application in Dye-Sensitized Solar Cells. Reactions, 6(3), 39. https://doi.org/10.3390/reactions6030039