Previous Issue
Volume 6, June
 
 

Reactions, Volume 6, Issue 3 (September 2025) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 2133 KB  
Article
Studies on the Radziszewski Reaction—Synthesis and Characterization of New Imidazole Derivatives
by Leandro A. G. Jesus, Adinaldo L. M. P. Silva, Rosane A. S. San Gil, Leandro B. Borré, Luiz C. Bertolino and Ricardo S. S. Teixeira
Reactions 2025, 6(3), 48; https://doi.org/10.3390/reactions6030048 - 5 Sep 2025
Viewed by 245
Abstract
Two new long-chain N-alkyl imidazole derivatives, 2-(1-octadecyl-imidazol-2-yl)pyridine and 2-(furan-2-yl)-1-(octadecane-1-yl)-1H-imidazole, were synthesized via the Radziszewski reaction followed by N-alkylation. This is the first report of furan-imidazole obtained by this route using furfuraldehyde as a renewable biomass-derived precursor. FTIR, 1D/2D solution NMR, and [...] Read more.
Two new long-chain N-alkyl imidazole derivatives, 2-(1-octadecyl-imidazol-2-yl)pyridine and 2-(furan-2-yl)-1-(octadecane-1-yl)-1H-imidazole, were synthesized via the Radziszewski reaction followed by N-alkylation. This is the first report of furan-imidazole obtained by this route using furfuraldehyde as a renewable biomass-derived precursor. FTIR, 1D/2D solution NMR, and HRMS confirmed the structural elucidation, while XRD and solid-state 13C CPMAS NMR corroborated the crystal structures of the precursors. Notably, previously misassigned 1H and 13C chemical shifts reported in the literature for pyridine and furan-imidazole precursors were corrected. Furthermore, 13C CPMAS NMR spectra of those precursors are reported here for the first time. These findings expand the scope of the Radziszewski reaction and provide new insights into the structural characterization of imidazole-based systems. Full article
Show Figures

Figure 1

18 pages, 991 KB  
Article
Kerlinic Acid Preserves the Furan Moiety in Regio- and Diastereoselective Oxidations Giving Beta-Lactones and Oxirane Derivatives
by Eva E. Soto-Guzmán, Antonio J. Oliveros-Ortiz, Armando Talavera-Alemán, Mónica A. Calderón-Oropeza, Gabriela Rodríguez-García, Brenda Y. Bedolla-García, Mario A. Gómez-Hurtado, Carlos M. Cerda-García-Rojas, Jérôme Marrot, Christine Thomassigny and Rosa E. del Río
Reactions 2025, 6(3), 47; https://doi.org/10.3390/reactions6030047 - 2 Sep 2025
Viewed by 307
Abstract
Strategic scaffolds in molecules increase the possibility of obtaining derivatives with potential uses in scientific and industrial areas. The regio- and stereoselective reactions can be considered to gain these tactical motifs. Natural diterpenes are key molecules for reaching such aims. Among this class [...] Read more.
Strategic scaffolds in molecules increase the possibility of obtaining derivatives with potential uses in scientific and industrial areas. The regio- and stereoselective reactions can be considered to gain these tactical motifs. Natural diterpenes are key molecules for reaching such aims. Among this class of compounds, neo-clerodanes are highlighted by the presence of a furan moiety in their chemical structure. This work describes a regio- and stereoselective strategy to gain beta-lactone and oxirane derivatives from kerlinic acid (1) when the β,γ-unsaturated carboxylic acid system is oxidized, preserving the furan moiety. Oxidation of 1 yielded salviaolide (2), suggesting regio- and stereoselective means. A reaction mechanism was proposed when oxidation of the acetate (1a), benzoate (1b), and methyl ester (1c) derivatives from 1 were gained. The obtention of the epoxide derivative 3, kernolide (4), and kernolide epoxide (5) also supported the reaction mechanism. X-ray diffraction analysis of 3, Karplus-type analyses, and DFT calculations from hypothetical intermediates revealed conformational preferences that guide the regioselectivity. The stereoselectivity was attributed to the natural origin of 1. All compounds were characterized by their physical and spectroscopical data. These results suggest the feasibility of promoting regioselective oxidation on neo-clerodane compounds, preserving the furan moiety. Full article
Show Figures

Graphical abstract

20 pages, 1656 KB  
Article
An Iron-Dependent Alcohol Dehydrogenase Is Involved in Ethanol Metabolism of Aromatoleum aromaticum
by Yvonne Gemmecker, Iris Schall, Andreas Seubert, Nicole Paczia and Johann Heider
Reactions 2025, 6(3), 46; https://doi.org/10.3390/reactions6030046 - 1 Sep 2025
Viewed by 160
Abstract
The NAD+-dependent alcohol dehydrogenase AdhB from Aromatoleum aromaticum EbN1 belongs to family III of Fe-dependent alcohol dehydrogenases. It was recombinantly produced in Escherichia coli and biochemically characterized, showing activity only with ethanol or n-propanol. The enzyme contained substoichiometric amounts of [...] Read more.
The NAD+-dependent alcohol dehydrogenase AdhB from Aromatoleum aromaticum EbN1 belongs to family III of Fe-dependent alcohol dehydrogenases. It was recombinantly produced in Escherichia coli and biochemically characterized, showing activity only with ethanol or n-propanol. The enzyme contained substoichiometric amounts of Fe, Zn, and Ni and a yet unidentified nucleotide-like cofactor, as indicated by mass spectrometric data. As suggested by its narrow substrate spectrum and complementation of a related species to growth on ethanol, the most probable physiological function of AdhB is the oxidation of short aliphatic alcohols such as ethanol or n-propanol. The enzyme also exhibits a very high tolerance to ethanol and n-propanol, showing moderately substrate-inhibited Michaelis–Menten kinetics up to concentrations of 20% (v/v). AdhB can also be applied biotechnologically to convert acetate to ethanol in coupled enzyme assays with the tungsten enzyme aldehyde oxidoreductase, showing activity with either another aldehyde or pre-reduced benzyl viologen as electron donors. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Graphical abstract

21 pages, 5387 KB  
Article
Cu@Phosphorene as a Promising Catalyst for CO2 to Formic Acid Conversion: A Mechanistic DFT Approach
by Zonia Bibi, Muhammad Ajmal, Shahaab Jilani, Aqsa Kamran, Fatima Yaseen, Muhammad Abid Zia, Ahmed Lakhani and Muhammad Ali Hashmi
Reactions 2025, 6(3), 45; https://doi.org/10.3390/reactions6030045 - 23 Aug 2025
Viewed by 311
Abstract
Carbon dioxide is naturally present in the Earth’s atmosphere and plays a role in regulating and balancing the planet’s temperature. However, due to various human activities, the amount of carbon dioxide is increasing beyond safe limits, disrupting the Earth’s natural temperature regulation system. [...] Read more.
Carbon dioxide is naturally present in the Earth’s atmosphere and plays a role in regulating and balancing the planet’s temperature. However, due to various human activities, the amount of carbon dioxide is increasing beyond safe limits, disrupting the Earth’s natural temperature regulation system. Today, CO2 is the most prevalent greenhouse gas; as its concentration rises, significant climate change occurs. Therefore, there is a need to utilize anthropogenically released carbon dioxide in valuable fuels, such as formic acid (HCOOH). Single-atom catalysts are widely used, where a single metal atom is anchored on a surface to catalyze chemical reactions. In this study, we investigated the potential of Cu@Phosphorene as a single-atom catalyst (SAC) for CO2 reduction using quantum chemical calculations. All computations for Cu@Phosphorene were performed using density functional theory (DFT). Mechanistic studies were conducted for both bimolecular and termolecular pathways. The bimolecular mechanism involves one CO2 and one H2 molecule adsorbing on the surface, while the termolecular mechanism involves two CO2 molecules adsorbing first, followed by H2. Results indicate that the termolecular mechanism is preferred for formic acid formation due to its lower activation energy. Further analysis included charge transfer assessment via NBO, and interactions between the substrate, phosphorene, and the Cu atom were confirmed using quantum theory of atoms in molecules (QTAIM) and non-covalent interactions (NCI) analysis. Ab initio molecular dynamics (AIMD) calculations examined the temperature stability of the catalytic complex. Overall, Cu@Phosphorene appears to be an effective catalyst for converting CO2 to formic acid and remains stable at higher temperatures, supporting efforts to mitigate climate change. Full article
Show Figures

Figure 1

11 pages, 3946 KB  
Article
Electroreduction of Nitrogen on Pd, Rh, and PdRh Catalysts: An Online Mass Spectrometry Study
by Rodrigo Gomes de Araujo, Caio Eduardo Canin de França and Joelma Perez
Reactions 2025, 6(3), 44; https://doi.org/10.3390/reactions6030044 - 12 Aug 2025
Viewed by 327
Abstract
The nitrogen electroreduction reaction (NRR) has emerged as a promising and sustainable alternative to the Haber–Bosch process for NH3 production. This study investigated the NRR in alkaline medium using Pd/C, Rh/C, and PdRh/C electrocatalysts, employing online electrochemical mass spectrometry (OLEMS) for gaseous-product [...] Read more.
The nitrogen electroreduction reaction (NRR) has emerged as a promising and sustainable alternative to the Haber–Bosch process for NH3 production. This study investigated the NRR in alkaline medium using Pd/C, Rh/C, and PdRh/C electrocatalysts, employing online electrochemical mass spectrometry (OLEMS) for gaseous-product detection and ultraviolet–visible spectroscopy to confirm NH3 formation. To our knowledge, no previous reports have simultaneously detected H2, N2H, and N2H2 intermediates and monitored N2 consumption as a function of applied potential for Pd and Rh catalysts. The bimetallic PdRh/C catalyst showed superior NRR performance compared with the monometallic catalysts, exhibiting higher faradaic charges, more pronounced generation of nitrogen intermediates, and selectivity for NH3. This work provides key insights into the NRR mechanisms and underlines the strategic importance of the bimetallic catalyst design for more efficient, sustainable electrochemical NH3 synthesis. Full article
Show Figures

Figure 1

3 pages, 163 KB  
Editorial
Editorial for the Special Issue on Cycloaddition Reactions at the Beginning of the Third Millennium
by Fabrizio Machetti, Donatella Giomi and Alberto Brandi
Reactions 2025, 6(3), 43; https://doi.org/10.3390/reactions6030043 - 10 Aug 2025
Viewed by 244
Abstract
Cycloadditions are among the most efficient chemical processes because they combine atom economy and high levels of selectivity—particularly regio- and stereoselectivity—with the ability to generate molecular complexity in a single step [...] Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
15 pages, 1342 KB  
Article
Synthesis of 6-Arylaminoflavones via Buchwald–Hartwig Amination and Its Anti-Tumor Investigation
by Karinne E. Prado, Micael R. Cunha, Gabriela A. Moreira, Karoline B. Waitman, Neuza M. A. Hassimotto, Katlin B. Massirer, Monica F. Z. J. Toledo and Roberto Parise-Filho
Reactions 2025, 6(3), 42; https://doi.org/10.3390/reactions6030042 - 31 Jul 2025
Viewed by 475
Abstract
A new series of 6-arylaminoflavones was synthesized via the Buchwald–Hartwig cross-coupling reaction, aiming to functionalize the flavone core efficiently. Reaction optimization revealed that Pd2(dba)3/XantPhos with Cs2CO3 in toluene provided the best yields, with isolated yields ranging [...] Read more.
A new series of 6-arylaminoflavones was synthesized via the Buchwald–Hartwig cross-coupling reaction, aiming to functionalize the flavone core efficiently. Reaction optimization revealed that Pd2(dba)3/XantPhos with Cs2CO3 in toluene provided the best yields, with isolated yields ranging from 8% to 95%, depending on the arylamine structure. Steric hindrance and electron-withdrawing groups at the arylamine ring impacted the reaction outcomes. Cytotoxicity assays in different human cancer cell lines indicated that substitution patterns at both the arylamine and B-rings strongly impacted biological activity. In particular, compounds bearing a 3,4-dimethoxy substitution at the B-ring and a trifluoromethyl (13c) or chlorine (13g) group at the aniline moiety exhibited enhanced cytotoxicity. These findings provide insights into the structure–activity relationship of 6-arylaminoflavones while contributing to the development of synthetic methodologies for functionalized flavones. Full article
(This article belongs to the Special Issue Advances in Organic Synthesis for Drug Discovery and Development)
Show Figures

Graphical abstract

13 pages, 1111 KB  
Communication
Renewable Solvents for Diels–Alder/Cheletropic Reaction Sequences: Preparation of Pentaphenylbenzene and 1,2,4-Triphenyltriphenylene
by Sara Ahmed, Harry Burrows, Brian A. Chalmers, David B. Cordes, Ruairidh Macleod Davidson, Lauren Emmens, Theodore V. Fulton, Daniel Kleinjan, Iain L. J. Patterson and Iain A. Smellie
Reactions 2025, 6(3), 41; https://doi.org/10.3390/reactions6030041 - 30 Jul 2025
Viewed by 621
Abstract
Polycyclic aromatic compounds can often be made by a sequence featuring an initial Diels–Alder [4 + 2] cycloaddition reaction, followed by cheletropic extrusion of carbon monoxide. These reactions normally require heating the diene and dieneophile in petrochemical-derived aromatic hydrocarbon solvents, such as xylenes [...] Read more.
Polycyclic aromatic compounds can often be made by a sequence featuring an initial Diels–Alder [4 + 2] cycloaddition reaction, followed by cheletropic extrusion of carbon monoxide. These reactions normally require heating the diene and dieneophile in petrochemical-derived aromatic hydrocarbon solvents, such as xylenes or diphenyl ether. This article summarizes the results of attempts to use renewable solvents in place of those currently in use to prepare pentaphenylbenzene and 1,2,4-triphenyltriphenylene. Dihydrolevoglucosenone, p-cymene, ethyl lactate, diethyl carbonate, and cyclopentyl methyl ether have all been successfully evaluated as renewable solvent alternatives in Diels–Alder/cheletropic reaction sequences. An analysis of the products from the reactions investigated did not show evidence of oxidative degradation of the diene reactants. Furthermore, norbornadien-7-one intermediates were not isolated from any of the reactions tested. Full article
Show Figures

Graphical abstract

15 pages, 12959 KB  
Article
Sodium Oxide-Fluxed Aluminothermic Reduction of Manganese Ore with Synergistic Effects of C and Si Reductants: SEM Study and Phase Stability Calculations
by Theresa Coetsee and Frederik De Bruin
Reactions 2025, 6(3), 40; https://doi.org/10.3390/reactions6030040 - 28 Jul 2025
Viewed by 462
Abstract
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research [...] Read more.
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research attention in the aluminothermic production of manganese and silicon alloys. The Al2O3 product must be recycled through hydrometallurgical processing, with leaching as the first step. Recent work has shown that the NaAlO2 compound is easily leached in water. In this work, a suitable slag formulation is applied in the aluminothermic reduction of manganese ore to form a Na2O-based slag of high Al2O3 solubility to effect good alloy–slag separation. The synergistic effect of carbon and silicon reductants with aluminium is illustrated and compared to the test result with only carbon reductant. The addition of small amounts of carbon reductant to MnO2-containing ore ensures rapid pre-reduction to MnO, facilitating aluminothermic reduction. At 1350 °C, a loosely sintered mass formed when carbon was added alone. The alloy and slag chemical analyses are compared to the thermochemistry predicted phase chemistry. The alloy consists of 66% Mn, 22–28% Fe, 2–9% Si, 0.4–1.4% Al, and 2.2–3.5% C. The higher %Si alloy is formed by adding Si metal. Although the product slag has a higher Al2O3 content (52–55% Al2O3) compared to the target slag (39% Al2O3), the fluidity of the slags appears sufficient for good alloy separation. Full article
Show Figures

Figure 1

14 pages, 1078 KB  
Article
Studies on a New 1,3,4-Oxadiazole Bixin Dimer for Potential Application in Dye-Sensitized Solar Cells
by Afonso Santine M. M. Velez, Daniela Pinheiro, Carlos Serpa, Rosane Nora Castro, Marco Edilson Freire de Lima and Otávio Augusto Chaves
Reactions 2025, 6(3), 39; https://doi.org/10.3390/reactions6030039 - 13 Jul 2025
Viewed by 551
Abstract
Dye-sensitized solar cells (DSSCs) have emerged as a promising technology for converting sunlight into electricity at a low cost; however, it is still necessary to find a photostable, low-cost, and efficient photosensitizer. In this sense, the natural product bixin (Dye 1) [...] Read more.
Dye-sensitized solar cells (DSSCs) have emerged as a promising technology for converting sunlight into electricity at a low cost; however, it is still necessary to find a photostable, low-cost, and efficient photosensitizer. In this sense, the natural product bixin (Dye 1) has previously been reported as a potential photosensitizer. Thus, the present work reports the full synthesis of diester and diacid hybrids (Dyes 2 and 3, respectively, with corresponding yields of 93% and 52%) using the natural product bixin as a starting material and 1,3,4-oxadiazole ring as a connected point. The hydrolysis step of Dye 2 aims to obtain Dye 3 with a structural capacity to anchor the titanium dioxide (TiO2) nanofilms via the carboxylic acid group. Both compounds (Dyes 1 and 3) can be adsorbed via pseudo-first order on the surface of TiO2 nanofilms, reaching saturation after 10 and 6 min of exposure in an organic solution (1 × 10−5 M), respectively, with adsorption kinetics of the semisynthetic compound almost twofold higher than the natural product. Contrary to expectations, Dye 3 had spectral behavior similar to Dye 1, but with better frontier molecular orbital (FMO) parameters, indicating that Dye 3 will probably behave very similarly or have slightly better photovoltaic performance than Dye 1 in future DSSC measurements. Full article
Show Figures

Figure 1

32 pages, 11334 KB  
Article
Photocatalytic Degradation of Petroleum Wastewater Using ZnO-Loaded Pistachio Shell Biochar: A Sustainable Approach for Oil and COD Removal
by Eveleen A. Dawood, Thamer J. Mohammed, Buthainah Ali Al-Timimi and Eman H. Khader
Reactions 2025, 6(3), 38; https://doi.org/10.3390/reactions6030038 - 4 Jul 2025
Viewed by 958
Abstract
The disposal of wastewater resulting from petroleum industries presents a major environmental challenge due to the presence of hard-to-degrade organic pollutants, such as oils and hydrocarbons, and high chemical oxygen demand (COD). In this study, an efficient and eco-friendly method was developed to [...] Read more.
The disposal of wastewater resulting from petroleum industries presents a major environmental challenge due to the presence of hard-to-degrade organic pollutants, such as oils and hydrocarbons, and high chemical oxygen demand (COD). In this study, an efficient and eco-friendly method was developed to treat such wastewater using a photocatalyst composed of biochar derived from pistachio shells and loaded with zinc oxide (ZnO) nanoparticles. The biochar-ZnO composite was prepared via a co-precipitation-assisted pyrolysis method to evaluate its efficiency in the photocatalytic degradation of petroleum wastewater (PW). The synthesized material was characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy, to determine surface morphology, crystal structure, and functional groups present on the catalyst surface. Photocatalytic degradation experiments were conducted under UV and sunlight for 90 h of irradiation to evaluate the performance of the proposed system in removing oil and reducing COD levels. Key operational parameters, such as pH (2–10), catalyst dosage (0–0.1) g/50 mL, and oil and COD concentrations (50–500) ppm and (125–1252) ppm, were optimized by response surface methodology (RSM) to obtain the maximum oil and COD removal efficiency. The oil and COD were removed from PW (90.20% and 88.80%) at 0.1 g/50 mL of PS/ZnO, a pH of 2, and 50 ppm oil concentration (125 ppm of COD concentration) under UV light. The results show that pollutant removal is slightly better when using sunlight (80.00% oil removal, 78.28% COD removal) than when using four lamps of UV light (77.50% oil removal, 75.52% COD removal) at 0.055 g/50 mL of PS/ZnO, a pH of 6.8, and 100 ppm of oil concentration (290 ppm of COD concentration). The degradation rates of the PS/ZnO supported a pseudo-first-order kinetic model with R2 values of 0.9960 and 0.9922 for oil and COD. This work indicates the potential use of agricultural waste, such as pistachio shells, as a sustainable source for producing effective catalysts for industrial wastewater treatment, opening broad prospects in the field of green and nanotechnology-based environmental solutions in the development of eco-friendly and effective wastewater treatment technologies under solar light. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop