Synthesis of 6-Arylaminoflavones via Buchwald–Hartwig Amination and Its Anti-Tumor Investigation
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General Information
4.2. Synthetic Methods
4.2.1. General Procedure A: Claisen–Schmidt Condensation
4.2.2. General Procedure B: Oxidative Cyclization
4.2.3. General Procedure C: Buchwald–Hartwig Amination
4.3. Cytotoxicity Assays
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beecher, G.R. Overview of Dietary Flavonoids: Nomenclature, Occurrence and Intake. J. Nutr. 2003, 133, 3248S–3254S. [Google Scholar] [CrossRef]
- Boniface, P.K.; Elizabeth, F.I. Flavones as a Privileged Scaffold in Drug Discovery: Current Developments. Curr. Org. Synth. 2019, 16, 968–1001. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An Important Scaffold for Medicinal Chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Y.; Chen, S.; Lin, J.; Bian, J.; Huang, D. Anti-Inflammation Activity of Flavones and Their Structure–Activity Relationship. J. Agric. Food Chem. 2021, 69, 7285–7302. [Google Scholar] [CrossRef] [PubMed]
- Akama, T.; Shida, Y.; Sugaya, T.; Ishida, H.; Gomi, K.; Kasai, M. Novel 5-Aminoflavone Derivatives as Specific Antitumor Agents in Breast Cancer. J. Med. Chem. 1996, 39, 3461–3469. [Google Scholar] [CrossRef]
- Akama, T.; Ishida, H.; Shida, Y.; Kimura, U.; Gomi, K.; Saito, H.; Fuse, E.; Kobayashi, S.; Yoda, N.; Kasai, M. Design and Synthesis of Potent Antitumor 5,4‘-Diaminoflavone Derivatives Based on Metabolic Considerations. J. Med. Chem. 1997, 40, 1894–1900. [Google Scholar] [CrossRef]
- Callero, M.A.; Rodriguez, C.E.; Sólimo, A.; Bal De Kier Joffé, E.; Loaiza Perez, A.I. The Immune System As a New Possible Cell Target for AFP 464 in a Spontaneous Mammary Cancer Mouse Model: AFP 464. J. Cell. Biochem. 2017, 118, 2841–2849. [Google Scholar] [CrossRef]
- Luzzani, G.A.; Callero, M.A.; Kuruppu, A.I.; Trapani, V.; Flumian, C.; Todaro, L.; Bradshaw, T.D.; Loaiza Perez, A.I. In Vitro Antitumor Effects of AHR Ligands Aminoflavone (AFP 464) and Benzothiazole (5F 203) in Human Renal Carcinoma Cells. J. Cell. Biochem. 2017, 118, 4526–4535. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.P.; Reid, J.M.; Qi, Y.; Chen, A.; McGovern, R.M.; Kuffel, M.J.; Scanlon, P.D.; Erlichman, C.; Ames, M.M. A Phase I Study of Once-Weekly Aminoflavone Prodrug (AFP464) in Solid Tumor Patients. J. Clin. Oncol. 2011, 29 (Suppl. S15), 2546. [Google Scholar] [CrossRef]
- Dauzonne, D.; Folléas, B.; Martinez, L.; Chabot, G. Synthesis and in Vitro Cytotoxicity of a Series of 3-Aminoflavones. European J. Med. Chem. 1997, 32, 71–82. [Google Scholar] [CrossRef]
- Alessi, D.R.; Cuenda, A.; Cohen, P.; Dudley, D.T.; Saltiel, A.R. PD 098059 Is a Specific Inhibitor of the Activation of Mitogen-Activated Protein Kinase Kinase in Vitro and in Vivo. J. Biol. Chem. 1995, 270, 27489–27494. [Google Scholar] [CrossRef]
- Zhao, Y.; Ge, C.-C.; Wang, J.; Wu, X.-X.; Li, X.-M.; Li, W.; Wang, S.-S.; Liu, T.; Hou, J.-Z.; Sun, H.; et al. MEK Inhibitor, PD98059, Promotes Breast Cancer Cell Migration by Inducing β-Catenin Nuclear Accumulation. Oncol. Rep. 2017, 38, 3055–3063. [Google Scholar] [CrossRef]
- Thorat, N.M.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Thopate, S.R. N-Benzylation of 6-Aminoflavone by Reductive Amination and Efficient Access to Some Novel Anticancer Agents via Topoisomerase II Inhibition. Mol. Divers. 2021, 25, 937–948. [Google Scholar] [CrossRef]
- Elkanzi, N.A.A.; Hrichi, H.; Alolayan, R.A.; Derafa, W.; Zahou, F.M.; Bakr, R.B. Synthesis of Chalcones Derivatives and Their Biological Activities: A Review. ACS Omega 2022, 7, 27769–27786. [Google Scholar] [CrossRef]
- Torres Ribón, D.J.; Roa De La Fuente, L.F.; Ceronio, N.R.; Abreu, O.H.; Rivera, M.R.; Juárez, J.R.; Torralba, R.; Ximello, M.V.; Sauret, Q.T.; Sánchez, C.A. Iodine Promoted One-Pot Synthesis of Flavones. Results Chem. 2025, 13, 101968. [Google Scholar] [CrossRef]
- Leonte, D.; Ungureanu, D.; Zaharia, V. Flavones and Related Compounds: Synthesis and Biological Activity. Molecules 2023, 28, 6528. [Google Scholar] [CrossRef] [PubMed]
- Dorel, R.; Grugel, C.P.; Haydl, A.M. The Buchwald–Hartwig Amination After 25 Years. Angew. Chem. Int. Ed. 2019, 58, 17118–17129. [Google Scholar] [CrossRef] [PubMed]
- Fitzner, M.; Wuitschik, G.; Koller, R.J.; Adam, J.-M.; Schindler, T.; Reymond, J.-L. What Can Reaction Databases Teach Us about Buchwald–Hartwig Cross-Couplings? Chem. Sci. 2020, 11, 13085–13093. [Google Scholar] [CrossRef] [PubMed]
- Kónya, K.; Pajtás, D.; Kiss-Szikszai, A.; Patonay, T. Buchwald–Hartwig Reactions of Monohaloflavones. Eur. J. Org. Chem. 2015, 2015, 828–839. [Google Scholar] [CrossRef]
- Yuen, O.Y.; Pang, W.H.; Chen, X.; Chen, Z.; Kwong, F.Y.; So, C.M. Synthesis of Flavone Derivatives through Versatile Palladium-Catalyzed Cross-Coupling Reactions of Tosyloxy- and Mesyloxyflavones. Synlett 2019, 30, 731–737. [Google Scholar] [CrossRef]
- Clarke, G.E.; Firth, J.D.; Ledingham, L.A.; Horbaczewskyj, C.S.; Bourne, R.A.; Bray, J.T.W.; Martin, P.L.; Eastwood, J.B.; Campbell, R.; Pagett, A.; et al. Deciphering Complexity in Pd–Catalyzed Cross-Couplings. Nat. Commun. 2024, 15, 3968. [Google Scholar] [CrossRef]
- Surry, D.S.; Buchwald, S.L. Biaryl Phosphane Ligands in Palladium-Catalyzed Amination. Angew. Chem. Int. Ed. 2008, 47, 6338–6361. [Google Scholar] [CrossRef]
- Sherwood, J.; Clark, J.H.; Fairlamb, I.J.S.; Slattery, J.M. Solvent Effects in Palladium Catalysed Cross-Coupling Reactions. Green Chem. 2019, 21, 2164–2213. [Google Scholar] [CrossRef]
- Tian, J.; Wang, G.; Qi, Z.-H.; Ma, J. Ligand Effects of BrettPhos and RuPhos on Rate-Limiting Steps in Buchwald–Hartwig Amination Reaction Due to the Modulation of Steric Hindrance and Electronic Structure. ACS Omega 2020, 5, 21385–21391. [Google Scholar] [CrossRef]
- Seifinoferest, B.; Tanbakouchian, A.; Larijani, B.; Mahdavi, M. Ullmann-Goldberg and Buchwald-Hartwig C−N Cross Couplings: Synthetic Methods to Pharmaceutically Potential N-Heterocycles. Asian J. Org. Chem. 2021, 10, 1319–1344. [Google Scholar] [CrossRef]
- Stepanenko, A.A.; Dmitrenko, V.V. HEK293 in Cell Biology and Cancer Research: Phenotype, Karyotype, Tumorigenicity, and Stress-Induced Genome-Phenotype Evolution. Gene 2015, 569, 182–190. [Google Scholar] [CrossRef]
- Zwick, V.; Chatzivasileiou, A.-O.; Deschamps, N.; Roussaki, M.; Simões-Pires, C.A.; Nurisso, A.; Denis, I.; Blanquart, C.; Martinet, N.; Carrupt, P.A.; et al. Aurones as histone deacetylase inhibitors: Identification of key features. Bioorg. Med. Chem. Lett. 2014, 24, 5497–5501. [Google Scholar] [CrossRef]
- Ameta, K.L.; Khyaliya, P.; Devi, A.P. Montmorillonite KSF mediated Favorskii reaction-based eco-friendly fabrication of some 1,3-diarylpropenones using phenyl acetylene and aromatic aldehydes. J. Iran. Chem. Soc. 2022, 19, 3943–3949. [Google Scholar] [CrossRef]
- Jung, S.H.; Park, S.Y.; Kim-Pak, Y.; Lee, H.K.; Park, K.S.; Shin, K.H.; Ohuchi, K.; Shin, H.K.; Keum, S.R.; Lim, S.S. Synthesis and PPAR-g Ligand-Binding Activity of the New Series of 2-Hydroxychalcone and Thiazolidinedione Derivatives. Chem. Pharm. Bull. 2006, 54, 368–371. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Tsaiab, M.-C.; Linab, C.-Y. A novel one-pot synthesis of flavones. RSC Adv. 2021, 11, 11655–11662. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, W.; Gu, U.; Zhao, Y.; Zou, M.; Xu, J.; Xu, X.; Chu, W. Design and Synthesis of Acridine-Based Ionic Photocatalyst for Decarboxylation of Aryl Carboxylic Acids to Achieve α-Arylation of Chromones/Naphthoquinones. ACS Sustain. Chem. Eng. 2025, 13, 8047–8056. [Google Scholar] [CrossRef]
Entry | Catalyst | Ligand | Base | Solvent | Yield (%) b |
---|---|---|---|---|---|
1 | Pd2(dba)3 | XantPhos | CsF | toluene | No reaction |
2 | Pd2(dba)3 | XantPhos | NaOtBu | toluene | Trace |
3 | Pd2(dba)3 | XantPhos | K2CO3 | toluene | 32 |
4 | Pd2(dba)3 | XantPhos | Cs2CO3 | toluene | 77 |
5 | Pd2(dba)3 | DavePhos | Cs2CO3 | toluene | 75 |
6 | PdCl2(PPh3)2 | XantPhos | Cs2CO3 | toluene | 20 |
7 | Pd2(dba)3 | XantPhos | Cs2CO3 | THF | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, K.E.; Cunha, M.R.; Moreira, G.A.; Waitman, K.B.; Hassimotto, N.M.A.; Massirer, K.B.; Toledo, M.F.Z.J.; Parise-Filho, R. Synthesis of 6-Arylaminoflavones via Buchwald–Hartwig Amination and Its Anti-Tumor Investigation. Reactions 2025, 6, 42. https://doi.org/10.3390/reactions6030042
Prado KE, Cunha MR, Moreira GA, Waitman KB, Hassimotto NMA, Massirer KB, Toledo MFZJ, Parise-Filho R. Synthesis of 6-Arylaminoflavones via Buchwald–Hartwig Amination and Its Anti-Tumor Investigation. Reactions. 2025; 6(3):42. https://doi.org/10.3390/reactions6030042
Chicago/Turabian StylePrado, Karinne E., Micael R. Cunha, Gabriela A. Moreira, Karoline B. Waitman, Neuza M. A. Hassimotto, Katlin B. Massirer, Monica F. Z. J. Toledo, and Roberto Parise-Filho. 2025. "Synthesis of 6-Arylaminoflavones via Buchwald–Hartwig Amination and Its Anti-Tumor Investigation" Reactions 6, no. 3: 42. https://doi.org/10.3390/reactions6030042
APA StylePrado, K. E., Cunha, M. R., Moreira, G. A., Waitman, K. B., Hassimotto, N. M. A., Massirer, K. B., Toledo, M. F. Z. J., & Parise-Filho, R. (2025). Synthesis of 6-Arylaminoflavones via Buchwald–Hartwig Amination and Its Anti-Tumor Investigation. Reactions, 6(3), 42. https://doi.org/10.3390/reactions6030042