Studies on the Radziszewski Reaction—Synthesis and Characterization of New Imidazole Derivatives
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of 2-(1H-imidazol-2-yl)pyridine (Compound 1)
2.3. Synthesis of 2-(1-OctadecyliImidazol-2-yl)pyridine (Compound 2)
2.4. Synthesis of 2-(Furan-2-yl)-1H-imidazole (Compound 3)
2.5. Synthesis of 2-(Furan-2-yl)-1-(octadecan-1-yl)-1H-imidazole (Compound 4)
2.6. Characterization Techniques
3. Results
3.1. 2-(1H-imidazol-2-yl)pyridine (Compound 1)
3.2. 2-(1-Octadecyl-imidazol-2-yl)pyridine (Compound 2)
3.3. 2-(Furan-2-yl)−1H-imidazole (Compound 3)
3.4. 2-(Furan-2-yl)-1-(octadecan-1-yl)-1H-imidazole (Compound 4)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCDC | Cambridge Crystallographic Data Centre |
COSY | Homonuclear Correlation Spectroscopy |
CPMAS | Cross-Polarization Magic Angle Spinning |
HMBC | Heteronuclear Multiple Bond Correlation |
HSQC | Heteronuclear Single Quantum Correlation |
TBAB | Tetra-n-ButylAmmonium Bromide |
HRMS | High-Resolution Mass Spectrometry |
References
- Debus, H. On the action of ammonia on glyoxal. Justus Liebigs Ann. Chem. 1858, 107, 199–208. [Google Scholar] [CrossRef]
- Radziszewski, B. Ueber Glyoxalin Und Seine Homologe. Berichte Dtsch. Chem. Ges. 1882, 15, 2706–2708. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, X.-M.; Damu, G.L.V.; Geng, R.-X.; Zhou, C.-H. Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry. Med. Res. Rev. 2014, 34, 340–437. [Google Scholar] [CrossRef] [PubMed]
- Al-Qanad, H.A.; Almghamdi, F.A.; Alhabib, M.A.; Bakr, A.A.; Alshehri, A.A.; Aodah, A.H.; Al-Zahrani, N.A.; Tawfik, E.A.; Damisi, I.A. Synthesis and Biological Evaluation of Novel Imidazole Derivatives as Antimicrobial Agents. Biomolecules 2024, 14, 1198. [Google Scholar] [CrossRef] [PubMed]
- Mlostoń, G.; Kowalczyk, M.; Celeda, M.; Gach-Janczak, K.; Janecka, A.; Jasiński, M. Synthesis and Cytotoxic Activity of Lepidilines A–D: Comparison with Some 4,5-Diphenyl Analogues and Related Imidazole-2-thiones. J. Nat. Prod. 2021, 84, 3071–3079. [Google Scholar] [CrossRef] [PubMed]
- Mlostoń, G.; Kowalczyk, M.; Celeda, M.; Jasiński, M.; Denel-Bobrowska, M.; Olejniczak, A.B. Fluorinated Analogues of Lepidilines A and C: Synthesis and Screening of Their Anticancer and Antiviral Activity. Molecule. 2022, 27, 3524. [Google Scholar] [CrossRef]
- Rossella, A.; Sacchiotti, A.; Meneghotti, F.; Colombo Dugoni, C.; Mol, M.; Castellano, C. Synthesis and Characterization of New Triazole-Bispidine Scaffolds and Their Metal Complexes for Catalytic Applications. Molecules 2023, 28, 6351. [Google Scholar] [CrossRef]
- Anwar, S.; Rehman, W.; Hussain, R.; Khan, S.; Alanazi, M.M.; Alsaif, N.A.; Khan, Y.; Iqbal, S.; Naz, A.; Hashmi, M.A. Investigation of novel benzoxazole-oxadiazole derivatives as effective anti-Alzheimer’s agents: In vitro and in silico approaches. Pharmaceuticals 2023, 16, 909. [Google Scholar] [CrossRef]
- Fang, S.; Yu, H.; Yang, X.; Li, J.; Shao, L. Nickel-catalyzed construction of 2-4-disubstituted imdazoles via C-C coupling and C-N condensation cascade. Adv. Synth. Catal. 2019, 61, 3312–3317. [Google Scholar] [CrossRef]
- Shi, S.; Xu, K.; Jiang, C.; Ding, Z. ZnCl2-catalyzed [3+2] cycloaddition of benzimidates and 2H-arizines for the synthesis of imidazoles. J. Org. Chem. 2018, 83, 14791–14796. [Google Scholar] [CrossRef]
- Man, L.; Copley, R.C.B.; Handlon, A.L. Thermal and photochemical annulation of vinyl azides to 2-aminoimidazoles. Org. Biomol. Chem. 2019, 17, 6566–6569. [Google Scholar] [CrossRef]
- Tikhomolova, A.S.; Grinev, V.S.; Yegorova, A.Y. One-Pot Synthesis, E-/Z-Equilibrium in Solution of 3-Hetarylaminomethylidenefuran-2(3H)-ones and the Way to Selective Synthesis of the E-Enamines. Molecules. 2023, 28, 963. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Rengan, R. Direct synthesis of 2,4,5-trisubstitued imidazoles from primary alcohols by diruthenium (II) catalyst under aerobic conditions. Org. Biomol. Chem. 2019, 17, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Mlostoń, G.; Celeda, M.; Heimgartner, H.; Duda, D.; Obijalska, E.; Jasiński, M. Synthesis and Selected Transformations of 2-Unsubstituted Imidazole N-Oxides Using a Ball-Milling Mechanochemical Approach. Catalysts 2022, 12, 589. [Google Scholar] [CrossRef]
- Mohammed, S.M.; Shehab, W.S.; Emwas, A.-H.M.; Jaremko, M.; Abdellatif, M.H.; Zordok, W.A.; Tantawy, E.S. Eco--Friendly Synthesis of 1H--benzo[d]imidazole Derivatives by ZnO NPs Characterization, DFT Studies, Antioxidant and In silico Studies. Pharmaceuticals 2023, 16, 969. [Google Scholar] [CrossRef]
- Muñoz, J.A.H.; Junior, J.J.; Silva, F.M. Radziszewski Reaction: An elegant, easy, simple, and efficient method to synthesise imidazoles. Curr. Org. Synth. 2014, 11, 824–834. [Google Scholar] [CrossRef]
- Yu, X.L.; Fan, Y.H.; Zheng, X.N.; Gao, J.F.; Zhuang, L.G.; Yu, Y.L.; Xi, J.H.; Zhang, D.W. Synthesis of Imidazole-Based Molecules under Ultrasonic Irradiation Approaches. Molecules 2023, 28, 4845. [Google Scholar] [CrossRef]
- Holmes, F.; Jones, K.M.; Torrible, E.G. Complex-forming agents similar to 2,2′-bipyridyl. J. Chem. Soc. 1961, 4790–4794. [Google Scholar] [CrossRef]
- Gerber, T.I.A.; Hosten, E.; Mayer, P.T.; Shentu, Z.R. Synthesis and characterization of rhenium (III) and (IV) pyridyl imidazole complexes. J. Coord. Chem. 2006, 59, 243–253. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Lang, H.; Lan, X. A New Route to N-Substituted Heterocycles. Tetrahedron 1993, 49, 2829–2838. [Google Scholar] [CrossRef]
- Haring, M. Zur Darstellung von 1-Alkylimidazolen aus Imidazol. Helv. Chim. Acta 1959, 42, 1845–1846. [Google Scholar] [CrossRef]
- Wang, R.; Xiao, J.C.; Twamley, B.; Shreev, J.M. Efficient Heck reactions catalyzed by a highly recyclable palladium (II) complex of a pyridyl-functionalized imidazolium-based ionic liquid. Org. Biomol. Chem. 2007, 5, 671–678. [Google Scholar] [CrossRef]
- Okewole, A.I.; Magwa, N.P.; Tshentu, Z.R. The separation of nickel (II) from base metal ions using 1-octyl-2-(2′-pyridyl) imidazole as extractant in a highly acidic sulfate medium. Hydrometallurgy 2012, 121–124, 81–89. [Google Scholar] [CrossRef]
- Karim, M.R.; Takehira, H.; Rahman, M.M.; Asiri, A.M.; Amim, M.K.; Ohtani, R.; Hayami, S. Magnetic and liquid crystalline property of long-alkyl chain appended iron (II) imidazole complexes. J. Organon. Chem. 2016, 808, 42–47. [Google Scholar] [CrossRef]
- Ledesma, A.E.; Zinczuk, J.; López González, J.J.; Ben Altabef, A.; Brandán, S.A. Structural and vibrational study of 2-(2′-furyl)-1H-imidazole. J. Phys. Org. Chem. 2008, 21, 1086–1097. [Google Scholar] [CrossRef]
- Vilcocq, L.; Crepet, A.; Jame, P.; Carvalheiro, F.; Duarte, L.C. Combination of Autohydrolysis and Catalytic Hydrolysis of Biomass for the Production of Hemicellulose. Reactions 2022, 3, 30–46. [Google Scholar] [CrossRef]
- Zaioncz, S.; Dahmouche, K.; Paranhos, C.M.; San Gil, R.A.S.; Soares, B.G. Relationships between nanostructure and dynamic-mechanical properties of epoxy network containing PMMA-modified silsesquioxane. Express Polymer Lett. 2009, 3, 340–351. [Google Scholar] [CrossRef]
- Querido, W.; Abracado, L.G.; Rossi, A.L.; Campos, A.P.C.; Rossi, A.M.; San Gil, R.A.S.; Borojevic, R.; Balduino, A.; Farina, M. Ultrastructural and Mineral Phase Characterization of the Bone-Like Matrix Assembled in F-OST Osteoblast Cultures. Calcified Tissue Intern. 2011, 89, 358–371. [Google Scholar] [CrossRef]
- Liu, Y. Hydrocracking of Polyethylene to Jet Fuel Range Hydrocarbons over Bifunctional Catalysts Containing Pt- and Al-Modified MCM-48. Reactions 2020, 1, 195–209. [Google Scholar] [CrossRef]
- Navar, R.; Botti, L.; Tarantino, G.; Hammond, C. Catalytic Performances of Sn-Beta Catalysts Prepared from Different Heteroatom-Containing Beta Zeolites for the Retro-Aldol Fragmentation of Glucose. Reactions 2022, 3, 265–282. [Google Scholar] [CrossRef]
- Borré, L.B.; Sousa, E.G.R.; San Gil, R.A.S.; Baptista, M.M.; Leitão, A.A.; Almeida, J.M.A.R.; Carr, O.; Oliveira, O.N., Jr.; Shimizu, F.M.; Guimarães, T.F. Solid-State NMR Characterization of Mefloquine Resinate Complexes Designed for Taste-Masking Pediatric Formulations. Pharmaceuticals 2024, 17, 870. [Google Scholar] [CrossRef]
- Tinant, B.; Decamp, C.; Robert, F.; Garcia, Y. Crystal structure of 2-(2′-pyridyl) imidazole, C8H7N3. Z. Kristallogr. NCS 2010, 225, 729–732. [Google Scholar] [CrossRef]
- Voss, M.E.; Beer, C.M.; Mitchell, S.A.; Blomgren, P.A.; Zhichkin, P.E. A simple and convenient one-pot method for the preparation of heteroaryl-2-imidazoles from nitriles. Tetraheron. 2008, 64, 645–651. [Google Scholar] [CrossRef]
- Milton, J.A. Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals; Wiley: Chichester, UK, 2010; p. 236. [Google Scholar]
- Sharma, S.D.; Hazarika, P.; Konwar, D. An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3·3H2O. Tetraheron. Lett. 2008, 49, 2216–2220. [Google Scholar] [CrossRef]
- Asressu, K.H.; Cha, C.K.; Wang, C.C. TMSOTf-catalysed synthesis of trisubstituted imidazoles using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. RSC Adv. 2021, 11, 28061–28071. [Google Scholar] [CrossRef]
- Tuguldurova, V.P.; Fateev, A.V.; Poleschuk, O.K.; Vodyankina, O.V. Theoretical Analysis of Glyoxal Condensation with Ammonia in Aqueous Solution. Phys. Chem. Chem. Phys. 2019, 21, 9326–9334. [Google Scholar] [CrossRef]
- Tuguldurova, V.P.; Vodyankina, O.V.; Fateev, A.V. The reaction of acetaldehyde, glyoxal, and ammonia to yield 2-methylimidazole: Thermodynamic and kinetic analyses of the mechanism. Phys. Chem. Chem. Phys. 2022, 24, 9324–9402. [Google Scholar] [CrossRef]
- Almeida, T.G.; Marti, C.; Kurten, T.; Zador, J.; Johansen, S.L. Theoretical analysis of the OH-initiated atmospheric oxidation reactions of imidazole. Phys. Chem. Chem. Phys. 2024, 26, 23570–23587. [Google Scholar] [CrossRef]
- Horner, K.E.; Karadakov, P.B. Shielding in and around Oxazole, Imidazole, and Thiazole: How Does the Second Heteroatom Affect Aromaticity and Bonding? J. Org. Chem. 2015, 80, 7150–7157. [Google Scholar] [CrossRef]
Hydrogen Number | 1H This Work a | 1H Simulated (ppm) b | 1H Literature (ppm) c | 1H Literature (ppm) d | |
---|---|---|---|---|---|
δ (ppm)/Multiplicity | Coupling Constant (Hz) | ||||
8 | 12.53/s | - | 10.56 | - | - |
1 | 7.73/dd | J1,3 = 0.5; J1,2 = 1.8 | 7.87 | 6.82 | 7.31 |
6 | 7.09/s | - | 6.79 | 7.71 | 7.04 |
7 | 7.09/s | - | 6.79 | 7.10 | 6.70 |
3 | 6.79/dd | J1,3 = 0.5; J2,3 = 3.4 | 6.81 | 6.57 | 5.05 |
2 | 6.59/dd | J1,2 = 1.8; J2,3 = 3.4 | 6.54 | 6.82 | 6.32 |
Carbon Number | 13C, ppm This Work a | 13C Solid State, ppm This Work b | 13C, ppm Simulated c | 13C, ppm Literature d | 13C Calculated, ppm Literature e |
---|---|---|---|---|---|
4 | 146.36 | 146.1 | 144.82 | 146.26 | 151.02 |
1 | 142.53 | 142.6 | 141.90 | 122.50 | 141.17 |
5 | 138.55 | 139.4 | 140.07 | 138.06 | 138.80 |
6 | 128.60 | 127.9; 127.0 | 120.39 | 142.52 | 142.99 |
7 | 116.99 | 118.0; 117.0 | 116.43 | 122.50 | 113.52 |
2 | 111.68 | 110.0 | 113.59 | 111.67 | 105.86 |
3 | 106.31 | 106.4 | 105.13 | 106.42 | 112.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, L.A.G.; Silva, A.L.M.P.; San Gil, R.A.S.; Borré, L.B.; Bertolino, L.C.; Teixeira, R.S.S. Studies on the Radziszewski Reaction—Synthesis and Characterization of New Imidazole Derivatives. Reactions 2025, 6, 48. https://doi.org/10.3390/reactions6030048
Jesus LAG, Silva ALMP, San Gil RAS, Borré LB, Bertolino LC, Teixeira RSS. Studies on the Radziszewski Reaction—Synthesis and Characterization of New Imidazole Derivatives. Reactions. 2025; 6(3):48. https://doi.org/10.3390/reactions6030048
Chicago/Turabian StyleJesus, Leandro A. G., Adinaldo L. M. P. Silva, Rosane A. S. San Gil, Leandro B. Borré, Luiz C. Bertolino, and Ricardo S. S. Teixeira. 2025. "Studies on the Radziszewski Reaction—Synthesis and Characterization of New Imidazole Derivatives" Reactions 6, no. 3: 48. https://doi.org/10.3390/reactions6030048
APA StyleJesus, L. A. G., Silva, A. L. M. P., San Gil, R. A. S., Borré, L. B., Bertolino, L. C., & Teixeira, R. S. S. (2025). Studies on the Radziszewski Reaction—Synthesis and Characterization of New Imidazole Derivatives. Reactions, 6(3), 48. https://doi.org/10.3390/reactions6030048