Analysis of Faster-Than-Real-Time (FTRT) Tsunami Simulations for the Spanish Tsunami Warning System for the Atlantic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tectonic Context
2.2. Tsunami Warning System of Spain
2.3. Design of the Scenarios for PD2 ChEESE Live Demo
3. Results and Discussion
3.1. Maximum Height and Arrival Time Variability
3.2. Source Parameter Uncertainty Contribution
3.3. Alert Levels Variation
3.4. Role of the Computational Domain Resolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SCENARIO ID | Longitude (°) | Latitude (°) | Depth (km) | Length (km) | Width (km) | Strike (°) | Dip (°) | Rake (°) | Slip (m) |
---|---|---|---|---|---|---|---|---|---|
CCmCsCdC * | −9.772 | 35.442 | 50 | 61.332 | 51.11 | 39 | 35 | 90 | 2.76 |
CCmCsDdC | −9.772 | 35.442 | 50 | 61.332 | 51.11 | 24 | 35 | 90 | 2.76 |
CCmCsUdC | −9.772 | 35.442 | 50 | 61.332 | 51.11 | 54 | 35 | 90 | 2.76 |
CCmCsCdD | −9.772 | 35.442 | 50 | 61.332 | 51.11 | 39 | 15 | 90 | 2.76 |
CCmCsDdD | −9.772 | 35.442 | 50 | 61.332 | 51.11 | 24 | 15 | 90 | 2.76 |
CCmCsUdD | −9.772 | 35.442 | 50 | 61.332 | 51.11 | 54 | 15 | 90 | 2.76 |
CCmCsCdU | −9.772 | 35.442 | 50 | 61.332 | 51.11 | 39 | 55 | 90 | 2.76 |
CCmCsDdU | −9.772 | 35.442 | 50 | 61.332 | 51.11 | 24 | 55 | 90 | 2.76 |
CCmCsUdU | −9.772 | 35.442 | 50 | 61.332 | 51.11 | 54 | 55 | 90 | 2.76 |
CCmDsCdC | −9.772 | 35.442 | 50 | 48.718 | 40.598 | 39 | 35 | 90 | 2.19 |
CCmDsDdC | −9.772 | 35.442 | 50 | 48.718 | 40.598 | 24 | 35 | 90 | 2.19 |
CCmDsUdC | −9.772 | 35.442 | 50 | 48.718 | 40.598 | 54 | 35 | 90 | 2.19 |
CCmDsCdD | −9.772 | 35.442 | 50 | 48.718 | 40.598 | 39 | 15 | 90 | 2.19 |
CCmDsDdD | −9.772 | 35.442 | 50 | 48.718 | 40.598 | 24 | 15 | 90 | 2.19 |
CCmDsUdD | −9.772 | 35.442 | 50 | 48.718 | 40.598 | 54 | 15 | 90 | 2.19 |
CCmDsCdU | −9.772 | 35.442 | 50 | 48.718 | 40.598 | 39 | 55 | 90 | 2.19 |
CCmDsDdU | −9.772 | 35.442 | 50 | 48.718 | 40.598 | 24 | 55 | 90 | 2.19 |
CCmDsUdU | −9.772 | 35.442 | 50 | 48.718 | 40.598 | 54 | 55 | 90 | 2.19 |
CCmUsCdC | −9.772 | 35.442 | 50 | 77.212 | 64.343 | 39 | 35 | 90 | 3.47 |
CCmUsDdC | −9.772 | 35.442 | 50 | 77.212 | 64.343 | 24 | 35 | 90 | 3.47 |
CCmUsUdC | −9.772 | 35.442 | 50 | 77.212 | 64.343 | 54 | 35 | 90 | 3.47 |
CCmUsCdD | −9.772 | 35.442 | 50 | 77.212 | 64.343 | 39 | 15 | 90 | 3.47 |
CCmUsDdD | −9.772 | 35.442 | 50 | 77.212 | 64.343 | 24 | 15 | 90 | 3.47 |
CCmUsUdD | −9.772 | 35.442 | 50 | 77.212 | 64.343 | 54 | 15 | 90 | 3.47 |
CCmUsCdU | −9.772 | 35.442 | 50 | 77.212 | 64.343 | 39 | 55 | 90 | 3.47 |
CCmUsDdU | −9.772 | 35.442 | 50 | 77.212 | 64.343 | 24 | 55 | 90 | 3.47 |
CCmUsUdU | −9.772 | 35.442 | 50 | 77.212 | 64.343 | 54 | 55 | 90 | 3.47 |
EmCsCdC | −9.39 | 35.56 | 64 | 61.332 | 51.11 | 39 | 35 | 90 | 2.76 |
EmCsDdC | −9.39 | 35.56 | 64 | 61.332 | 51.11 | 24 | 35 | 90 | 2.76 |
EmCsUdC | −9.39 | 35.56 | 64 | 61.332 | 51.11 | 54 | 35 | 90 | 2.76 |
EmCsCdD | −9.39 | 35.56 | 64 | 61.332 | 51.11 | 39 | 15 | 90 | 2.76 |
EmCsDdD | −9.39 | 35.56 | 64 | 61.332 | 51.11 | 24 | 15 | 90 | 2.76 |
EmCsUdD | −9.39 | 35.56 | 64 | 61.332 | 51.11 | 54 | 15 | 90 | 2.76 |
EmCsCdU | −9.39 | 35.56 | 64 | 61.332 | 51.11 | 39 | 55 | 90 | 2.76 |
EmCsDdU | −9.39 | 35.56 | 64 | 61.332 | 51.11 | 24 | 55 | 90 | 2.76 |
EmCsUdU | −9.39 | 35.56 | 64 | 61.332 | 51.11 | 54 | 55 | 90 | 2.76 |
EmDsCdC | −9.47 | 35.53 | 61.5 | 48.718 | 40.598 | 39 | 35 | 90 | 2.19 |
EmDsDdC | −9.47 | 35.53 | 61.5 | 48.718 | 40.598 | 24 | 35 | 90 | 2.19 |
EmDsUdC | −9.47 | 35.53 | 61.5 | 48.718 | 40.598 | 54 | 35 | 90 | 2.19 |
EmDsCdD | −9.47 | 35.53 | 61.5 | 48.718 | 40.598 | 39 | 15 | 90 | 2.19 |
EmDsDdD | −9.47 | 35.53 | 61.5 | 48.718 | 40.598 | 24 | 15 | 90 | 2.19 |
EmDsUdD | −9.47 | 35.53 | 61.5 | 48.718 | 40.598 | 54 | 15 | 90 | 2.19 |
EmDsCdU | −9.47 | 35.53 | 61.5 | 48.718 | 40.598 | 39 | 55 | 90 | 2.19 |
EmDsDdU | −9.47 | 35.53 | 61.5 | 48.718 | 40.598 | 24 | 55 | 90 | 2.19 |
EmDsUdU | −9.47 | 35.53 | 61.5 | 48.718 | 40.598 | 54 | 55 | 90 | 2.19 |
EmUsCdC | −9.36 | 35.56 | 66 | 77.212 | 64.343 | 39 | 35 | 90 | 3.47 |
EmUsDdC | −9.36 | 35.56 | 66 | 77.212 | 64.343 | 24 | 35 | 90 | 3.47 |
EmUsUdC | −9.36 | 35.56 | 66 | 77.212 | 64.343 | 54 | 35 | 90 | 3.47 |
EmUsCdD | −9.36 | 35.56 | 66 | 77.212 | 64.343 | 39 | 15 | 90 | 3.47 |
EmUsDdD | −9.36 | 35.56 | 66 | 77.212 | 64.343 | 24 | 15 | 90 | 3.47 |
EmUsUdD | −9.36 | 35.56 | 66 | 77.212 | 64.343 | 54 | 15 | 90 | 3.47 |
EmUsCdU | −9.36 | 35.56 | 66 | 77.212 | 64.343 | 39 | 55 | 90 | 3.47 |
EmUsDdU | −9.36 | 35.56 | 66 | 77.212 | 64.343 | 24 | 55 | 90 | 3.47 |
EmUsUdU | −9.36 | 35.56 | 66 | 77.212 | 64.343 | 54 | 55 | 90 | 3.47 |
SmCsCdC | −9.78 | 35.12 | 64 | 61.332 | 51.11 | 39 | 35 | 90 | 2.76 |
SmCsDdC | −9.78 | 35.12 | 64 | 61.332 | 51.11 | 24 | 35 | 90 | 2.76 |
SmCsUdC | −9.78 | 35.12 | 64 | 61.332 | 51.11 | 54 | 35 | 90 | 2.76 |
SmCsCdD | −9.78 | 35.12 | 64 | 61.332 | 51.11 | 39 | 15 | 90 | 2.76 |
SmCsDdD | −9.78 | 35.12 | 64 | 61.332 | 51.11 | 24 | 15 | 90 | 2.76 |
SmCsUdD | −9.78 | 35.12 | 64 | 61.332 | 51.11 | 54 | 15 | 90 | 2.76 |
SmCsCdU | −9.78 | 35.12 | 64 | 61.332 | 51.11 | 39 | 55 | 90 | 2.76 |
SmCsDdU | −9.78 | 35.12 | 64 | 61.332 | 51.11 | 24 | 55 | 90 | 2.76 |
SmCsUdU | −9.78 | 35.12 | 64 | 61.332 | 51.11 | 54 | 55 | 90 | 2.76 |
SmDsCdC | −9.78 | 35.18 | 61.5 | 48.718 | 40.598 | 39 | 35 | 90 | 2.19 |
SmDsDdC | −9.78 | 35.18 | 61.5 | 48.718 | 40.598 | 24 | 35 | 90 | 2.19 |
SmDsUdC | −9.78 | 35.18 | 61.5 | 48.718 | 40.598 | 54 | 35 | 90 | 2.19 |
SmDsCdD | −9.78 | 35.18 | 61.5 | 48.718 | 40.598 | 39 | 15 | 90 | 2.19 |
SmDsDdD | −9.78 | 35.18 | 61.5 | 48.718 | 40.598 | 24 | 15 | 90 | 2.19 |
SmDsUdD | −9.78 | 35.18 | 61.5 | 48.718 | 40.598 | 54 | 15 | 90 | 2.19 |
SmDsCdU | −9.78 | 35.18 | 61.5 | 48.718 | 40.598 | 39 | 55 | 90 | 2.19 |
SmDsDdU | −9.78 | 35.18 | 61.5 | 48.718 | 40.598 | 24 | 55 | 90 | 2.19 |
SmDsUdU | −9.78 | 35.18 | 61.5 | 48.718 | 40.598 | 54 | 55 | 90 | 2.19 |
SmUsCdC | −9.77 | 35.09 | 66 | 77.212 | 64.343 | 39 | 35 | 90 | 3.47 |
SmUsDdC | −9.77 | 35.09 | 66 | 77.212 | 64.343 | 24 | 35 | 90 | 3.47 |
SmUsUdC | −9.77 | 35.09 | 66 | 77.212 | 64.343 | 54 | 35 | 90 | 3.47 |
SmUsCdD | −9.77 | 35.09 | 66 | 77.212 | 64.343 | 39 | 15 | 90 | 3.47 |
SmUsDdD | −9.77 | 35.09 | 66 | 77.212 | 64.343 | 24 | 15 | 90 | 3.47 |
SmUsUdD | −9.77 | 35.09 | 66 | 77.212 | 64.343 | 54 | 15 | 90 | 3.47 |
SmUsCdU | −9.77 | 35.09 | 66 | 77.212 | 64.343 | 39 | 55 | 90 | 3.47 |
SmUsDdU | −9.77 | 35.09 | 66 | 77.212 | 64.343 | 24 | 55 | 90 | 3.47 |
SmUsUdU | −9.77 | 35.09 | 66 | 77.212 | 64.343 | 54 | 55 | 90 | 3.47 |
WmCsCdC | −9.77 | 35.77 | 36 | 61.332 | 51.11 | 39 | 35 | 90 | 2.76 |
WmCsDdC | −9.77 | 35.77 | 36 | 61.332 | 51.11 | 24 | 35 | 90 | 2.76 |
WmCsUdC | −9.77 | 35.77 | 36 | 61.332 | 51.11 | 54 | 35 | 90 | 2.76 |
WmCsCdD | −9.77 | 35.77 | 36 | 61.332 | 51.11 | 39 | 15 | 90 | 2.76 |
WmCsDdD | −9.77 | 35.77 | 36 | 61.332 | 51.11 | 24 | 15 | 90 | 2.76 |
WmCsUdD | −9.77 | 35.77 | 36 | 61.332 | 51.11 | 54 | 15 | 90 | 2.76 |
WmCsCdU | −9.77 | 35.77 | 36 | 61.332 | 51.11 | 39 | 55 | 90 | 2.76 |
WmCsDdU | −9.77 | 35.77 | 36 | 61.332 | 51.11 | 24 | 55 | 90 | 2.76 |
WmCsUdU | −9.77 | 35.77 | 36 | 61.332 | 51.11 | 54 | 55 | 90 | 2.76 |
WmDsCdC | −9.77 | 35.7 | 38.5 | 48.718 | 40.598 | 39 | 35 | 90 | 2.19 |
WmDsDdC | −9.77 | 35.7 | 38.5 | 48.718 | 40.598 | 24 | 35 | 90 | 2.19 |
WmDsUdC | −9.77 | 35.7 | 38.5 | 48.718 | 40.598 | 54 | 35 | 90 | 2.19 |
WmDsCdD | −9.77 | 35.7 | 38.5 | 48.718 | 40.598 | 39 | 15 | 90 | 2.19 |
WmDsDdD | −9.77 | 35.7 | 38.5 | 48.718 | 40.598 | 24 | 15 | 90 | 2.19 |
WmDsUdD | −9.77 | 35.7 | 38.5 | 48.718 | 40.598 | 54 | 15 | 90 | 2.19 |
WmDsCdU | −9.77 | 35.7 | 38.5 | 48.718 | 40.598 | 39 | 55 | 90 | 2.19 |
WmDsDdU | −9.77 | 35.7 | 38.5 | 48.718 | 40.598 | 24 | 55 | 90 | 2.19 |
WmDsUdU | −9.77 | 35.7 | 38.5 | 48.718 | 40.598 | 54 | 55 | 90 | 2.19 |
WmUsCdC | −9.77 | 35.79 | 34 | 77.212 | 64.343 | 39 | 35 | 90 | 3.47 |
WmUsDdC | −9.77 | 35.79 | 34 | 77.212 | 64.343 | 24 | 35 | 90 | 3.47 |
WmUsUdC | −9.77 | 35.79 | 34 | 77.212 | 64.343 | 54 | 35 | 90 | 3.47 |
WmUsCdD | −9.77 | 35.79 | 34 | 77.212 | 64.343 | 39 | 15 | 90 | 3.47 |
WmUsDdD | −9.77 | 35.79 | 34 | 77.212 | 64.343 | 24 | 15 | 90 | 3.47 |
WmUsUdD | −9.77 | 35.79 | 34 | 77.212 | 64.343 | 54 | 15 | 90 | 3.47 |
WmUsCdU | −9.77 | 35.79 | 34 | 77.212 | 64.343 | 39 | 55 | 90 | 3.47 |
WmUsDdU | −9.77 | 35.79 | 34 | 77.212 | 64.343 | 24 | 55 | 90 | 3.47 |
WmUsUdU | −9.77 | 35.79 | 34 | 77.212 | 64.343 | 54 | 55 | 90 | 3.47 |
NmCsCdC | −10.14 | 35.33 | 36 | 61.332 | 51.11 | 39 | 35 | 90 | 2.76 |
NmCsDdC | −10.14 | 35.33 | 36 | 61.332 | 51.11 | 24 | 35 | 90 | 2.76 |
NmCsUdC | −10.14 | 35.33 | 36 | 61.332 | 51.11 | 54 | 35 | 90 | 2.76 |
NmCsCdD | −10.14 | 35.33 | 36 | 61.332 | 51.11 | 39 | 15 | 90 | 2.76 |
NmCsDdD | −10.14 | 35.33 | 36 | 61.332 | 51.11 | 24 | 15 | 90 | 2.76 |
NmCsUdD | −10.14 | 35.33 | 36 | 61.332 | 51.11 | 54 | 15 | 90 | 2.76 |
NmCsCdU | −10.14 | 35.33 | 36 | 61.332 | 51.11 | 39 | 55 | 90 | 2.76 |
NmCsDdU | −10.14 | 35.33 | 36 | 61.332 | 51.11 | 24 | 55 | 90 | 2.76 |
NmCsUdU | −10.14 | 35.33 | 36 | 61.332 | 51.11 | 54 | 55 | 90 | 2.76 |
NmDsCdC | −10.07 | 35.35 | 38.5 | 48.718 | 40.598 | 39 | 35 | 90 | 2.19 |
NmDsDdC | −10.07 | 35.35 | 38.5 | 48.718 | 40.598 | 24 | 35 | 90 | 2.19 |
NmDsUdC | −10.07 | 35.35 | 38.5 | 48.718 | 40.598 | 54 | 35 | 90 | 2.19 |
NmDsCdD | −10.07 | 35.35 | 38.5 | 48.718 | 40.598 | 39 | 15 | 90 | 2.19 |
NmDsDdD | −10.07 | 35.35 | 38.5 | 48.718 | 40.598 | 24 | 15 | 90 | 2.19 |
NmDsUdD | −10.07 | 35.35 | 38.5 | 48.718 | 40.598 | 54 | 15 | 90 | 2.19 |
NmDsCdU | −10.07 | 35.35 | 38.5 | 48.718 | 40.598 | 39 | 55 | 90 | 2.19 |
NmDsDdU | −10.07 | 35.35 | 38.5 | 48.718 | 40.598 | 24 | 55 | 90 | 2.19 |
NmDsUdU | −10.07 | 35.35 | 38.5 | 48.718 | 40.598 | 54 | 55 | 90 | 2.19 |
NmUsCdC | −10.18 | 35.32 | 34 | 77.212 | 64.343 | 39 | 35 | 90 | 3.47 |
NmUsDdC | −10.18 | 35.32 | 34 | 77.212 | 64.343 | 24 | 35 | 90 | 3.47 |
NmUsUdC | −10.18 | 35.32 | 34 | 77.212 | 64.343 | 54 | 35 | 90 | 3.47 |
NmUsCdD | −10.18 | 35.32 | 34 | 77.212 | 64.343 | 39 | 15 | 90 | 3.47 |
NmUsDdD | −10.18 | 35.32 | 34 | 77.212 | 64.343 | 24 | 15 | 90 | 3.47 |
NmUsUdD | −10.18 | 35.32 | 34 | 77.212 | 64.343 | 54 | 15 | 90 | 3.47 |
NmUsCdU | −10.18 | 35.32 | 34 | 77.212 | 64.343 | 39 | 55 | 90 | 3.47 |
NmUsDdU | −10.18 | 35.32 | 34 | 77.212 | 64.343 | 24 | 55 | 90 | 3.47 |
NmUsUdU | −10.18 | 35.32 | 34 | 77.212 | 64.343 | 54 | 55 | 90 | 3.47 |
Free Parameter: Magnitude | Normalized Difference of Maximum Height (m) | Normalized Difference of Arrival Time (s) | ||
---|---|---|---|---|
Name of Case | Mean | STD | Mean | STD |
‘CCmCsXdC_ATL_1_2’ | 0.101 | 0.081 | 1.370 | 16.000 |
‘CCmCsXdD_ATL_1_2’ | 0.174 | 0.138 | 0.115 | 0.000 |
‘CCmCsXdU_ATL_1_2’ | 0.122 | 0.098 | 2.091 | 18.000 |
‘CCmDsXdC_ATL_1_2’ | 0.052 | 0.042 | 0.054 | 0.000 |
‘CCmDsXdD_ATL_1_2’ | 0.094 | 0.074 | 0.165 | 0.000 |
‘CCmDsXdU_ATL_1_2’ | 0.060 | 0.046 | 0.055 | 0.000 |
‘CCmUsXdC_ATL_1_2’ | 0.192 | 0.155 | 1.092 | 11.000 |
‘CCmUsXdD_ATL_1_2’ | 0.311 | 0.251 | 1.969 | 16.000 |
‘CCmUsXdU_ATL_1_2’ | 0.248 | 0.217 | 3.111 | 20.000 |
‘EmCsXdC_ATL_1_2’ | 0.079 | 0.066 | 0.060 | 0.000 |
‘EmCsXdD_ATL_1_2’ | 0.142 | 0.138 | 0.816 | 10.000 |
‘EmCsXdU_ATL_1_2’ | 0.101 | 0.075 | 0.098 | 1.000 |
‘EmDsXdC_ATL_1_2’ | 0.041 | 0.034 | 0.064 | 0.000 |
‘EmDsXdD_ATL_1_2’ | 0.077 | 0.071 | 0.138 | 0.000 |
‘EmDsXdU_ATL_1_2’ | 0.052 | 0.038 | 0.074 | 0.000 |
‘EmUsXdC_ATL_1_2’ | 0.153 | 0.127 | 1.520 | 12.000 |
‘EmUsXdD_ATL_1_2’ | 0.261 | 0.259 | 1.347 | 13.000 |
‘EmUsXdU_ATL_1_2’ | 0.196 | 0.148 | 0.487 | 5.000 |
‘WmCsXdC_ATL_1_2’ | 0.133 | 0.140 | 1.704 | 16.000 |
‘WmCsXdD_ATL_1_2’ | 0.200 | 0.178 | 1.362 | 15.000 |
‘WmCsXdU_ATL_1_2’ | 0.190 | 0.209 | 3.216 | 22.000 |
‘WmDsXdC_ATL_1_2’ | 0.063 | 0.064 | 0.046 | 0.000 |
‘WmDsXdD_ATL_1_2’ | 0.106 | 0.093 | 0.102 | 0.000 |
‘WmDsXdU_ATL_1_2’ | 0.083 | 0.086 | 0.052 | 0.000 |
‘WmUsXdC_ATL_1_2’ | 0.270 | 0.292 | 1.900 | 16.000 |
‘WmUsXdD_ATL_1_2’ | 0.355 | 0.304 | 1.496 | 15.000 |
‘WmUsXdU_ATL_1_2’ | 0.400 | 0.458 | 3.717 | 22.000 |
‘SmCsXdC_ATL_1_2’ | 0.091 | 0.070 | 0.499 | 9.000 |
‘SmCsXdD_ATL_1_2’ | 0.154 | 0.133 | 0.609 | 9.000 |
‘SmCsXdU_ATL_1_2’ | 0.110 | 0.084 | 1.328 | 15.000 |
‘SmDsXdC_ATL_1_2’ | 0.047 | 0.037 | 0.055 | 0.000 |
‘SmDsXdD_ATL_1_2’ | 0.083 | 0.072 | 0.195 | 0.000 |
‘SmDsXdU_ATL_1_2’ | 0.055 | 0.042 | 0.081 | 0.000 |
‘SmUsXdC_ATL_1_2’ | 0.172 | 0.130 | 0.763 | 7.000 |
‘SmUsXdD_ATL_1_2’ | 0.284 | 0.244 | 1.573 | 15.000 |
‘SmUsXdU_ATL_1_2’ | 0.215 | 0.163 | 2.614 | 20.000 |
‘NmCsXdC_ATL_1_2’ | 0.146 | 0.147 | 1.080 | 13.000 |
‘NmCsXdD_ATL_1_2’ | 0.212 | 0.167 | 1.424 | 15.000 |
‘NmCsXdU_ATL_1_2’ | 0.195 | 0.259 | 3.152 | 22.000 |
‘NmDsXdC_ATL_1_2’ | 0.071 | 0.067 | 0.068 | 0.000 |
‘NmDsXdD_ATL_1_2’ | 0.116 | 0.093 | 0.156 | 0.000 |
‘NmDsXdU_ATL_1_2’ | 0.084 | 0.094 | 0.061 | 0.000 |
‘NmUsXdC_ATL_1_2’ | 0.283 | 0.308 | 3.321 | 23.000 |
‘NmUsXdD_ATL_1_2’ | 0.366 | 0.287 | 2.844 | 22.000 |
‘NmUsXdU_ATL_1_2’ | 0.409 | 0.533 | 3.698 | 23.000 |
Free Parameter: Magnitude | Normalized Difference of Maximum Height (m) | Normalized Difference of Arrival Time (s) | ||
---|---|---|---|---|
Name of Case | Mean | STD | Mean | STD |
‘CCmCsCdX_ATL_1_2’ | 0.269 | 0.196 | 1.452 | 15.000 |
‘CCmCsDdX_ATL_1_2’ | 0.262 | 0.194 | 1.389 | 15.000 |
‘CCmCsUdX_ATL_1_2’ | 0.273 | 0.176 | 1.427 | 16.000 |
‘CCmDsCdX_ATL_1_2’ | 0.146 | 0.108 | 0.152 | 0.000 |
‘CCmDsDdX_ATL_1_2’ | 0.140 | 0.105 | 0.133 | 0.000 |
‘CCmDsUdX_ATL_1_2’ | 0.147 | 0.098 | 0.157 | 0.000 |
‘CCmUsCdX_ATL_1_2’ | 0.491 | 0.352 | 3.366 | 22.000 |
‘CCmUsDdX_ATL_1_2’ | 0.490 | 0.359 | 3.286 | 21.000 |
‘CCmUsUdX_ATL_1_2’ | 0.499 | 0.316 | 3.295 | 20.000 |
‘EmCsCdX_ATL_1_2’ | 0.209 | 0.144 | 1.545 | 14.000 |
‘EmCsDdX_ATL_1_2’ | 0.201 | 0.140 | 0.887 | 10.000 |
‘EmCsUdX_ATL_1_2’ | 0.222 | 0.151 | 1.505 | 14.000 |
‘EmDsCdX_ATL_1_2’ | 0.115 | 0.082 | 0.173 | 0.000 |
‘EmDsDdX_ATL_1_2’ | 0.112 | 0.080 | 0.157 | 0.000 |
‘EmDsUdX_ATL_1_2’ | 0.119 | 0.081 | 0.170 | 0.000 |
‘EmUsCdX_ATL_1_2’ | 0.382 | 0.259 | 3.180 | 20.000 |
‘EmUsDdX_ATL_1_2’ | 0.362 | 0.248 | 3.896 | 23.000 |
‘EmUsUdX_ATL_1_2’ | 0.410 | 0.280 | 3.128 | 21.000 |
‘WmCsCdX_ATL_1_2’ | 0.331 | 0.240 | 4.705 | 28.000 |
‘WmCsDdX_ATL_1_2’ | 0.341 | 0.265 | 4.934 | 29.000 |
‘WmCsUdX_ATL_1_2’ | 0.331 | 0.228 | 2.523 | 20.000 |
‘WmDsCdX_ATL_1_2’ | 0.170 | 0.129 | 0.128 | 0.000 |
‘WmDsDdX_ATL_1_2’ | 0.171 | 0.140 | 0.097 | 0.000 |
‘WmDsUdX_ATL_1_2’ | 0.170 | 0.118 | 0.119 | 0.000 |
‘WmUsCdX_ATL_1_2’ | 0.657 | 0.489 | 6.061 | 30.000 |
‘WmUsDdX_ATL_1_2’ | 0.691 | 0.547 | 7.669 | 35.000 |
‘WmUsUdX_ATL_1_2’ | 0.648 | 0.465 | 4.945 | 26.000 |
‘SmCsCdX_ATL_1_2’ | 0.250 | 0.178 | 0.541 | 8.000 |
‘SmCsDdX_ATL_1_2’ | 0.240 | 0.175 | 1.404 | 15.000 |
‘SmCsUdX_ATL_1_2’ | 0.257 | 0.180 | 0.600 | 9.000 |
‘SmDsCdX_ATL_1_2’ | 0.135 | 0.100 | 0.195 | 0.000 |
‘SmDsDdX_ATL_1_2’ | 0.129 | 0.096 | 0.149 | 0.000 |
‘SmDsUdX_ATL_1_2’ | 0.139 | 0.100 | 0.182 | 0.000 |
‘SmUsCdX_ATL_1_2’ | 0.450 | 0.309 | 2.084 | 15.000 |
‘SmUsDdX_ATL_1_2’ | 0.434 | 0.308 | 3.742 | 25.000 |
‘SmUsUdX_ATL_1_2’ | 0.466 | 0.315 | 2.435 | 16.000 |
‘NmCsCdX_ATL_1_2’ | 0.347 | 0.264 | 1.819 | 17.000 |
‘NmCsDdX_ATL_1_2’ | 0.378 | 0.355 | 3.230 | 23.000 |
‘NmCsUdX_ATL_1_2’ | 0.331 | 0.222 | 0.816 | 10.000 |
‘NmDsCdX_ATL_1_2’ | 0.182 | 0.143 | 0.151 | 0.000 |
‘NmDsDdX_ATL_1_2’ | 0.184 | 0.157 | 0.125 | 0.000 |
‘NmDsUdX_ATL_1_2’ | 0.177 | 0.125 | 0.150 | 0.000 |
‘NmUsCdX_ATL_1_2’ | 0.699 | 0.571 | 5.747 | 29.000 |
‘NmUsDdX_ATL_1_2’ | 0.784 | 0.799 | 3.932 | 24.000 |
‘NmUsUdX_ATL_1_2’ | 0.644 | 0.470 | 5.637 | 30.000 |
Free Parameter: Magnitude | Normalized Difference of Maximum Height (m) | Normalized Difference of Arrival Time (s) | ||
---|---|---|---|---|
Name of Case | Mean | STD | Mean | STD |
‘CCmXsCdC_ATL_1_2’ | 1.078 | 0.486 | 8.207 | 33.000 |
‘CCmXsCdD_ATL_1_2’ | 0.813 | 0.428 | 7.144 | 31.000 |
‘CCmXsCdU_ATL_1_2’ | 1.126 | 0.520 | 8.105 | 33.000 |
‘CCmXsDdC_ATL_1_2’ | 1.128 | 0.510 | 8.061 | 33.000 |
‘CCmXsDdD_ATL_1_2’ | 0.885 | 0.462 | 7.478 | 33.000 |
‘CCmXsDdU_ATL_1_2’ | 1.182 | 0.560 | 8.443 | 36.000 |
‘CCmXsUdC_ATL_1_2’ | 1.080 | 0.492 | 8.813 | 35.000 |
‘CCmXsUdD_ATL_1_2’ | 0.801 | 0.412 | 7.262 | 32.000 |
‘CCmXsUdU_ATL_1_2’ | 1.125 | 0.525 | 8.702 | 34.000 |
‘EmXsCdC_ATL_1_2’ | 0.965 | 0.501 | 7.831 | 34.000 |
‘EmXsCdD_ATL_1_2’ | 0.747 | 0.440 | 6.552 | 30.000 |
‘EmXsCdU_ATL_1_2’ | 0.977 | 0.531 | 8.139 | 35.000 |
‘EmXsDdC_ATL_1_2’ | 1.009 | 0.527 | 8.055 | 35.000 |
‘EmXsDdD_ATL_1_2’ | 0.821 | 0.495 | 6.331 | 30.000 |
‘EmXsDdU_ATL_1_2’ | 1.024 | 0.559 | 8.323 | 36.000 |
‘EmXsUdC_ATL_1_2’ | 0.948 | 0.482 | 7.910 | 34.000 |
‘EmXsUdD_ATL_1_2’ | 0.702 | 0.385 | 6.698 | 31.000 |
‘EmXsUdU_ATL_1_2’ | 0.960 | 0.507 | 7.851 | 33.000 |
‘WmXsCdC_ATL_1_2’ | 1.349 | 0.676 | 10.457 | 39.000 |
‘WmXsCdD_ATL_1_2’ | 0.992 | 0.533 | 7.134 | 31.000 |
‘WmXsCdU_ATL_1_2’ | 1.461 | 0.783 | 12.950 | 45.000 |
‘WmXsDdC_ATL_1_2’ | 1.382 | 0.722 | 11.314 | 41.000 |
‘WmXsDdD_ATL_1_2’ | 1.045 | 0.570 | 7.337 | 32.000 |
‘WmXsDdU_ATL_1_2’ | 1.542 | 0.877 | 14.345 | 47.000 |
‘WmXsUdC_ATL_1_2’ | 1.348 | 0.670 | 9.254 | 36.000 |
‘WmXsUdD_ATL_1_2’ | 0.981 | 0.515 | 7.171 | 31.000 |
‘WmXsUdU_ATL_1_2’ | 1.435 | 0.763 | 10.581 | 38.000 |
‘SmXsCdC_ATL_1_2’ | 0.937 | 0.450 | 7.208 | 31.000 |
‘SmXsCdD_ATL_1_2’ | 0.698 | 0.393 | 7.471 | 34.000 |
‘SmXsCdU_ATL_1_2’ | 0.962 | 0.472 | 6.993 | 31.000 |
‘SmXsDdC_ATL_1_2’ | 0.988 | 0.472 | 7.442 | 32.000 |
‘SmXsDdD_ATL_1_2’ | 0.777 | 0.420 | 6.748 | 31.000 |
‘SmXsDdU_ATL_1_2’ | 1.019 | 0.508 | 5.049 | 26.000 |
‘SmXsUdC_ATL_1_2’ | 0.933 | 0.452 | 7.194 | 31.000 |
‘SmXsUdD_ATL_1_2’ | 0.669 | 0.387 | 7.610 | 34.000 |
‘SmXsUdU_ATL_1_2’ | 0.955 | 0.468 | 6.865 | 29.000 |
‘NmXsCdC_ATL_1_2’ | 1.281 | 0.647 | 12.678 | 44.000 |
‘NmXsCdD_ATL_1_2’ | 0.917 | 0.508 | 9.379 | 38.000 |
‘NmXsCdU_ATL_1_2’ | 1.404 | 0.790 | 12.338 | 42.000 |
‘NmXsDdC_ATL_1_2’ | 1.364 | 0.720 | 11.417 | 41.000 |
‘NmXsDdD_ATL_1_2’ | 0.986 | 0.520 | 9.082 | 36.000 |
‘NmXsDdU_ATL_1_2’ | 1.549 | 0.985 | 12.151 | 42.000 |
‘NmXsUdC_ATL_1_2’ | 1.279 | 0.643 | 11.345 | 41.000 |
‘NmXsUdD_ATL_1_2’ | 0.935 | 0.533 | 8.197 | 35.000 |
‘NmXsUdU_ATL_1_2’ | 1.371 | 0.745 | 10.026 | 37.000 |
Free Parameter: Location | Normalized Difference of Maximum Height (m) | Normalized Difference of Arrival Time (s) | ||
---|---|---|---|---|
Name of Case | Mean | STD | Mean | STD |
‘lXmCsCdC_ATL_1_2’ | 0.468 | 0.329 | 5.274 | 29.000 |
‘lXmCsCdD_ATL_1_2’ | 0.370 | 0.284 | 2.480 | 19.000 |
‘lXmCsCdU_ATL_1_2’ | 0.516 | 0.365 | 6.300 | 33.000 |
‘lXmCsDdC_ATL_1_2’ | 0.494 | 0.358 | 5.597 | 30.000 |
‘lXmCsDdD_ATL_1_2’ | 0.379 | 0.306 | 2.592 | 20.000 |
‘lXmCsDdU_ATL_1_2’ | 0.576 | 0.458 | 5.327 | 30.000 |
‘lXmCsUdC_ATL_1_2’ | 0.454 | 0.322 | 5.640 | 31.000 |
‘lXmCsUdD_ATL_1_2’ | 0.367 | 0.276 | 3.077 | 22.000 |
‘lXmCsUdU_ATL_1_2’ | 0.488 | 0.343 | 5.491 | 30.000 |
‘lXmDsCdC_ATL_1_2’ | 0.222 | 0.159 | 0.151 | 0.000 |
‘lXmDsCdD_ATL_1_2’ | 0.176 | 0.138 | 0.253 | 1.000 |
‘lXmDsCdU_ATL_1_2’ | 0.239 | 0.174 | 0.167 | 0.000 |
‘lXmDsDdC_ATL_1_2’ | 0.235 | 0.171 | 0.162 | 0.000 |
‘lXmDsDdD_ATL_1_2’ | 0.182 | 0.150 | 0.195 | 0.000 |
‘lXmDsDdU_ATL_1_2’ | 0.260 | 0.204 | 0.194 | 0.000 |
‘lXmDsUdC_ATL_1_2’ | 0.218 | 0.159 | 0.152 | 0.000 |
‘lXmDsUdD_ATL_1_2’ | 0.177 | 0.139 | 0.235 | 0.000 |
‘lXmDsUdU_ATL_1_2’ | 0.228 | 0.164 | 0.172 | 0.000 |
‘lXmUsCdC_ATL_1_2’ | 0.852 | 0.590 | 7.342 | 34.000 |
‘lXmUsCdD_ATL_1_2’ | 0.646 | 0.474 | 6.396 | 33.000 |
‘lXmUsCdU_ATL_1_2’ | 1.007 | 0.765 | 9.032 | 37.000 |
‘lXmUsDdC_ATL_1_2’ | 0.902 | 0.659 | 6.546 | 31.000 |
‘lXmUsDdD_ATL_1_2’ | 0.656 | 0.508 | 6.070 | 31.000 |
‘lXmUsDdU_ATL_1_2’ | 1.128 | 0.953 | 10.335 | 42.000 |
‘lXmUsUdC_ATL_1_2’ | 0.816 | 0.568 | 5.703 | 30.000 |
‘lXmUsUdD_ATL_1_2’ | 0.644 | 0.458 | 6.930 | 34.000 |
‘lXmUsUdU_ATL_1_2’ | 0.946 | 0.704 | 6.511 | 31.000 |
References
- Santos, A.; Tavares, A.O.; Queirós, M. Numerical modelling and evacuation strategies for tsunami awareness: Lessons from the 2012 Haida Gwaii Tsunami. Geomatics. Nat. Hazards Risk 2016, 7, 1442–1459. [Google Scholar] [CrossRef] [Green Version]
- Marshall, M. Mystery of deadly Indonesian tsunami cracked using social-media videos. Nature 2019, 569, 463–464. [Google Scholar] [CrossRef] [PubMed]
- National Geophysical Data Center/World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. Available online: https://doi.org/10.7289/V5PN93H7 (accessed on 1 February 2021).
- Maramai, A.; Brizuela, B.; Graziani, L. The Euro-Mediterranean Tsunami Catalogue. Ann. Geophys. 2014, 57, S0435. [Google Scholar] [CrossRef]
- Baptista, M.A.; Miranda, J.M. Revision of the Portuguese catalogue of tsunamis. Nat. Hazards Earth Syst. Sci. 2009, 1932, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Abe, K. Size of great earthquakes of 1837–1974 inferred from tsunami data. J. Geophys. Res. 1979, 84, 1561. [Google Scholar] [CrossRef]
- Martínez-Solares, J.M. Los Efectos en España del Terremoto de Lisboa (1 de Noviembre de 1755). Monografía Número 19; Instituto Geográfico Nacional: Madrid, Spain, 2001; 756p. [Google Scholar]
- Martínez-Solares, J.M.; López Arroyo, A. The great historical 1755 earthquake. Effects and damage in Spain. J. Seismol. 2004, 8, 275–294. [Google Scholar] [CrossRef]
- Fonseca, J.F.B.D. A reassessment of the magnitude of the 1755 Lisbon earthquake. BSSA 2020, 110, 1–17. [Google Scholar] [CrossRef]
- Clouard, V.; Roger, M.J.; Moizan, E. Tsunami deposits in Martinique related to the 1755 Lisbon earthquake. Nat. Hazards Earth Syst. Sci. Discuss 2017, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Roger, J.; Baptista, M.A.; Sahal, A.; Accary, F.; Allgeyer, S.; Hébert, H. The transoceanic 1755 Lisbon Tsunami in Martinique. Pure Appl. Geophys. 2011, 168, 1015–1031. [Google Scholar] [CrossRef] [Green Version]
- Satake, K.; Ishibe, T.; Murotani, S.; Mulia, I.E.; Gusman, A.R. Effects of uncertainty in fault parameters on deterministic tsunami hazard assessment: Examples for active faults along the eastern margin of the Sea of Japan. Earth Planets Space 2022, 74, 1–20. [Google Scholar] [CrossRef]
- Tinti, S.; Graziani, L.; Brizuela, B.; Maramai, A.; Gallazi, S. Applicability of the Decision Matrix of North Eastern Atlantic, Mediterranean and connected seas Tsunami Warning System to the Italian tsunamis. Nat. Hazards Earth Syst. Sci. 2012, 12, 843–857. [Google Scholar] [CrossRef] [Green Version]
- Molinari, I.; Tonini, R.; Lorito, S.; Piatanesi, A.; Romano, F.; Melini, D.; Hoechner, A.; Gonzàlez Vida, J.M.; Maciás, J.; Castro, M.J.; et al. Fast evaluation of tsunami scenarios: Uncertainty assessment for a Mediterranean Sea database. Nat. Hazards Earth Syst. Sci. 2016, 16, 2593–2602. [Google Scholar] [CrossRef] [Green Version]
- Kanamori, H.; Rivera, L. Source inversion of W phase: Speeding up tsunami warning. Geophys. J. Int. 2008, 175, 222–238. [Google Scholar] [CrossRef]
- Lomax, A.; Michellini, A. Mwpd: A duration-amplitude procedure for rapid determination of earthquake magnitude and tsunamigenic potential from P waveforms. Geophys. J. Int. 2009, 176, 200–214. [Google Scholar] [CrossRef] [Green Version]
- Hirshorn, B.; Weinstein, S.; Tsuboi, S. On the application of MWp in the near field and the March 11, 2011 Tohoku earthquake. Pure Appl. Geophys. 2013, 170, 975–991. [Google Scholar] [CrossRef]
- Blewitt, G.; Kreemer, C.; Hammond, W.C.; Plag, H.; Stein, S.; Okal, E. Rapid determination of earthquake magnitude using GPS for tsunami warning systems, Geophys. Res. Lett. 2006, 33, L11309. [Google Scholar] [CrossRef] [Green Version]
- Angove, M.; Arcas, D.; Bailey, R.; Carrasco, P.; Coetzee, D.; Fry, B.; Gledhill, K.; Harada, S.; Von Hillebrandt-Andrade, C.; Kong, L.; et al. Ocean Observations Required to Minimize Uncertainty in Global Tsunami Forecasts, Warnings, and Emergency Response. Front. Mar. Sci. 2019, 6, 350. [Google Scholar] [CrossRef] [Green Version]
- Heidarzadeh, M.; Wang, Y.; Satake, K.; Mulia, I.E. Potential deployment of offshore bottom pressure gauges and adoption of data assimilation for tsunami warning system in the western Mediterranean Sea. Geosci. Lett. 2019, 6, 19. [Google Scholar] [CrossRef]
- Howe, B.M.; Arbic, B.K.; Aucan, J.; Barnes, C.R.; Bayliff, N.; Becker, N.; Butler, R.; Doyle, L.; Elipot, S.; Johnson, G.C.; et al. SMART Cables for Observing the Global Ocean: Science and Implementation. Front. Mar. Sci. 2019, 6, 424. [Google Scholar] [CrossRef] [Green Version]
- Selva, J.; Lorito, S.; Volpe, M.; Romano, F.; Tonini, R.; Perfetti, P.; Amato, A. Probabilistic tsunami forecasting for early warning. Nat. Commun. 2021, 12, 5677. [Google Scholar] [CrossRef]
- PD2—Faster Than Real Time (FTRT) Live Demo—European Project ChEESE—In ChEESE Project Web Page. Available online: https://cheese-coe.eu/media/news/cheese-conducts-live-demo-faster-real-time-tsunami-simulations (accessed on 28 February 2022).
- Live Demo Recording. Available online: https://www.youtube.com/watch?v=rkruUHAaleA (accessed on 28 February 2022).
- Cantavella, J.V.; Gaite, B.; González, C.; Naveiras, F.; Ros, E.; Sáenz, L. Plan Estatal de Protección Civil Ante el Riesgo de Maremotos. Edición Comentada; Publicación Instituto Geográfico Nacional: Madrid, Spain, 2021; 112p. [Google Scholar]
- Santos, A.; Koshimura, S.; andImamura, F. The 1755 Lisbon Tsunami: Tsunami Source Determination and its Validation. J. Disaster Res. 2009, 4, 41–52. [Google Scholar] [CrossRef]
- Martínez-Loriente, S.; Sallarés, V.; Gracia, E. The Horseshoe abyssal plain thrust could be the source of the 1755 Lisbon earthquake and tsunami. Commun. Earth Environ. 2021, 2, 145. [Google Scholar] [CrossRef]
- Baptista, M.A.; Miranda, J.M.; Luis, J.F. In Search of the 31 March 1761 Earthquake and Tsunami Source. Bull. Seism. Soc. Am. 2006, 96, 713–721. [Google Scholar] [CrossRef]
- Fukao, Y. Thrust faulting at a lithospheric plate boundary the Portugal earthquake of 1969. Earth Planet. Sci. Lett. 1973, 18, 205–216. [Google Scholar] [CrossRef]
- Mezcua, J.; Martínez Solares, J.M. Sismicidad del Área Ibero-Mogrebí, Publicación 203; Instituto Geográfico Nacional: Madrid, Spain, 1983; 301p. [Google Scholar]
- Instituto Geográfico Nacional (IGN). Spanish Seismic Catalogue. Available online: https://doi.org/10.7419/162.03.2022 (accessed on 1 May 2022).
- Demets, C.; Gordon, R.G.; Argus, D.F. Geologically current plate motions. Geophys. J. Int. 2010, 181, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Sartori, R.; Torelli, L.; Zitellini, N.; Peis, D.; Lodolo, E. Eastern segment of the Azores-Gibraltar line (central-eastern Atlantic): An oceanic plate boundary with diffuse compressional deformation. Geology 1994, 22, 555–558. [Google Scholar] [CrossRef]
- Martínez-Loriente, S.; Gracia, E.; Bartolome, R.; Sallarès, V.; Connors, C.; Perea, H.; Lo Iacono, C.; Klaeschen, D.; Terrinha, P.; Danobeitia, J.J.; et al. Active deformation in old oceanic lithosphere and significance for earthquake hazard: Seismic imaging of the Coral Patch Ridge area and neighbouring abyssal plains (SW Iberian margin). Geochem. Geophys. Geosyst. 2013, 14, 2206–2231. [Google Scholar] [CrossRef] [Green Version]
- Gaite, B.; Cantavella, J.V.; González, C.; Rodríguez, B.; Robledano, A.; Carreño, E. Marine-fault and magnitude-scaling law database as input for real-time tsunami propagation computation. In Proceedings of the Iberfault 2018, Alicante, Spain, 11–13 June 2018. [Google Scholar]
- Instituto Geográfico Nacional (IGN). Digital Terrain Model MDT200. Available online: https://centrodedescargas.cnig.es/CentroDescargas (accessed on 1 May 2022).
- NASA JPL NASA Shuttle Radar Topography Mission Global 1 Arc Second. Distributed by NASA EOSDIS Land Processes DAAC. 2013. Available online: https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (accessed on 27 April 2022).
- Interim Operational Users Guide for NEAMTWS, Version 1.10. Available online: http://www.ioc-tsunami.org/index.php?option=com_oe&task=viewDocumentRecord&docID=8129 (accessed on 1 February 2021).
- Schindelé, F.; Gailler, A.; Hébert, H.; Loevenbruck, A.; Gutierrez, E.; Monnier, A.; Roudil, P.; Reymond, D.; Rivera, L. Implementation and Challenges of the Tsunami Warning System in the Western Mediterranean. Pure Appl. Geophys. 2015, 172, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Amato, A.; Avallone, A.; Basili, R.; Bernardi, F.; Brizuela, B.; Graziani, L.; Herrero, A.; Lorenzino, M.C.; Lorito, S.; Mele, F.M.; et al. From Seismic Monitoring to Tsunami Warning in the Mediterranean Sea. Seismol. Res. Lett. 2021, 92, 1796–1816. [Google Scholar] [CrossRef]
- Necmioğlu, Ö.; Turhan, F.; Özer Sözdinler, C.; Yılmazer, M.; Güneş, Y.; Cambaz, M.D.; Özener, H. Koeri’s tsunami warning system in the eastern mediterranean and its connected seas: A decade of achievements and challenges. Appl. Sci. 2021, 11, 11247. [Google Scholar] [CrossRef]
- Matias, L.; Baptista, M.A.; Omira, R.; Annunziato, A.; Franchello, G.; Carrilho, F. Third Generation Tsunami scenario matrix for the Portuguese Tsunami Early Warning System. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Matias, L.; Cunha, T.A.; Annunziato, A.; Baptista, M.A.; Carrilho, F. Tsunamigenic earthquakes in the Gulf of Cadiz: Fault model and recurrence. Nat. Hazards Earth Syst. Sci. 2013, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Echave Lezcano, J. Elaboración de la Metodología y Base de Datos Numérica de Tsunamis Para el Sistema de Alerta de Tsunamis Español; Universidad de Cantabria: Santander, Spain, 2016. [Google Scholar]
- Bernard, E.; Titov, V. Evolution of tsunami warning systems and products. Philos. Trans. R. Soc. Lond. A 2015, 373, 20140371. [Google Scholar] [CrossRef] [PubMed]
- Macías, J.; Castro, M.J.; Ortega, S.; Escalante, C.; González-Vida, J.M. Performance benchmarking of Tsunami-HySEA model for NTHMP’s inundation mapping activities. Pure Appl. Geophys. 2017, 174, 3147–3183. [Google Scholar] [CrossRef] [Green Version]
- Macías, J.; Castro, M.J.; Escalante, C. Performance assessment of Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data. Coast Eng. 2020, 158, 103667. [Google Scholar] [CrossRef]
- Macías, J.; Ortega, S.; Castro, M.J.; González-Vida, J.M. Performance assessment of Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Field cases. Ocean Model 2020, 152, 101645. [Google Scholar] [CrossRef]
- Álvarez-Gómez, J.A.; Aniel-Quiroga, Í.; González, M.; Otero, L. Tsunami hazard at the Western Mediterranean Spanish coast from seismic sources. Nat. Hazards Earth Syst. Sci. 2011, 11, 227–240. [Google Scholar] [CrossRef]
- García-Mayordomo, J.; Insua-Arévalo, J.M.; Martínez-Díaz, J.J.; Jiménez-Díaz, A.; Martín-Banda, R.; Martín-Alfageme, S.; Álvarez-Gómez, J.A.; Rodríguez-Peces, M.; Pérez-López, R.; Rodríguez-Pascua, M.A.; et al. The Quaternary Faults Database of Iberia (QAFI v.2.0). J. Iber. Geol. 2012, 38, 285–302. [Google Scholar] [CrossRef]
- Hayes, G. The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth Planet. Sci. Lett. 2017, 468, 94–100. [Google Scholar] [CrossRef]
- GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation. Available online: https://gdal.org (accessed on 1 November 2021).
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools version 6. Geochem. Geophys. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
- QGIS.org. QGIS Geographic Information System. QGIS Association. Available online: http://www.qgis.org (accessed on 1 November 2021).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 1 November 2021).
- Green, G. On the motion of waves in a variable canal of small depth and width. Trans. Camb. Philos. Soc. 1837, 6, 457–462. [Google Scholar]
Alert Level | Tsunami Height (m) | Run-Up (m) | Coastal Effects |
---|---|---|---|
WATCH | >0.5 | >1 | Coastal flooding |
ADVISORY | 0.2–0.5 | <1 | Currents, retreat from the sea, damage to ports, small flooding on beaches |
INFORMATION | <0.2 | No tsunami hazard |
Operational at IGN | ChEESE Live Demo | |
---|---|---|
Model | Tsunami-HySEA v-3.6.1 | Tsunami-HySEA v-3.8.1_MC |
Target area | Area of the Gulf of Cádiz (Atlantic ocean): from −18.5° W to −1° W in longitude and from 27° N to 45° N in latitude. | |
Computational domain | One computational domain with one numerical resolution: ATL (−21°, 26°; 1°, 45°) | Four computational domains with three numerical resolutions 1. ATL ½ arcmin (−18.5°, 27°; −1°, 45°) 2. GCN ¼ arcmin (−13°, 33.5°; −1°, 45°) 3. GCIC ¼ arcmin (−18.5°, 27°; −5°, 38°) 4. GC ⅛ arcmin (−13°, 33.5°; −4°, 38°) (left-bottom; right-top corners coordinates in longitude, latitude) |
Model resolution | ½ arcmin | ½–¼–⅛ arcmin |
Size of the problem (number of volumes) | 5,472,000 | ATL—4,536,000 GCN—7,948,800 GCIC—8,553,600 GC—9,331,200 |
Simulated time | 8 h | 4 h |
Storage frequency for time series | 30 s | 15 s |
Number of simulations | 1 | 135 × 4 |
Computational resources | Two nodes/two NVIDIA V100 GPUs | 68 nodes/272 NVIDIA V100 GPUs |
Time to solution | 2.5 min | 1 min—ATL 3 min—GCN & GCIC 7 min—GC Total time: ≈7 min (parallel) |
Deterministic products | Tsunami arrival time Maximum tsunami height Alert levels | Tsunami arrival time Maximum tsunami height Alert levels |
Include uncertainty | No | Yes |
Cases with Varying Parameter | Mean of Normalized Difference on Maximum Height (m) | Mean of Normalized Difference on Arrival Time (min) |
---|---|---|
Strike | 0.163 ± 0.151 | 1.150 ± 9.356 |
Dip | 0.324 ± 0.241 | 2.076 ± 13.333 |
Location | 0.505 ± 0.377 | 4.012 ± 20.296 |
Magnitude | 1.065 ± 0.556 | 8.659 ± 34.956 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaite, B.; Macías, J.; Cantavella, J.V.; Sánchez-Linares, C.; González, C.; Puertas, L.C. Analysis of Faster-Than-Real-Time (FTRT) Tsunami Simulations for the Spanish Tsunami Warning System for the Atlantic. GeoHazards 2022, 3, 371-394. https://doi.org/10.3390/geohazards3030019
Gaite B, Macías J, Cantavella JV, Sánchez-Linares C, González C, Puertas LC. Analysis of Faster-Than-Real-Time (FTRT) Tsunami Simulations for the Spanish Tsunami Warning System for the Atlantic. GeoHazards. 2022; 3(3):371-394. https://doi.org/10.3390/geohazards3030019
Chicago/Turabian StyleGaite, Beatriz, Jorge Macías, Juan Vicente Cantavella, Carlos Sánchez-Linares, Carlos González, and Luis Carlos Puertas. 2022. "Analysis of Faster-Than-Real-Time (FTRT) Tsunami Simulations for the Spanish Tsunami Warning System for the Atlantic" GeoHazards 3, no. 3: 371-394. https://doi.org/10.3390/geohazards3030019
APA StyleGaite, B., Macías, J., Cantavella, J. V., Sánchez-Linares, C., González, C., & Puertas, L. C. (2022). Analysis of Faster-Than-Real-Time (FTRT) Tsunami Simulations for the Spanish Tsunami Warning System for the Atlantic. GeoHazards, 3(3), 371-394. https://doi.org/10.3390/geohazards3030019