Research on Strength Degradation and Crack Development in Defective Concrete
Abstract
1. Introduction
2. Experimental Design
2.1. Specimen Design and Preparation
2.2. Uniaxial Compression Test Setup
2.3. Experimental Matrix
2.4. Analysis of Experimental Results
2.5. Acoustic Emission Monitoring and Data Analysis
2.6. Fractal Dimension Analysis of Crack Patterns
3. Discrete Element Modeling Using PFC3D
3.1. Significance of DEM Modeling
3.2. Model Setup and Parameter Calibration
3.2.1. Elastic Model Selection for DEM Simulation
3.2.2. Parameter Calibration and Selection
3.2.3. Model Assumptions and Limitations
3.2.4. Relevance to Tunnel Lining Simulation
4. Conclusions
- Crack length and inclination significantly affected the strength and failure behavior of concrete. Longer cracks and higher inclination angles (e.g., 45°) led to greater reductions in peak stress and earlier onset of macroscopic failure.
- Acoustic emission (AE) activity effectively captured the internal damage evolution, with the b-value and high-amplitude AE events showing clear correlations with crack growth and stress drops.
- Fractal dimension (FD) analysis of post-failure crack patterns revealed a consistent trend, where specimens with more complex and branched cracks exhibited higher FD values. Notably, a negative correlation between FD and peak strength was observed.
- DEM simulations reproduced the general crack propagation paths and displacement fields observed in experiments, validating the effectiveness of the bonded-particle model in simulating pre-cracked concrete behavior.
4.1. Practical Implications for Tunnel Engineering
4.2. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bu, M.; Zhang, Y.; Li, T.; Wang, J. Temperature-dependent acoustic emission characteristics and statistical constitutive model of granite under uniaxial compression. J. Rock Mech. Geotech. Eng. 2025, 17, 2857–2878. [Google Scholar] [CrossRef]
- Guoning, Z.; Yongjiang, Y.; Wei, Z. Experimental investigation of the acoustic emission and energy evolution of bedded coal under uniaxial compression. Sci. Rep. 2025, 15, 12578. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Kulatilake, P.H.S.W.; Chen, X.; Cao, P. Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach. J. Cent. South Univ. 2015, 22, 638–645. [Google Scholar] [CrossRef]
- Holsamudrkar, N.; Banerjee, S. B-value Based Damage Source Localization and Classification Using Acoustic Emission (AE) Data for Concrete Cylinders Wrapped with Hybrid FRCM Composites. Compos. Part C Open Access 2025, 17, 100624. [Google Scholar] [CrossRef]
- Huang, J.; Wei, X.; Zheng, Z.; Su, X.; Zuo, J. Linear fractal evolution characteristics of rock crack distributions during loading process. Sci. Rep. 2024, 14, 18303. [Google Scholar] [CrossRef]
- Yin, Y.; Ren, Q.; Lei, S.; Zhou, J.; Xu, L.; Wang, T. Mesoscopic crack pattern fractal dimension-based concrete damage identification. Eng. Fract. Mech. 2024, 296, 109829. [Google Scholar] [CrossRef]
- Zhong, H.; Shuai, L.; Deng, D. Research on concrete structure damage detection based on piezoelectric sensing technology and morphological fractal method. Sci. Rep. 2025, 15, 26604. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, K.; Li, D.; Luo, M.; Liu, Y.; Shi, Y.; Xu, J.; Huang, Z. Structural performance assessment of concrete components based on fractal information of cracks. J. Build. Eng. 2021, 43, 103177. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Lei, Q.; Liu, B.; Zhou, Z. Acoustic emission characteristics of damage evolution of multi-scale fiber reinforced rubberized concrete under uniaxial compression and tension after being subjected to high temperatures. Front. Struct. Civ. Eng. 2024, 18, 1237–1266. [Google Scholar] [CrossRef]
- Mishra, A.; Carrara, P.; Griffa, M.; De Lorenzis, L. Fracture in concrete: X-Ray tomography with in-situ testing, digital volume correlation and phase-field modeling. arXiv 2025, arXiv:2502.01487. [Google Scholar]
- Zhou, S.; Zhuang, X.; Rabczuk, T. Phase field modeling of brittle compressive-shear fractures in rock-like materials: A new driving force and a hybrid formulation. Comput. Methods Appl. Mech. Eng. 2019, 355, 729–752. [Google Scholar] [CrossRef]
- Feng, F.; Wang, Y.; Liu, H.; Chen, X. Crack propagation and strength characteristic of sandstone with structural defects under extensive true triaxial tests by using DEM simulation. Theor. Appl. Fract. Mech. 2025, 138, 104971. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, Q.; Jin, D.; Wang, Z. Numerical study of fractal analysis of crack propagation in concrete under different strain rates by meso-scale particle element modeling. Int. J. Impact Eng. 2023, 173, 104440. [Google Scholar] [CrossRef]
- Nitka, M.; Tejchman, J. Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates. Eng. Fract. Mech. 2020, 231, 107029. [Google Scholar] [CrossRef]
- Bolander, J.E.; Eliáš, J.; Cusatis, G.; Nagai, K. Discrete mechanical models of concrete fracture. Eng. Fract. Mech. 2021, 257, 108030. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Liu, J.; Zhao, F. Fracture evolution in steel fiber reinforced concrete (SFRC) of tunnel under static and dynamic loading based on DEM-FDM coupling model. Int. J. Coal Sci. Technol. 2025, 12, 9. [Google Scholar] [CrossRef]
- Ni, T.; Huang, Y.; Zhao, J.; Zhou, Y. Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media. Comput. Methods Appl. Mech. Eng. 2020, 366, 113101. [Google Scholar] [CrossRef]
- Perera, R.; Guzzetti, D.; Agrawal, V. Graph neural networks for simulating crack coalescence and propagation in brittle materials. Comput. Methods Appl. Mech. Eng. 2022, 395, 115021. [Google Scholar] [CrossRef]
- Yu, Y.; Zheng, Y.; Xu, J.; Wang, X. Modeling and predicting the mechanical behavior of concrete under uniaxial loading. Constr. Build. Mater. 2021, 273, 121694. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, H.; Yu, S.; Yu, J.; Zhang, B. Particle flow simulation of crack propagation and penetration in Brazilian disc under uniaxial compression. Rock Mech. Lett. 2025, 2, 47–55. [Google Scholar] [CrossRef]
- Li, X.; Bai, Y.; Chen, X.; Zhao, X.; Lv, M. Experimental and numerical study on crack propagation and coalescence in rock-like materials under compression. J. Strain Anal. Eng. Des. 2021, 56, 548–562. [Google Scholar] [CrossRef]
- Lv, Z.; Jiang, A.; Tan, Z. Acoustic Emission from Concrete: Critical Slowing Down Analysis and Compressive Strength Prediction. Adv. Mater. Sci. Eng. 2023, 1–15, 483905. [Google Scholar] [CrossRef]
- Zhu, Z.; Mediamartha, B.M.; Yu, S.; Li, Y.; Xu, J.; Gu, P. Simulation of the Mesoscale Cracking Processes in Concrete Under Tensile Stress by Discrete Element Method. Materials 2025, 18, 2981. [Google Scholar] [CrossRef]
- Nitka, M.; Tejchman, J. Effects of aggregate crushing and strain rate on fracture in compressive concrete with a DEM-based breakage model. Granul. Matter 2025, 27, 8. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, M.; Feng, Q.; Wang, H. Effects of aggregate distribution on the cracking behavior of concrete: A discrete element method study. Cem. Concr. Compos. 2025, 162, 106119. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das, B.B.; Kanavaris, F. A review of fracture propagation in concrete: Fundamentals, experimental techniques, modelling and applications. Mag. Concr. Res. 2024, 76, 482–514. [Google Scholar] [CrossRef]
- Hu, T.; Talamini, B.; Stershic, A.J.; Tupek, M.R.; Dolbow, J.E. A variational phase-field model For ductile fracture with coalescence dissipation. Comput. Mech. 2021, 68, 311–335. [Google Scholar] [CrossRef]
- Zhou, Y.; Aydin, B.B.; Zhang, F.; Hendriks, M.A.N.; Yang, Y. Lattice modelling of complete acoustic emission waveforms in the concrete fracture process. Eng. Fract. Mech. 2025, 320, 111040. [Google Scholar] [CrossRef]
- Shibano, K.; Mukai, M.; Suzuki, T. Influence of crack orientation on propagation behavior of concrete by acoustic emission in compression test. In Proceedings of the 12th International Conference on Fracture Mechanics for Concrete and Concrete Structures, Vienna, Austria, 23–25 April 2025. [Google Scholar]
- Wang, Q.; Chen, W.; Peng, W.; Wang, Y.; Zhou, Y.; Peng, Z. Uniaxial compressive damage evolution and constitutive modeling of fissure-like rocks under different loading rates based on acoustic emission. Sci. Rep. 2025, 15, 2119. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, C.; Lu, K.; Zhang, H.; Jian, B.; Zhang, W. Study on the fracture behavior and critical slowing down characteristics of saturated sandstone based on acoustic emission and resistivity. Sci. Rep. 2025, 15, 12113. [Google Scholar] [CrossRef]
- Stamati, O.; Roubin, E.; Andò, E.; Malecot, Y.; Charrier, P. Fracturing process of micro-concrete under uniaxial and triaxial compression: Insights from in-situ X-ray mechanical tests. Cem. Concr. Res. 2021, 149, 106578. [Google Scholar] [CrossRef]
- Wang, G.; Yu, L.; Yang, T.; Ren, T.; Chen, Q.; Song, M.; Shi, G. Research on damage characterization of SCC and rock composite specimens based on CPU and GPU heterogeneous code acceleration. Sci. Rep. 2025, 15, 7641. [Google Scholar] [CrossRef] [PubMed]
- Marooden, S. Discrete Element Modelling of Concrete Behaviour; The University of Liverpool (UK): Liverpool, UK, 2018; p. 27773582. [Google Scholar]
- Yang, J.; Chen, H.; Liangxiao, X.; Xu, Z.; Zhou, T.; Yang, C. Analysis of uniaxial compression of rock mass with parallel cracks based on experimental study and PFC2D numerical simulation. Arch. Civ. Eng. 2022, 68, 111–128. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Y.; Zhou, Y. Experimental and numerical studies of brittle rock-like specimens with unfilled cross fissures under uniaxial compression. Theor. Appl. Fract. Mech. 2022, 117, 103167. [Google Scholar] [CrossRef]
Group | Crack Type | Length (mm) | Angle (°) | Peak Stress (MPa) | Strength Reduction Compared to Intact Specimen (%) |
---|---|---|---|---|---|
1 | Control (no crack) | - | - | 37.33 | - |
2 | Straight crack | 25 | 0 | 29.94 | −19.79% |
3 | Straight crack | 50 | 0 | 25.46 | −31.84% |
4 | Straight crack | 75 | 0 | 21.03 | −43.67% |
5 | Inclined crack | 25 | 30 | 29.14 | −21.93% |
6 | Inclined crack | 25 | 45 | 22.62 | −39.41% |
7 | Inclined crack | 25 | 60 | 28.24 | −24.34% |
Group | Crack Type | Length (mm) | Angle (°) | Peak Stress (MPa) | FD Before | FD After | ΔFD (After-Before) |
---|---|---|---|---|---|---|---|
1 | Control (no crack) | - | - | 37.33 | 1.003 | 1.465 | +0.462 |
2 | Straight crack | 25 | 0 | 29.94 | 1.245 | 1.540 | +0.295 |
3 | Straight crack | 50 | 0 | 25.46 | 1.384 | 1.621 | +0.237 |
4 | Straight crack | 75 | 0 | 21.03 | 1.450 | 1.946 | +0.496 |
5 | Inclined crack | 25 | 30 | 29.14 | 1.293 | 1.425 | +0.132 |
6 | Inclined crack | 25 | 45 | 22.62 | 1.333 | 1.708 | +0.375 |
7 | Inclined crack | 25 | 60 | 28.24 | 1.215 | 1.419 | +0.204 |
Parameter | Symbol | Typical Value | Notes |
---|---|---|---|
Particle density | 2400 kg/m3 | Consistent with concrete density | |
Particle size (radius) | 0.5–1.5 mm | Adjusted for model resolution | |
Normal stiffness | 1.0 × 109 N/m | Calibrated to match the elastic modulus | |
Shear stiffness | 0.5 × 109 N/m | Typically = 0.5 | |
Normal bond strength | 4.75 MPa | Calibrated to match peak compressive strength | |
Shear bond strength | 2.85 MPa | Typically, = 0.6 × | |
Friction coefficient | 0.5 | Typical value for concrete contact | |
Bond radius multiplier | 1.0–1.2 | Slightly larger than the particle radius for stability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Jiang, Y.; Sugimoto, S. Research on Strength Degradation and Crack Development in Defective Concrete. GeoHazards 2025, 6, 50. https://doi.org/10.3390/geohazards6030050
Lin Q, Jiang Y, Sugimoto S. Research on Strength Degradation and Crack Development in Defective Concrete. GeoHazards. 2025; 6(3):50. https://doi.org/10.3390/geohazards6030050
Chicago/Turabian StyleLin, Qiwei, Yujing Jiang, and Satoshi Sugimoto. 2025. "Research on Strength Degradation and Crack Development in Defective Concrete" GeoHazards 6, no. 3: 50. https://doi.org/10.3390/geohazards6030050
APA StyleLin, Q., Jiang, Y., & Sugimoto, S. (2025). Research on Strength Degradation and Crack Development in Defective Concrete. GeoHazards, 6(3), 50. https://doi.org/10.3390/geohazards6030050