Dirac Theory in Noncommutative Phase Spaces
Abstract
:1. Introduction
2. Noncommutative Relations and Their Heisenberg Representation
2.1. From Canonical Commutative Relations to Noncommutative Relations
2.2. Heisenberg Representation of Noncommutative Relations
2.3. Effective Gauge Potential in Heisenberg Representation
3. Dirac Equation
3.1. Canonical form of Dirac Equation
3.2. Lorentz-Covariant form of Dirac Equation
3.3. Spin and Helicity
3.4. Probability Current and Continuity Equation
3.5. Symmetry
4. Perturbation Solution of Dirac Equation
4.1. Eigen Energies and Wave Functions
4.2. Probability and Current Densities
4.3. Nonrelativistic Approximation
5. What Physics Happens in Noncommutative Phase Space
5.1. Physics of Parameterization Scheme
5.2. Noncommutative Algebra, Curvature, and Cosmological Constant
5.3. Intrinsic Velocity, Force, and Zitterbewegung Oscillation
5.4. Equation of Motion
5.5. Particle–Antiparticle Symmetric Breaking and Quantum Decoherence
6. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Basic Commutative Relations
Appendix B. Proof of the Noncanonical Map
Appendix C. The Perturbed Matrix Elements
Appendix D. Lorentz-Type Force
References
- Greiner, W. Quantum Mechanics: An Introduction; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman and Company: San Francisco, CA, USA, 1973; Available online: https://archive.org/details/gravitation0000misn/ (accessed on 12 June 2024).
- Rovelli, C. Quantum Gravity; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Matarrese, S.; Colpi, M.; Gorini, V.; Moschella, U. (Eds.) Dark Matter and Dark Energy. A Challenge for Modern Cosmology; Canopus Academic Publishing Limited/Springer Science+Business Media B.V.: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Fredenhagen, K. Gravity induced noncommutative spacetime. Rev. Math. Phys. 1995, 7, 559–565. [Google Scholar] [CrossRef]
- Bastos, C.; Bertolami, O.; Dias, N.; Prata, J. Noncommutative quantum mechanics and qauntum cosmology. Int. J. Mod. Phys. A 2013, 28, 1350064. [Google Scholar] [CrossRef]
- Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977–1029. [Google Scholar] [CrossRef]
- Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rep. 2003, 378, 207–299. [Google Scholar] [CrossRef]
- Konechny, A.; Schwarz, A. Introduction to M(atrix) theory and noncommutative geometry. Phys. Rep. 2002, 360, 353–465. [Google Scholar] [CrossRef]
- Rosenbaum, M.; Vergara, J.D.; Juarez, L.R. Noncommutative field theory from quantum mechanical space-space noncommutativity. Phys. Lett. A 2007, 367, 1–10. [Google Scholar] [CrossRef]
- Chaichian, M.; Demichev, A.; Prešnajder, P.; Sheikh-Jabbari, M.M.; Tureanu, A. Noncommutative gauge field theories: A no-go theorem. Phys. Lett. B 2002, 526, 132–136. [Google Scholar] [CrossRef]
- Bellucci, S.; Nersessian, A.; Sochichiu, C. Two phases of the noncommutative quantum mechanics. Phys. Lett. B 2001, 52, 345–349. [Google Scholar] [CrossRef]
- Gomes, M.; Kupriyanov, V.G. Position-dependent noncommutativity in quantum mechanics. Phys. Rev. D 2009, 79, 125011. [Google Scholar] [CrossRef]
- Gomes, M.; Kupriyanov, V.G.; da Silva, A.J. Dynamical noncommutativity. J. Phys. A Math. Theor. 2010, 43, 285301. [Google Scholar] [CrossRef]
- Ho, P.-M.; Kao, H.-C. Noncommutative quantum mechanics from noncommutative quantum field theory. Phys. Rev. Lett. 2002, 88, 151602. [Google Scholar] [CrossRef]
- Vassilevich, D.V. Holographic duals to poisson sigma models and noncommutative quantum mechanics. Phys. Rev. D 2013, 87, 104011. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang–Mills theory. Nucl. Phys. B 1994, 426, 19–52. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 9, 032. [Google Scholar] [CrossRef]
- Gouba, L. A comparative review of four formulations of noncommutative quantum mechanics. Int. J. Mod. Phys. A 2016, 31, 1630025. [Google Scholar] [CrossRef]
- Gamboa, J.; Loewe, M.; Rojas, J.C. Noncommutative quantum mechanics. Phys. Rev. D 2001, 64, 067901. [Google Scholar] [CrossRef]
- Gamboa, J.; Loewe, M.; Mendez, F.; Rojas, J.C. Noncommutative quantum mechanics: The two dimensional central field. Int. J. Mod. Phys. A 2002, 17, 25552565. [Google Scholar] [CrossRef]
- Viela Mendes, R. Quantum mechanics and non-commutative space-time. Phys. Lett. A 1996, 210, 232–240. [Google Scholar] [CrossRef]
- Kokado, A.; Okamura, T.; Saito, T. Noncommutative quantum mechanics and the Seiberg–Witten map. Phys. Rev. D 2004, 69, 125007. [Google Scholar] [CrossRef]
- Bastos, C.; Bertolami, O. Berry phase in the gravitational quantum well and the Seiberg–Witten map. Phys. Lett. A 2008, 372, 5556–5559. [Google Scholar] [CrossRef]
- Bastos, C.; Bernardini, A.E.; Bertolami, O.; Dias, N.C.; Prata, J.N. Bell operator and Gaussian squeezed states in noncommutative quantum mechanics. Phys. Rev. D 2016, 93, 104055. [Google Scholar] [CrossRef]
- Lapa, M.F.; Hughes, T.L. Hall viscosity and geometric response in the Chern-Simons matrix model of the Laughlin states. Phys. Rev. B 2018, 97, 205122. [Google Scholar] [CrossRef]
- Berard, A.; Mohrbach, H. Monopole and Berry phase in momentum space in noncommutative quantum mechanics. Phys. Rev. D 2004, 69, 127701. [Google Scholar] [CrossRef]
- Basu, B.; Chowdhury, D.; Ghosh, S. Inertial spin Hall effect in noncommutative space. Phys. Lett. A 2013, 377, 1661–1667. [Google Scholar] [CrossRef]
- Delduc, F.; Duret, Q.; Gieres, F.; Lefrancois, M. Magnetic fields in noncommutative quantum mechanics. J. Phys. Conf. Ser. 2008, 103, 012020. [Google Scholar] [CrossRef]
- Kováčik, S.; Prešnajder, P. Magnetic monopoles in noncommutative quantum mechanics 2. J. Math. Phys. 2018, 59, 082107. [Google Scholar] [CrossRef]
- Liang, S.-D.; Harko, T. Towards an observable test of noncommutative quantum mechanics. Ukr. J. Phys. 2019, 64, 983–990. [Google Scholar] [CrossRef]
- Harko, T.; Liang, S.-D. Energy-dependent noncommutative quantum mechanics. Eur. Phys. J. C 2019, 79, 300. [Google Scholar] [CrossRef]
- Das, A.; Falomir, H.; Gamboa, J.; Mendez, F.; Nieto, M. Aharonov–Bohm effect in a class of noncommutative theories. Phys. Rev. D 2011, 84, 045002. [Google Scholar] [CrossRef]
- Liang, S.-D.; Li, H.; Huang, G.-Y. Detecting noncommutative phase space by the Aharonov–Bohm effect. Phys. Rev. A 2014, 90, 010102. [Google Scholar] [CrossRef]
- Rodriguez, M.E. Quantum effects of Aharonov–Bohm type and noncommutative quantum mechanics. Phys. Rev. A 2018, 79, 012109. [Google Scholar] [CrossRef]
- Chaichiian, M.; Langvik, M.; Sasaki, S.; Tureanu, A. Gauge covariance of the Aharonov–Bohm phase in noncommutative quantum mechanics. Phys. Lett. A 2008, 666, 199–204. [Google Scholar] [CrossRef]
- Biswas, S.; Nandi, P.; Chakraborty, B. Emergence of a geometric phase shift in planar noncommutative quantum mechanics. Phys. Rev. A 2020, 102, 022231. [Google Scholar] [CrossRef]
- Lake, M.J.; Miller, M.; Ganardi, R.F.; Liu, Z.; Liang, S.-D.; Paterek, T. Generalised uncertainty relations from superpositions of geometries. Class. Quant. Grav. 2019, 36, 155012. [Google Scholar] [CrossRef]
- Lake, M.J.; Miller, M.; Liang, S.-D. Generalised uncertainty relations for angular momentum and spin in quantum geometry. Universe 2020, 6, 56. [Google Scholar] [CrossRef]
- Bastos, C.; Bernardini, A.E.; Bertolami, O.; Dias, N.; Prata, J. Phase-space noncommutative formulation of Ozawa’s uncertainty principle. Rev. Phys. D 2014, 90, 045023. [Google Scholar] [CrossRef]
- Bastos, A.; Bernardini, A.E.; Bertolami, O.; Dias, N.C.; Prata, J.N. Phase-space noncommutative extension of the Robertson–Schrödinger formulation of Ozawa’s uncertainty principle. Phys. Rev. D 2015, 91, 065036. [Google Scholar] [CrossRef]
- Bastos, C.; Bertolami, O.; Dias, N.C.; Prata, J.N. Violation of the Robertson–Schrödinger uncertainty principle and noncommutative quantum mechanics. Phys. Rev. D 2012, 86, 105030. [Google Scholar] [CrossRef]
- Liang, S.-D.; Lake, M.J. An introduction to noncommutative physics. Physics 2023, 5, 436–460. [Google Scholar] [CrossRef]
- Liang, S.-D. Klein-Gordon theory in noncommutative phase space. Symmetry 2023, 15, 367. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, P.; Silenko, A.J. Position and spin in relativistic quantum mechanics. Phys. Rev. A 2020, 101, 032117. [Google Scholar] [CrossRef]
- Gubitosi, G.; Lizzi, F.; Relancio, J.J.; Vitale, P. Double quantization. Phys. Rev. D 2022, 105, 126013. [Google Scholar] [CrossRef]
- Calmet, X.; Selvaggi, M. Quantum mechanics on noncommutative spacetime. Phys. Rev. D 2006, 74, 037901. [Google Scholar] [CrossRef]
- Gomes, M.; Kupriyanov, V.G.; da Silva, A.J. Noncommutativity due to spin. Phys. Rev. D 2010, 81, 085024. [Google Scholar] [CrossRef]
- Falomir, H.; Gamboa, J.; Lopez-Sarrion, J.; Mendez, F.; Pisani, P.A.G. Magnetic-dipole spin effects in noncommutative quantum mechanics. Phys. Lett. B 2009, 680, 384–386. [Google Scholar] [CrossRef]
- Ferrari, A.F.; Gomes, M.; Kupriyanov, V.G.; Stechhahn, C.A. Dynamics of a Dirac fermion in the presence of spin noncommutativity. Phys. Lett. B 2013, 718, 1475–1480. [Google Scholar] [CrossRef]
- Ghosh, S.; Pal, P. Deformed special relativity and deformed symmetries in a canonical framework. Phys. Rev. D 2007, 75, 1035021. [Google Scholar] [CrossRef]
- Dey, S.; Fring, A. Noncommutative quantum mechanics in a time-dependent background. Phys. Rev. D 2014, 90, 084005. [Google Scholar] [CrossRef]
- Mignemi, S. Classical and quantum mechanics of the nonrelativistic Snyder mode. Phys. Rev. D 2011, 84, 025021. [Google Scholar] [CrossRef]
- Bernardini, A.E.; Bertolami, O. Noncommutative phase-space Lotka–Volterra dynamics: The quantum analog. Phys. Rev. E 2022, 106, 024202. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Srivastava, Y.N.; Vitiello, G.; Widom, A. Quantum dissipation induced noncommutative geometry. Phys. Lett. A 2003, 311, 97–105. [Google Scholar] [CrossRef]
- Wachter, A. Relativistic Quantum Mechanics; Springer Science+Business Media B.V.: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Greiner, W. Relativistic Quantum Mechanics. Wave Equations; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Petruzziello, L.; Illuminati, F. Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale. Nat. Commun. 2001, 12, 4449. [Google Scholar] [CrossRef]
- Blanchard, P.; Giulini, D.; Joos, E.; Kiefer, C.; Stamatescu, I.-O. (Eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems. Proceedings. Bielefeld, Germany, 1998; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–775. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.-D. Dirac Theory in Noncommutative Phase Spaces. Physics 2024, 6, 945-963. https://doi.org/10.3390/physics6030058
Liang S-D. Dirac Theory in Noncommutative Phase Spaces. Physics. 2024; 6(3):945-963. https://doi.org/10.3390/physics6030058
Chicago/Turabian StyleLiang, Shi-Dong. 2024. "Dirac Theory in Noncommutative Phase Spaces" Physics 6, no. 3: 945-963. https://doi.org/10.3390/physics6030058
APA StyleLiang, S. -D. (2024). Dirac Theory in Noncommutative Phase Spaces. Physics, 6(3), 945-963. https://doi.org/10.3390/physics6030058