Next Issue
Volume 4, December
Previous Issue
Volume 4, June
 
 

IoT, Volume 4, Issue 3 (September 2023) – 10 articles

Cover Story (view full-size image): This publication presents the development of an Industrial-Internet-of-Things device. The device is capable of completing several tasks, such as the acquisition of high-frequency measurement data and evaluating data via machine learning methods in an artificial intelligence application. The installed measurement technology generates data comparable to data generated by costly laboratory equipment, meaning that it can be used as a low-budget and open-source alternative. The designed process can be used for arbitrary, artificial intelligence-based rapid prototyping. In 2023, we established the Department of Artificial Intelligence at FGW e.V. with the aim of bridging the gap between cutting-edge research and practical real-world applications. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 437 KiB  
Article
IoT-Applicable Generalized Frameproof Combinatorial Designs
by Bimal Kumar Roy and Anandarup Roy
IoT 2023, 4(3), 466-485; https://doi.org/10.3390/iot4030020 - 21 Sep 2023
Cited by 1 | Viewed by 1645
Abstract
Secret sharing schemes are widely used to protect data by breaking the secret into pieces and sharing them amongst various members of a party. In this paper, our objective is to produce a repairable ramp scheme that allows for the retrieval of a [...] Read more.
Secret sharing schemes are widely used to protect data by breaking the secret into pieces and sharing them amongst various members of a party. In this paper, our objective is to produce a repairable ramp scheme that allows for the retrieval of a share through a collection of members in the event of its loss. Repairable Threshold Schemes (RTSs) can be used in cloud storage and General Data Protection Regulation (GDPR) protocols. Secure and energy-efficient data transfer in sensor-based IoTs is built using ramp-type schemes. Protecting personal privacy and reinforcing the security of electronic identification (eID) cards can be achieved using similar schemes. Desmedt et al. introduced the concept of frameproofness in 2021, which motivated us to further improve our construction with respect to this framework. We introduce a graph theoretic approach to the design for a well-rounded and easy presentation of the idea and clarity of our results. We also highlight the importance of secret sharing schemes for IoT applications, as they distribute the secret amongst several devices. Secret sharing schemes offer superior security in lightweight IoT compared to symmetric key encryption or AE schemes because they do not disclose the entire secret to a single device, but rather distribute it among several devices. Full article
Show Figures

Figure 1

36 pages, 2072 KiB  
Article
Challenges and Opportunities in the Internet of Intelligence of Things in Higher Education—Towards Bridging Theory and Practice
by Raafat George Saadé, Jun Zhang, Xiaoyong Wang, Hao Liu and Hong Guan
IoT 2023, 4(3), 430-465; https://doi.org/10.3390/iot4030019 - 14 Sep 2023
Cited by 3 | Viewed by 3443
Abstract
The application of the Internet of Things is increasing in momentum as advances in artificial intelligence exponentially increase its integration. This has caused continuous shifts in the Internet of Things paradigm with increasing levels of complexity. Consequently, researchers, practitioners, and governments continue facing [...] Read more.
The application of the Internet of Things is increasing in momentum as advances in artificial intelligence exponentially increase its integration. This has caused continuous shifts in the Internet of Things paradigm with increasing levels of complexity. Consequently, researchers, practitioners, and governments continue facing evolving challenges, making it more difficult to adapt. This is especially true in the education sector, which is the focus of this article. The overall purpose of this study is to explore the application of IoT and artificial intelligence in education and, more specifically, learning. Our methodology follows four research questions. We first report the results of a systematic literature review on the Internet of Intelligence of Things (IoIT) in education. Secondly, we develop a corresponding conceptual model, followed thirdly by an exploratory pilot survey conducted on a group of educators from around the world to get insights on their knowledge and use of the Internet of Things in their classroom, thereby providing a better understanding of issues, such as knowledge, use, and their readiness to integrate IoIT. We finally present the application of the IoITE conceptual model in teaching and learning through four use cases. Our review of publications shows that research in the IoITE is scarce. This is even more so if we consider its application to learning. Analysis of the survey results finds that educators, in general, are lacking in their readiness to innovate with the Internet of Things in learning. Use cases highlight IoITE possibilities and its potential to explore and exploit. Challenges are identified and discussed. Full article
Show Figures

Figure 1

18 pages, 1409 KiB  
Review
Exploring the Confluence of IoT and Metaverse: Future Opportunities and Challenges
by Rameez Asif and Syed Raheel Hassan
IoT 2023, 4(3), 412-429; https://doi.org/10.3390/iot4030018 - 12 Sep 2023
Cited by 2 | Viewed by 3957
Abstract
The Internet of Things (IoT) and the metaverse are two rapidly evolving technologies that have the potential to shape the future of our digital world. IoT refers to the network of physical devices, vehicles, buildings, and other objects that are connected to the [...] Read more.
The Internet of Things (IoT) and the metaverse are two rapidly evolving technologies that have the potential to shape the future of our digital world. IoT refers to the network of physical devices, vehicles, buildings, and other objects that are connected to the internet and capable of collecting and sharing data. The metaverse, on the other hand, is a virtual world where users can interact with each other and digital objects in real time. In this research paper, we aim to explore the intersection of the IoT and metaverse and the opportunities and challenges that arise from their convergence. We will examine how IoT devices can be integrated into the metaverse to create new and immersive experiences for users. We will also analyse the potential use cases and applications of this technology in various industries such as healthcare, education, and entertainment. Additionally, we will discuss the privacy, security, and ethical concerns that arise from the use of IoT devices in the metaverse. A survey is conducted through a combination of a literature review and a case study analysis. This review will provide insights into the potential impact of IoT and metaverse on society and inform the development of future technologies in this field. Full article
Show Figures

Figure 1

46 pages, 4628 KiB  
Review
Global Models of Smart Cities and Potential IoT Applications: A Review
by Ahmed Hassebo and Mohamed Tealab
IoT 2023, 4(3), 366-411; https://doi.org/10.3390/iot4030017 - 31 Aug 2023
Cited by 10 | Viewed by 8140
Abstract
As the world becomes increasingly urbanized, the development of smart cities and the deployment of IoT applications will play an essential role in addressing urban challenges and shaping sustainable and resilient urban environments. However, there are also challenges to overcome, including privacy and [...] Read more.
As the world becomes increasingly urbanized, the development of smart cities and the deployment of IoT applications will play an essential role in addressing urban challenges and shaping sustainable and resilient urban environments. However, there are also challenges to overcome, including privacy and security concerns, and interoperability issues. Addressing these challenges requires collaboration between governments, industry stakeholders, and citizens to ensure the responsible and equitable implementation of IoT technologies in smart cities. The IoT offers a vast array of possibilities for smart city applications, enabling the integration of various devices, sensors, and networks to collect and analyze data in real time. These applications span across different sectors, including transportation, energy management, waste management, public safety, healthcare, and more. By leveraging IoT technologies, cities can optimize their infrastructure, enhance resource allocation, and improve the quality of life for their citizens. In this paper, eight smart city global models have been proposed to guide the development and implementation of IoT applications in smart cities. These models provide frameworks and standards for city planners and stakeholders to design and deploy IoT solutions effectively. We provide a detailed evaluation of these models based on nine smart city evaluation metrics. The challenges to implement smart cities have been mentioned, and recommendations have been stated to overcome these challenges. Full article
(This article belongs to the Topic IoT for Energy Management Systems and Smart Cities)
Show Figures

Figure 1

21 pages, 3472 KiB  
Article
Deep Autoencoder-Based Integrated Model for Anomaly Detection and Efficient Feature Extraction in IoT Networks
by Khaled A. Alaghbari, Heng-Siong Lim, Mohamad Hanif Md Saad and Yik Seng Yong
IoT 2023, 4(3), 345-365; https://doi.org/10.3390/iot4030016 - 25 Aug 2023
Cited by 3 | Viewed by 4298
Abstract
The intrusion detection system (IDS) is a promising technology for ensuring security against cyber-attacks in internet-of-things networks. In conventional IDS, anomaly detection and feature extraction are performed by two different models. In this paper, we propose a new integrated model based on deep [...] Read more.
The intrusion detection system (IDS) is a promising technology for ensuring security against cyber-attacks in internet-of-things networks. In conventional IDS, anomaly detection and feature extraction are performed by two different models. In this paper, we propose a new integrated model based on deep autoencoder (AE) for anomaly detection and feature extraction. Firstly, AE is trained based on normal network traffic and used later to detect anomalies. Then, the trained AE model is employed again to extract useful low-dimensional features for anomalous data without the need for a feature extraction training stage, which is required by other methods such as principal components analysis (PCA) and linear discriminant analysis (LDA). After that, the extracted features are used by a machine learning (ML) or deep learning (DL) classifier to determine the type of attack (multi-classification). The performance of the proposed unified approach was evaluated on real IoT datasets called N-BaIoT and MQTTset, which contain normal and malicious network traffics. The proposed AE was compared with other popular anomaly detection techniques such as one-class support vector machine (OC-SVM) and isolation forest (iForest), in terms of performance metrics (accuracy, precision, recall, and F1-score), and execution time. AE was found to identify attacks better than OC-SVM and iForest with fast detection time. The proposed feature extraction method aims to reduce the computation complexity while maintaining the performance metrics of the multi-classifier models as much as possible compared to their counterparts. We tested the model with different ML/DL classifiers such as decision tree, random forest, deep neural network (DNN), conventional neural network (CNN), and hybrid CNN with long short-term memory (LSTM). The experiment results showed the capability of the proposed model to simultaneously detect anomalous events and reduce the dimensionality of the data. Full article
Show Figures

Figure 1

26 pages, 876 KiB  
Article
Efficient Sensing Data Collection with Diverse Age of Information in UAV-Assisted System
by Yanhua Pei, Fen Hou, Guoying Zhang and Bin Lin
IoT 2023, 4(3), 319-344; https://doi.org/10.3390/iot4030015 - 21 Aug 2023
Viewed by 1454
Abstract
With the high flexibility and low cost of the deployment of UAVs, the application of UAV-assisted data collection has become widespread in the Internet of Things (IoT) systems. Meanwhile, the age of information (AoI) has been adopted as a key metric to evaluate [...] Read more.
With the high flexibility and low cost of the deployment of UAVs, the application of UAV-assisted data collection has become widespread in the Internet of Things (IoT) systems. Meanwhile, the age of information (AoI) has been adopted as a key metric to evaluate the quality of the collected data. Most of the literature generally focuses on minimizing the age of all information. However, minimizing the overall AoI may lead to high costs and massive energy consumption. In addition, not all types of data need to be updated highly frequently. In this paper, we consider both the diversity of different tasks in terms of the data update period and the AoI of the collected sensing information. An efficient data collection method is proposed to maximize the system utility while ensuring the freshness of the collected information relative to their respective update periods. This problem is NP-hard. With the decomposition, we optimize the upload strategy of sensor nodes at each time slot, as well as the hovering positions and flight speeds of UAVs. Simulation results show that our method ensures the relative freshness of all information and reduces the time-averaged AoI by 96.5%, 44%, 90.4%, and 26% when the number of UAVs is 1 compared to the corresponding EMA, AOA, DROA, and DRL-eFresh, respectively. Full article
(This article belongs to the Special Issue 5G Mobile Communication for Intelligent Applications)
Show Figures

Figure 1

54 pages, 12312 KiB  
Review
A Tutorial on Agricultural IoT: Fundamental Concepts, Architectures, Routing, and Optimization
by Emmanuel Effah, Ousmane Thiare and Alexander M. Wyglinski
IoT 2023, 4(3), 265-318; https://doi.org/10.3390/iot4030014 - 27 Jul 2023
Cited by 2 | Viewed by 2706
Abstract
This paper presents an in-depth contextualized tutorial on Agricultural IoT (Agri-IoT), covering the fundamental concepts, assessment of routing architectures and protocols, and performance optimization techniques via a systematic survey and synthesis of the related literature. The negative impacts of climate change and the [...] Read more.
This paper presents an in-depth contextualized tutorial on Agricultural IoT (Agri-IoT), covering the fundamental concepts, assessment of routing architectures and protocols, and performance optimization techniques via a systematic survey and synthesis of the related literature. The negative impacts of climate change and the increasing global population on food security and unemployment threats have motivated the adoption of the wireless sensor network (WSN)-based Agri-IoT as an indispensable underlying technology in precision agriculture and greenhouses to improve food production capacities and quality. However, most related Agri-IoT testbed solutions have failed to achieve their performance expectations due to the lack of an in-depth and contextualized reference tutorial that provides a holistic overview of communication technologies, routing architectures, and performance optimization modalities based on users’ expectations. Thus, although IoT applications are founded on a common idea, each use case (e.g., Agri-IoT) varies based on the specific performance and user expectations as well as technological, architectural, and deployment requirements. Likewise, the agricultural setting is a unique and hostile area where conventional IoT technologies do not apply, hence the need for this tutorial. Consequently, this tutorial addresses these via the following contributions: (1) a systematic overview of the fundamental concepts, technologies, and architectural standards of WSN-based Agri-IoT, (2) an evaluation of the technical design requirements of a robust, location-independent, and affordable Agri-IoT, (3) a comprehensive survey of the benchmarking fault-tolerance techniques, communication standards, routing and medium access control (MAC) protocols, and WSN-based Agri-IoT testbed solutions, and (4) an in-depth case study on how to design a self-healing, energy-efficient, affordable, adaptive, stable, autonomous, and cluster-based WSN-specific Agri-IoT from a proposed taxonomy of multi-objective optimization (MOO) metrics that can guarantee an optimized network performance. Furthermore, this tutorial established new taxonomies of faults, architectural layers, and MOO metrics for cluster-based Agri-IoT (CA-IoT) networks and a three-tier objective framework with remedial measures for designing an efficient associated supervisory protocol for cluster-based Agri-IoT networks. Full article
(This article belongs to the Topic IoT for Energy Management Systems and Smart Cities)
Show Figures

Figure 1

21 pages, 5890 KiB  
Article
An IIoT-Device for Acquisition and Analysis of High-Frequency Data Processed by Artificial Intelligence
by Jens Kneifel, Robin Roj, Hans-Bernhard Woyand, Ralf Theiß and Peter Dültgen
IoT 2023, 4(3), 244-264; https://doi.org/10.3390/iot4030013 - 25 Jul 2023
Cited by 1 | Viewed by 1970
Abstract
This publication presents the development of an Industrial-Internet-of-Things device. The device is capable of completing several tasks, such as the acquisition of high-frequency measurement data and evaluating data via machine learning methods in an artificial intelligence application. The installed measurement technology generates data [...] Read more.
This publication presents the development of an Industrial-Internet-of-Things device. The device is capable of completing several tasks, such as the acquisition of high-frequency measurement data and evaluating data via machine learning methods in an artificial intelligence application. The installed measurement technology generates data which is comparable to data generated by costly laboratory equipment, meaning that it can be used as a low-budget and open-source alternative. A workflow method has been designed that promotes experimental work and simplifies the effort required to implement artificial intelligence solutions. At the end of this paper, the results of the experiment, which aimed to collect measurement data, extract suitable features, and train artificial intelligence models, are presented. Techniques from vibration analysis were used for feature extraction, and concepts for the extrapolation and enhancement of data sets were investigated. The test results have proven that the development is comparable with high-end laboratory equipment. The created application has demonstrated sufficient accuracy in predictions, and the designed process can be used for arbitrary, artificial intelligence-based rapid prototyping. Full article
Show Figures

Figure 1

23 pages, 46173 KiB  
Article
IoT-Enabled Smart Drip Irrigation System Using ESP32
by Gilroy P. Pereira, Mohamed Z. Chaari and Fawwad Daroge
IoT 2023, 4(3), 221-243; https://doi.org/10.3390/iot4030012 - 7 Jul 2023
Cited by 10 | Viewed by 14782
Abstract
Agriculture, or farming, is the science of cultivating the soil, growing crops, and raising livestock. Ever since the days of the first plow from sticks over ten thousand years ago, agriculture has always depended on technology. As technology and science improved, so did [...] Read more.
Agriculture, or farming, is the science of cultivating the soil, growing crops, and raising livestock. Ever since the days of the first plow from sticks over ten thousand years ago, agriculture has always depended on technology. As technology and science improved, so did the scale at which farming was possible. With the popularity and growth of the Internet of Things (IoT) in recent years, there are even more avenues for technology to make agriculture more efficient and help farmers in every nation. In this paper, we designed a smart IoT-enabled drip irrigation system using ESP32 to automate the irrigation process, and we tested it. The ESP32 communicates with the Blynk app, which is used to collect irrigation data, manually water the plants, switch off the automatic watering function, and plot graphs based on the readings of the sensors. We connected the ESP32 to a soil moisture sensor, temperature sensor, air humidity sensor, and water flow sensor. The ESP32 regularly checks if the soil is dry. If the soil is dry and the soil temperature is appropriate for watering, the ESP32 opens a solenoid valve and waters the plants. The amount of time to run the drip irrigation system is determined based on the flow rate measured by the water flow sensor. The ESP32 reads the humidity sensor values and notifies the user when the humidity is too high or too low. The user can switch off the automatic watering system according to the humidity value. In both primary and field tests, we found that the system ran well and was able to grow green onions. Full article
(This article belongs to the Topic IoT for Energy Management Systems and Smart Cities)
Show Figures

Figure 1

19 pages, 1487 KiB  
Article
An IoT- and Cloud-Based E-Waste Management System for Resource Reclamation with a Data-Driven Decision-Making Process
by Mithila Farjana, Abu Bakar Fahad, Syed Eftasum Alam and Md. Motaharul Islam
IoT 2023, 4(3), 202-220; https://doi.org/10.3390/iot4030011 - 6 Jul 2023
Cited by 15 | Viewed by 10372
Abstract
IoT-based smart e-waste management is an emerging field that combines technology and environmental sustainability. E-waste is a growing problem worldwide, as discarded electronics can have negative impacts on the environment and public health. In this paper, we have proposed a smart e-waste management [...] Read more.
IoT-based smart e-waste management is an emerging field that combines technology and environmental sustainability. E-waste is a growing problem worldwide, as discarded electronics can have negative impacts on the environment and public health. In this paper, we have proposed a smart e-waste management system. This system uses IoT devices and sensors to monitor and manage the collection, sorting, and disposal of e-waste. The IoT devices in this system are typically embedded with sensors that can detect and monitor the amount of e-waste in a given area. These sensors can provide real-time data on e-waste, which can then be used to optimize collection and disposal processes. E-waste is like an asset to us in most cases; as it is recyclable, using it in an efficient manner would be a perk. By employing machine learning to distinguish e-waste, we can contribute to separating metallic and plastic components, the utilization of pyrolysis to transform plastic waste into bio-fuel, coupled with the generation of bio-char as a by-product, and the repurposing of metallic portions for the development of solar batteries. We can optimize its use and also minimize its environmental impact; it presents a promising avenue for sustainable waste management and resource recovery. Our proposed system also uses cloud-based platforms to help analyze patterns and trends in the data. The Autoregressive Integrated Moving Average, a statistical method used in the cloud, can provide insights into future garbage levels, which can be useful for optimizing waste collection schedules and improving the overall process. Full article
(This article belongs to the Topic IoT for Energy Management Systems and Smart Cities)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop