Previous Issue
Volume 5, June
 
 

IoT, Volume 5, Issue 3 (September 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 3996 KiB  
Article
Maximal LoRa Range for Unmanned Aerial Vehicle Fleet Service in Different Environmental Conditions
by Lorenzo Felli, Romeo Giuliano, Andrea De Negri, Francesco Terlizzi, Franco Mazzenga and Alessandro Vizzarri
IoT 2024, 5(3), 509-523; https://doi.org/10.3390/iot5030023 - 31 Jul 2024
Viewed by 339
Abstract
This study investigates communication between UAVs using long range (LoRa) devices, focusing on the interaction between a LoRa gateway UAV and other UAVs equipped with LoRa transmitters. By conducting experiments across various geographical regions, this study aims to delineate the fundamental boundary conditions [...] Read more.
This study investigates communication between UAVs using long range (LoRa) devices, focusing on the interaction between a LoRa gateway UAV and other UAVs equipped with LoRa transmitters. By conducting experiments across various geographical regions, this study aims to delineate the fundamental boundary conditions for the efficient control of a UAV fleet. The parameters under analysis encompass inter-device spacing, radio interference effects, and terrain topography. This research yields pivotal insights into communication network design and optimization, thereby enhancing operational efficiency and safety within diverse geographical contexts for UAV operations. Further research insights could involve a weather analysis and implementation of improved solutions in terms of communication systems. Full article
Show Figures

Figure 1

31 pages, 8227 KiB  
Article
Advancing XSS Detection in IoT over 5G: A Cutting-Edge Artificial Neural Network Approach
by Rabee Alqura’n, Mahmoud AlJamal, Issa Al-Aiash, Ayoub Alsarhan, Bashar Khassawneh, Mohammad Aljaidi and Rakan Alanazi
IoT 2024, 5(3), 478-508; https://doi.org/10.3390/iot5030022 - 25 Jul 2024
Viewed by 457
Abstract
The rapid expansion of the Internet of Things (IoT) and the advancement of 5G technology require strong cybersecurity measures within IoT frameworks. Traditional security methods are insufficient due to the wide variety and large number of IoT devices and their limited computational capabilities. [...] Read more.
The rapid expansion of the Internet of Things (IoT) and the advancement of 5G technology require strong cybersecurity measures within IoT frameworks. Traditional security methods are insufficient due to the wide variety and large number of IoT devices and their limited computational capabilities. With 5G enabling faster data transmission, security risks have increased, making effective protective measures essential. Cross-Site Scripting (XSS) attacks present a significant threat to IoT security. In response, we have developed a new approach using Artificial Neural Networks (ANNs) to identify and prevent XSS breaches in IoT systems over 5G networks. We significantly improved our model’s predictive performance by using filter and wrapper feature selection methods. We validated our approach using two datasets, NF-ToN-IoT-v2 and Edge-IIoTset, ensuring its strength and adaptability across different IoT environments. For the NF-ToN-IoT-v2 dataset with filter feature selection, our Bilayered Neural Network (2 × 10) achieved the highest accuracy of 99.84%. For the Edge-IIoTset dataset with filtered feature selection, the Trilayered Neural Network (3 × 10) achieved the best accuracy of 99.79%. We used ANOVA tests to address the sensitivity of neural network performance to initial conditions, confirming statistically significant improvements in detection accuracy. The ANOVA results validated the enhancements across different feature selection methods, demonstrating the consistency and reliability of our approach. Our method demonstrates outstanding accuracy and robustness, highlighting its potential as a reliable solution for enhancing IoT security in the era of 5G networks. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop