Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis
Abstract
:1. Introduction
2. Experimental Procedures
2.1. General
2.2. General Procedure for Catalytic Epoxidation of Olefins
2.3. General Procedure for the Metal-Free Oxidation of Styrene Oxide to Benzaldehyde
3. Results and Discussion
3.1. Solvent Effects on the Catalytic Oxidation of Olefins
3.2. Solvent Effects on Conversion of Styrene Oxide—Model Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaccaria, F.; Fagiolari, L.; Macchioni, A. Optimizing noble metals exploitation in water oxidation catalysis by their incorporation in layered double hydroxides. Inorg. Chim. Acta 2021, 516, 120161. [Google Scholar] [CrossRef]
- Goyal, R.; Singh, O.; Agrawal, A.; Samanta, C.; Sarkar, B. Advantages and limitations of catalytic oxidation with hydrogen peroxide: From bulk chemicals to lab scale process. Catal. Rev. 2020, 1–57. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Shokouhimehr, M.; Varma, R.S. Recent developments in palladium (nano)catalysts supported on polymers for selective and sustainable oxidation processes. Coord. Chem. Rev. 2019, 397, 54–75. [Google Scholar] [CrossRef]
- Ahn, S.; Hong, M.; Sundararajan, M.; Ess, D.H.; Baik, M.H. Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chem. Rev. 2019, 119, 6509–6560. [Google Scholar] [CrossRef]
- Vedrine, J.C. Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSusChem 2019, 12, 577–588. [Google Scholar] [CrossRef]
- Vedrine, J.C. Heterogeneous Catalysis on Metal Oxides. Catalysts 2017, 7, 341. [Google Scholar] [CrossRef] [Green Version]
- Clarke, C.J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef]
- Kajbafvala, A.; Ali, M.E.; Rahman, M.M.; Sarkar, S.M.; Hamid, S.B.A. Heterogeneous Metal Catalysts for Oxidation Reactions. J. Nanomater. 2014, 1687–4110. [Google Scholar] [CrossRef]
- Leus, K.; Liu, Y.-Y.; Van Der Voort, P. Metal-Organic Frameworks as Selective or Chiral Oxidation Catalysts. Catal. Rev. 2014, 56, 1–56. [Google Scholar] [CrossRef] [Green Version]
- Valange, S.; Vedrine, J.C. General and Prospective Views on Oxidation Reactions in Heterogeneous Catalysis. Catalysts 2018, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Kholdeeva, O.; Maksimchuk, N. Metal-Organic Frameworks in Oxidation Catalysis with Hydrogen Peroxide. Catalysts 2021, 11, 283. [Google Scholar] [CrossRef]
- Trehoux, A.; Guillot, R.; Clemancey, M.; Blondin, G.; Latour, J.M.; Mahy, J.P.; Avenier, F. Bioinspired symmetrical and unsymmetrical diiron complexes for selective oxidation catalysis with hydrogen peroxide. Dalton Trans. 2020, 49, 16657–16661. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhang, Z.; Li, X.; Tian, H.; Yan, T.; Zhang, X.; Liu, S.; Sun, X.; Xu, L.; et al. One-Step Template-Free Fabrication of Ultrathin Mixed-Valence Polyoxovanadate-Incorporated Metal Organic Framework Nanosheets for Highly Efficient Selective Oxidation Catalysis in Air. ACS Appl. Mater. Interf. 2019, 11, 12786–12796. [Google Scholar] [CrossRef]
- Kholdeeva, O.A. Liquid-phase selective oxidation catalysis with metal-organic frameworks. Catal. Today 2016, 278, 22–29. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, B.; Zhang, Q.H.; Deng, W.P.; Wang, Y.; Yang, Y.H. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014, 43, 3480–3524. [Google Scholar] [CrossRef]
- Boisvert, L.; Goldberg, K.I. Reactions of Late Transition Metal Complexes with Molecular Oxygen. Acc. Chem. Res. 2012, 45, 899–910. [Google Scholar] [CrossRef]
- Hermans, I.; Spier, E.S.; Neuenschwander, U.; Turra, N.; Baiker, A. Selective Oxidation Catalysis: Opportunities and Challenges. Top. Catal. 2009, 52, 1162–1174. [Google Scholar] [CrossRef]
- Fernandes, C.I.; Vaz, P.D.; Nunes, T.G.; Nunes, C.D. Zinc biomimetic catalysts for epoxidation of olefins with H2O2. Appl. Clay Sci. 2020, 190, 105562. [Google Scholar] [CrossRef]
- Fernandes, C.I.; Vaz, P.D.; Nunes, C.D. Selective and Efficient Olefin Epoxidation by Robust Magnetic Mo Nanocatalysts. Catalysts 2021, 11, 380. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, Z.Y.; He, X.P.; Zhang, F.; Zhang, Z.B. Regulation of the products of styrene oxidation. Chem. Eng. Res. Des. 2017, 120, 171–178. [Google Scholar] [CrossRef]
- Sun, W.L.; Hu, J.L. Oxidation of styrene to benzaldehyde with hydrogen peroxide in the presence of catalysts obtained by the immobilization of H3PW12O40 on SBA-15mesoporous material. React. Kinet. Mech. Catal. 2016, 119, 305–318. [Google Scholar] [CrossRef]
- Fu, Y.H.; Xu, L.; Shen, H.M.; Yang, H.; Zhang, F.M.; Zhu, W.D.; Fan, M.H. Tunable catalytic properties of multi-metal-organic frameworks for aerobic styrene oxidation. Chem. Eng. J. 2016, 299, 135–141. [Google Scholar] [CrossRef]
- Neto, A.D.S.; Pinheiro, L.G.; Filho, J.M.; Oliveira, A.C. Studies on styrene selective oxidation over iron-based catalysts: Reaction parameters effects. Fuel 2015, 150, 305–317. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Yu, L.; Yang, H.; Mahmood, M.H.R.; Liu, H.Y. Solvent effects on the catalytic activity of manganese(III) corroles. J. Porphyr. Phthalocyanines 2014, 18, 316–325. [Google Scholar] [CrossRef]
- Saux, C.; Pierella, L.B. Studies on styrene selective oxidation to benzaldehyde catalyzed by Cr-ZSM-5: Reaction parameters effects and kinetics. Appl. Catal. A-Gen. 2011, 400, 117–121. [Google Scholar] [CrossRef]
- Fernandes, C.I.; Rudić, S.; Vaz, P.D.; Nunes, C.D. Looking inside the pores of a MCM-41 based Mo heterogeneous styrene oxidation catalyst: An inelastic neutron scattering study. Phys. Chem. Chem. Phys. 2016, 18, 17272–17280. [Google Scholar] [CrossRef]
- Bento, A.; Sanches, A.; Vaz, P.D.; Nunes, C.D. Catalytic Application of Fe-doped MoO2 Tremella-Like Nanosheets. Top. Catal. 2016, 59, 1123–1131. [Google Scholar] [CrossRef]
- Pan, Z.; Hua, L.; Qiao, Y.; Yang, H.; Zhao, X.; Feng, B.; Zhu, W.; Hou, Z. Nanostructured Maghemite-Supported Silver Catalysts for Styrene Epoxidation. Chin. J. Catal. 2011, 32, 428–435. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Sun, Z.; Zhao, Y.; Chen, S.; Tao, R.; Liu, Z. Porous Fe3O4 nanoparticles: Synthesis and application in catalyzing epoxidation of styrene. J. Colloid Interf. Sci. 2011, 364, 298–303. [Google Scholar] [CrossRef]
- Guin, D.; Baruwati, B.; Manorama, S.V. A simple chemical synthesis of nanocrystalline AFe2O4 (A = Fe, Ni, Zn): An efficient catalyst for selective oxidation of styrene. J. Mol. Catal A Chem. 2005, 242, 26–31. [Google Scholar] [CrossRef]
- Tong, J.; Cai, X.; Wang, H.; Zhang, Q. Improvement of catalytic activity in selective oxidation of styrene with H2O2 over spinel Mg–Cu ferrite hollow spheres in water. Mater. Res. Bull. 2014, 55, 205–211. [Google Scholar] [CrossRef]
- Corma, A.; Esteve, P.; Martínez, A. Solvent Effects during the Oxidation of Olefins and Alcohols with Hydrogen Peroxide on Ti-Beta Catalyst: The Influence of the Hydrophilicity–Hydrophobicity of the Zeolite. J. Catal. 1996, 161, 11–19. [Google Scholar] [CrossRef]
- Batra, M.S.; Dwivedi, R.; Prasad, R. Recent Developments in Heterogeneous Catalyzed Epoxidation of Styrene to Styrene Oxide. Chem. Select 2019, 4, 11636–11673. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Yang, Y.; Jiang, P.; Gao, W.; Cong, R.; Yang, T. Solvent effect on the formation of active free radicals from H2O2 catalyzed by Cr-substituted PKU-1 aluminoborate: Spectroscopic investigation and reaction mechanism. Appl. Cala A Gen. 2019, 588, 117283. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, P.; Wai, P.T.; Gu, Q.; Zhang, W. Recent Progress in Application of Molybdenum-Based Catalysts for Epoxidation of Alkenes. Catalysts 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Emenike, B.U.; Spinelle, R.A.; Rosario, A.; Shinn, D.W.; Yoo, B. Solvent Modulation of Aromatic Substituent Effects in Molecular Balances Controlled by CH-pi Interactions. J. Phys. Chem. A 2018, 122, 909–915. [Google Scholar] [CrossRef]
- Fraile, J.M.; Garcia, N.; Mayoral, J.A.; Santomauro, F.G.; Guidotti, M. Multifunctional Catalysis Promoted by Solvent Effects: Ti-MCM41 for a One-Pot, Four-Step, Epoxidation-Rearrangement-Oxidation-Decarboxylation Reaction Sequence on Stilbenes and Styrenes. ACS Catal. 2015, 5, 3552–3561. [Google Scholar] [CrossRef] [Green Version]
- Koohestani, B.; Ahmad, A.L.; Bhatia, S.; Ooi, B.S. Vanadium Oxide-Based Composite Catalysts for the Oxidation of Styrene: A Comparative Study. Curr. Nanosci. 2011, 7, 781–789. [Google Scholar] [CrossRef]
- Szala-Bilnik, J.; Falkowska, M.; Bowron, D.T.; Hardacre, C.; Youngs, T.G.A. The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering. ChemPhysChem 2017, 18, 2541–2548. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.I.; Saraiva, M.S.; Nunes, T.G.; Vaz, P.D.; Nunes, C.D. Highly enantioselective olefin epoxidation controlled by helical confined environments. J. Catal. 2014, 309, 21–32. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Wang, N.-N.; Luo, J.-J.; Zhou, Y.; Yu, Z.-W. Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. Phys. Chem. Chem. Phys. 2013, 15, 18055–18064. [Google Scholar] [CrossRef]
- Platt, S.P.; Attah, I.K.; El-Shall, M.S.; Hilal, R.; Elroby, S.A.; Aziz, S.G. Unconventional CHδ+⋯N hydrogen bonding interactions in the stepwise solvation of the naphthalene radical cation by hydrogen cyanide and acetonitrile molecules. Phys. Chem. Chem. Phys. 2016, 18, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Youngs, T.G.A.; Manyar, H.; Bowron, D.T.; Gladden, L.F.; Hardacre, C. Probing chemistry and kinetics of reactions in heterogeneous catalysts. Chem. Sci. 2013, 4, 3484–3489. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.U.; Fernandes, C.I.; Nunes, T.G.; Saraiva, M.S.; Nunes, C.D.; Vaz, P.D. Performance evaluation of mesoporous host materials in olefin epoxidation using Mo(II) and Mo(VI) active species-Inorganic vs. hybrid matrix. Appl. Catal. A Gen. 2011, 408, 105–116. [Google Scholar] [CrossRef]
- Fernandes, C.I.; Stenning, G.B.G.; Taylor, J.D.; Nunes, C.D.; Vaz, P.D. Helical Channel Mesoporous Materials with Embedded Magnetic Iron Nanoparticles: Chiral Recognition and Implications in Asymmetric Olefin Epoxidation. Adv. Synth. Catal. 2015, 357, 3127–3140. [Google Scholar] [CrossRef]
- Nunes, C.D.; Rudić, S.; Vaz, P.D. Probing the Relevance of MoO2 Nanoparticle Synthesis in Their Catalytic Activity by Inelastic Neutron Scattering. Phys. Chem. Chem. Phys. 2020, 22, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Sankar, M.; Nowicka, E.; Carter, E.; Murphy, D.M.; Knight, D.W.; Bethell, D.; Hutchings, G.J. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nature Comm. 2014, 5, 3332. [Google Scholar] [CrossRef]
- Vaz, P.D.; Nunes, C.D.; Callear, S. The Active Role of Solvents in Oxidation Catalysis; STFC ISIS Facility: UK, 2015. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sales, R.N.; Callear, S.K.; Vaz, P.D.; Nunes, C.D. Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis. Chemistry 2021, 3, 753-764. https://doi.org/10.3390/chemistry3030054
Sales RN, Callear SK, Vaz PD, Nunes CD. Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis. Chemistry. 2021; 3(3):753-764. https://doi.org/10.3390/chemistry3030054
Chicago/Turabian StyleSales, Rita N., Samantha K. Callear, Pedro D. Vaz, and Carla D. Nunes. 2021. "Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis" Chemistry 3, no. 3: 753-764. https://doi.org/10.3390/chemistry3030054
APA StyleSales, R. N., Callear, S. K., Vaz, P. D., & Nunes, C. D. (2021). Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis. Chemistry, 3(3), 753-764. https://doi.org/10.3390/chemistry3030054