Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics
Abstract
:1. Introduction
2. Structure and Surface Modification of Polymersomes
3. Polymersomes as Drug Carrier
4. Polymersome-Based Targeted Anticancer Drug Delivery
5. Smart Polymersomes-Based Delivery Systems
Scheme No. | Polymer | Payload | Stimuli Response | Application | Ref. |
---|---|---|---|---|---|
1 | PEO-b-PCSSMA copolymer | Doxorubicin | Dual responsive (Light and reduction) | Synergistic loading and programmed release of therapeutics | [91] |
2 | Poly (ethylene glycol) monomethyl ether-b-methyl methacrylate-ran-2-(dimethyl amino) ethyl methacrylate mPEG-b-(PMMA-ran-PDMAEMA) | Curcumin, 2-naphthole, paclitaxel, and ampicillin sodium salt | pH-responsive | Intermolecular drug release interactions | [92] |
3 | Poly(ethylene oxide)-b-poly(2-((((5-methyl-2-(2,4,6-trimethoxyphenyl)-1,3-dioxan-5-yl)methoxy)carbonyl)amino)ethyl methacrylate) (PEO-b-PTTAMA) | Nile red Doxorubicin | pH-responsive | Targeted combinational therapeutic drugs | [93] |
4 | Poly(2-(methacryloyloxy)ethyl choline phosphate)-b-poly(2-(diisopropylamino)ethyl methacrylate) (PMCP-b-PDPA) | Doxorubicin | pH-responsive | Targeted intracellular delivery system | [94] |
5 | Methoxyl poly(ethylene glycol)-b-poly(N-isopropylacrylamide)-b-poly[2-(diethylamino)ethyl methacrylate-co-2-hydroxy-4-(methacryloyloxy)benzophenone] | Doxorubicin, paclitaxel | pH-responsive Temperature | Promising drug carriers for tumor combination chemotherapy | [95] |
6 | Poly(3-methyl-N-vinylcaprolactam)-block-poly(N-vinylpyrrolidone) (PMVC-PVPON) | Doxorubicin | Temperature | Tumor targeting and next-generation drug carriers | [96] |
7 | Poly(ethylene glycol)-b-poly(N,N-diethylaminoethyl methacrylate) (PEG-b-PDEAEM) | Gold nanorods, doxorubicin | pH-responsive, NIR-irradiation | Photothermal therapy and targeted drug delivery vehicles | [97] |
8 | Poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate) [PEO-b-P(DEA-stat-MEMA)] | Doxorubicin | Ultrasound | Chemotherapeutic efficiency | [98] |
9 | Poly(N-isopropylacrylamide)-dox-polyethylene glycol)-2,4,6-trimethoxy benzylidene pentaerythritol carbonate (PNIPAM-DOX-PEG-PTMBPEC) | Doxorubicin | pH-responsive, Temperature | Development of Cancer Therapy | [99] |
10 | Poly(N-vinylcaprolactam)10-b-poly(dimethylsiloxane)65-b-poly(N-vinylcaprolactam)10 | Doxorubicin | pH-responsive, temperature | Delivery of hydrophobic and hydrophilic anticancer therapeutics and controlled drug delivery system | [100] |
11 | Poly[2-(dimethylamino) ethyl methacrylate]-block-polystyrene (PDMAEMA-b-PS) | Ascorbic acid, cationic EPR probe CAT1 | Ph-responsive, Temperature | Gene delivery and Nanoreactors | [101] |
12 | Amphiphlic poly(ethylene glycol)-block-poly(β-aminoacrylate)-block-poly(ethylene glycol) | Doxorubicin and photosensitizer IR-780 | NIR responsive | Chemotherapy, Photothermal, and photodynamic therapy | [102] |
13 | poly(ethylene glycol)113-b-P-(CPT methacrylate monomer0.48-co-2-(pentamethyleneimino) ethyl methacrylate0.52)92 PEG113-b-P(CPTKMA0.48-co-PEMA0.52)92 | Camptothecin | ROS-responsive pH-responsive | Starving therapy, chemodynamic therapy, and chemotherapy | [103] |
14 | Poly(propylene sulfide)20-bl-poly(ethylene glycol)12 (PPS20-b-PEG12) | Zinc phthalocyanine (ZnPc), Doxorubicin | ROS NIR irradiation | Chemo-photodynamic therapy | [104] |
6. Engineering of Large-Scale Production of Polymersomes
7. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Control. Release 2004, 100, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. Nano Objects 2019, 20, 100397. [Google Scholar] [CrossRef]
- Sharmiladevi, P.; Breghatha, M.; Dhanavardhini, K.; Priya, R.; Girigoswami, K.; Girigoswami, A. Efficient Wormlike Micelles for the Controlled Delivery of Anticancer Drugs. Nanosci. Nanotechnol. 2021, 11, 350–356. [Google Scholar] [CrossRef]
- Amsaveni, G.; Farook, A.S.; Haribabu, V.; Murugesan, R.; Girigoswami, A. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv. Sci. Eng. Med. 2013, 5, 1340–1348. [Google Scholar] [CrossRef]
- De, S.; Gopikrishna, A.; Keerthana, V.; Girigoswami, A.; Girigoswami, K. An Overview of Nanoformulated Nutraceuticals and their Therapeutic Approaches. Curr. Nutr. Food Sci. 2021, 17, 392–407. [Google Scholar] [CrossRef]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Vimaladevi, M.; Divya, K.C.; Girigoswami, A. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant. J. Photochem. Photobiol. B Biol. 2016, 162, 146–152. [Google Scholar] [CrossRef]
- Deepika, R.; Girigoswami, K.; Murugesan, R.; Girigoswami, A. Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Curr. Drug Del. 2018, 15, 652–657. [Google Scholar] [CrossRef]
- Kwon, G.S.; Okano, T. Polymeric micelles as new drug carriers. Adv. Drug Del. Rev. 1996, 21, 107–116. [Google Scholar] [CrossRef]
- Xu, J.-P.; Ji, J.; Chen, W.-D.; Shen, J.-C. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. J. Control. Release 2005, 107, 502–512. [Google Scholar] [CrossRef]
- Mahdi, M.A.; Yousefi, S.R.; Jasim, L.S.; Salavati-Niasari, M. Green synthesis of DyBa2Fe3O7. 988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 2022, 47, 14319–14330. [Google Scholar] [CrossRef]
- Yousefi, S.R.; Alshamsi, H.A.; Amiri, O.; Salavati-Niasari, M. Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 2021, 337, 116405. [Google Scholar] [CrossRef]
- Paramita, P.; Subramaniam, V.D.; Murugesan, R.; Gopinath, M.; Ramachandran, I.; Ramalingam, S.; Sun, X.F.; Banerjee, A.; Marotta, F.; Pathak, S. Evaluation of potential anti-cancer activity of cationic liposomal nanoformulated Lycopodium clavatum in colon cancer cells. IET Nanobiotechnol. 2018, 12, 727–732. [Google Scholar] [CrossRef]
- Girigoswami, A.; Das, S.; De, S. Fluorescence and dynamic light scattering studies of niosomes-membrane mimetic systems. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2006, 64, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Pallavi, P.; Girigoswami, A.; Girigoswami, K.; Hansda, S.; Ghosh, R. Photodynamic Therapy in Cancer. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects; Springer: Singapore, 2022; pp. 1–24. [Google Scholar] [CrossRef]
- Pallavi, P.; Sharmiladevi, P.; Haribabu, V.; Girigoswami, K.; Girigoswami, A. A Nano Approach to Formulate Photosensitizers for Photodynamic Therapy. Curr. Nanosci. 2022, 18, 675–689. [Google Scholar]
- Harini, K.; Pallavi, P.; Gowtham, P.; Girigoswami, K.; Girigoswami, A. Smart Polymer-Based Reduction Responsive Therapeutic Delivery to Cancer Cells. Curr. Pharmacol. Rep. 2022, 8, 205–211. [Google Scholar] [CrossRef]
- Harini, K.; Girigoswami, K.; Ghosh, D.; Pallavi, P.; Gowtham, P.; Girigoswami, A. Architectural fabrication of multifunctional janus nanostructures for biomedical applications. Nanomed. J. 2022, 9, 180–191. [Google Scholar]
- Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597–6626. [Google Scholar] [CrossRef]
- Vasir, J.K.; Reddy, M.K.; Labhasetwar, V.D. Nanosystems in drug targeting: Opportunities and challenges. Curr. Nanosci. 2005, 1, 47–64. [Google Scholar] [CrossRef]
- Liu, G.-Y.; Chen, C.-J.; Ji, J. Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications. Soft Matter 2012, 8, 8811–8821. [Google Scholar] [CrossRef]
- Joglekar, M.; Trewyn, B.G. Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol. J. 2013, 8, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Araste, F.; Aliabadi, A.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J. Control. Release 2021, 330, 502–528. [Google Scholar] [CrossRef] [PubMed]
- Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem. Soc. Rev. 2018, 47, 8572–8610. [Google Scholar] [CrossRef] [PubMed]
- Zartner, L.; Muthwill, M.S.; Dinu, I.A.; Schoenenberger, C.-A.; Palivan, C.G. The rise of bio-inspired polymer compartments responding to pathology-related signals. J. Mater. Chem. B 2020, 8, 6252–6270. [Google Scholar] [CrossRef]
- Ghorbanizamani, F.; Moulahoum, H.; Zihnioglu, F.; Evran, S.; Cicek, C.; Sertoz, R.; Arda, B.; Goksel, T.; Turhan, K.; Timur, S. Quantitative paper-based dot blot assay for spike protein detection using fuchsine dye-loaded polymersomes. Biosens. Bioelectron. 2021, 192, 113484. [Google Scholar] [CrossRef]
- Koide, A.; Kishimura, A.; Osada, K.; Jang, W.-D.; Yamasaki, Y.; Kataoka, K. Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: Physiologically stable micro-/nanocontainers of water-soluble macromolecules. J. Am. Chem. Soc. 2006, 128, 5988–5989. [Google Scholar] [CrossRef]
- Discher, B.M.; Won, Y.-Y.; Ege, D.S.; Lee, J.C.; Bates, F.S.; Discher, D.E.; Hammer, D.A. Polymersomes: Tough vesicles made from diblock copolymers. Science 1999, 284, 1143–1146. [Google Scholar] [CrossRef]
- Ferji, K.; Nouvel, C.; Babin, J.; Li, M.-H.; Gaillard, C.; Nicol, E.; Chassenieux, C.; Six, J.-L. Polymersomes from amphiphilic glycopolymers containing polymeric liquid crystal grafts. ACS Macro Lett. 2015, 4, 1119–1122. [Google Scholar] [CrossRef]
- Song, Z.; Huang, Y.; Prasad, V.; Baumgartner, R.; Zhang, S.; Harris, K.; Katz, J.S.; Cheng, J. Preparation of surfactant-resistant polymersomes with ultrathick Membranes through RAFT dispersion polymerization. ACS Appl. Mater. Interfaces 2016, 8, 17033–17037. [Google Scholar] [CrossRef]
- LoPresti, C.; Massignani, M.; Fernyhough, C.; Blanazs, A.; Ryan, A.J.; Madsen, J.; Warren, N.J.; Armes, S.P.; Lewis, A.L.; Chirasatitsin, S. Controlling polymersome surface topology at the nanoscale by membrane confined polymer/polymer phase separation. ACS Nano 2011, 5, 1775–1784. [Google Scholar] [CrossRef]
- Zheng, M.; Du, Q.; Wang, X.; Zhou, Y.; Li, J.; Xia, X.; Lu, Y.; Yin, J.; Zou, Y.; Park, J.B. Tuning the elasticity of polymersomes for brain tumor targeting. Adv. Sci. 2021, 8, 2102001. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Vanderlick, T.K.; Beales, P.A. Formation and dissolution of phospholipid domains with varying textures in hybrid lipo-polymersomes. Soft Matter 2012, 8, 7982–7988. [Google Scholar] [CrossRef]
- Moulahoum, H.; Ghorbanizamani, F.; Zihnioglu, F.; Timur, S. Surface biomodification of liposomes and polymersomes for efficient targeted drug delivery. Bioconj. Chem. 2021, 32, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 2013, 42, 1147–1235. [Google Scholar] [CrossRef]
- Travanut, A.; Monteiro, P.F.; Oelmann, S.; Howdle, S.M.; Grabowska, A.M.; Clarke, P.A.; Ritchie, A.A.; Meier, M.A.; Alexander, C. Synthesis of Passerini-3CR Polymers and Assembly into Cytocompatible Polymersomes. Macromol. Rapid Commun. 2021, 42, 2000321. [Google Scholar] [CrossRef]
- Travanut, A.; Monteiro, P.F.; Smith, S.; Howdle, S.M.; Grabowska, A.M.; Kellam, B.; Meier, M.A.; Alexander, C. Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles. J. Mater. Chem. B 2022, 10, 3895–3905. [Google Scholar] [CrossRef] [PubMed]
- Brož, P.; Benito, S.M.; Saw, C.; Burger, P.; Heider, H.; Pfisterer, M.; Marsch, S.; Meier, W.; Hunziker, P. Cell targeting by a generic receptor-targeted polymer nanocontainer platform. J. Control. Release 2005, 102, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Ramezani, M.; Abnous, K.; Alibolandi, M. Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine. Int. J. Pharm. 2017, 519, 287–303. [Google Scholar] [CrossRef]
- Golombek, F.; Castiglione, K. Polymersomes as Nanoreactors Enabling the Application of Solvent-Sensitive Enzymes in Different Biphasic Reaction Setups. Biotechnol. J. 2020, 15, 1900561. [Google Scholar] [CrossRef]
- Köthe, T.; Martin, S.; Reich, G.; Fricker, G. Dual asymmetric centrifugation as a novel method to prepare highly concentrated dispersions of PEG-b-PCL polymersomes as drug carriers. Int. J. Pharm. 2020, 579, 119087. [Google Scholar] [CrossRef]
- Walvekar, P.; Gannimani, R.; Salih, M.; Makhathini, S.; Mocktar, C.; Govender, T. Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA). Colloids Surf. B. Biointerfaces 2019, 182, 110388. [Google Scholar] [CrossRef] [PubMed]
- Porges, E.; Jenner, D.; Taylor, A.W.; Harrison, J.S.; De Grazia, A.; Hailes, A.R.; Wright, K.M.; Whelan, A.O.; Norville, I.H.; Prior, J.L. Antibiotic-Loaded Polymersomes for Clearance of Intracellular Burkholderia thailandensis. ACS Nano 2021, 15, 19284–19297. [Google Scholar] [CrossRef] [PubMed]
- Alibolandi, M.; Alabdollah, F.; Sadeghi, F.; Mohammadi, M.; Abnous, K.; Ramezani, M.; Hadizadeh, F. Dextran-b-poly (lactide-co-glycolide) polymersome for oral delivery of insulin: In vitro and in vivo evaluation. J. Control. Release 2016, 227, 58–70. [Google Scholar] [CrossRef]
- Garni, M.; Thamboo, S.; Schoenenberger, C.-A.; Palivan, C.G. Biopores/membrane proteins in synthetic polymer membranes. Biochim. Et Biophys. Acta BBA Biomembr. 2017, 1859, 619–638. [Google Scholar] [CrossRef] [PubMed]
- Matoori, S.; Leroux, J.-C. Twenty-five years of polymersomes: Lost in translation? Mater. Horiz. 2020, 7, 1297–1309. [Google Scholar] [CrossRef]
- Discher, D.E.; Ortiz, V.; Srinivas, G.; Klein, M.L.; Kim, Y.; Christian, D.; Cai, S.; Photos, P.; Ahmed, F. Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Prog. Polym. Sci. 2007, 32, 838–857. [Google Scholar] [CrossRef]
- Sanson, C.; Schatz, C.; Le Meins, J.-F.; Soum, A.; Thévenot, J.; Garanger, E.; Lecommandoux, S. A simple method to achieve high doxorubicin loading in biodegradable polymersomes. J. Control. Release 2010, 147, 428–435. [Google Scholar] [CrossRef]
- Gaucher, G.; Marchessault, R.H.; Leroux, J.-C. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J. Control. Release 2010, 143, 2–12. [Google Scholar] [CrossRef]
- Kulkarni, P.; Haldar, M.K.; Karandish, F.; Confeld, M.; Hossain, R.; Borowicz, P.; Gange, K.; Xia, L.; Sarkar, K.; Mallik, S. Tissue-Penetrating, Hypoxia-Responsive Echogenic Polymersomes for Drug Delivery to Solid Tumors. Chem. Eur. J. 2018, 24, 12490–12494. [Google Scholar] [CrossRef]
- Besada, L.N.; Peruzzo, P.; Cortizo, A.M.; Cortizo, M.S. Preparation, characterization, and in vitro activity evaluation of triblock copolymer-based polymersomes for drugs delivery. J. Nanopart. Res. 2018, 20, 1–12. [Google Scholar] [CrossRef]
- Robbins, G.P.; Saunders, R.L.; Haun, J.B.; Rawson, J.; Therien, M.J.; Hammer, D.A. Tunable leuko-polymersomes that adhere specifically to inflammatory markers. Langmuir 2010, 26, 14089–14096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Meng, F.; Zhong, Z. Reversibly crosslinked temperature-responsive nano-sized polymersomes: Synthesis and triggered drug release. J. Mater. Chem. 2009, 19, 4183–4190. [Google Scholar] [CrossRef]
- Hou, W.; Liu, R.; Bi, S.; He, Q.; Wang, H.; Gu, J. Photo-Responsive Polymersomes as Drug Delivery System for Potential Medical Applications. Molecules 2020, 25, 5147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, R.; Yang, H.; Bao, C.; Fan, J.; Wang, C.; Lin, Q.; Zhu, L. Light-responsive polymersomes with a charge-switch for targeted drug delivery. J. Mater. Chem. B 2020, 8, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Scherer, M.; Fischer, K.; Depoix, F.; Fritz, T.; Thiermann, R.; Mohr, K.; Zentel, R. Pentafluorophenyl ester-based polymersomes as nanosized drug-delivery vehicles. Macromol. Rapid Commun. 2016, 37, 60–66. [Google Scholar] [CrossRef]
- Kulkarni, P.; Haldar, M.; Confeld, M.; Langaas, C.; Yang, X.; Qian, S.; Mallik, S. Mitochondria-targeted fluorescent polymersomes for drug delivery to cancer cells. Polym. Chem. 2016, 7, 4151–4154. [Google Scholar] [CrossRef]
- Wang, Q.X.; Chen, X.; Li, Z.L.; Gong, Y.C.; Xiong, X.Y. Transferrin/folate dual-targeting Pluronic F127/poly (lactic acid) polymersomes for effective anticancer drug delivery. J. Biomater. Sci. Polym. Ed. 2022, 33, 1–17. [Google Scholar] [CrossRef]
- Pan, X.Q.; Gong, Y.C.; Li, Z.L.; Li, Y.P.; Xiong, X.Y. Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel. Int. J. Biol. Macromol. 2019, 139, 377–386. [Google Scholar] [CrossRef]
- Ilangala, A.B.; Lechanteur, A.; Fillet, M.; Piel, G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur. J. Pharm. Biopharm. 2021, 167, 140–158. [Google Scholar] [CrossRef]
- Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, 295–305. [Google Scholar] [CrossRef]
- Sharma, A.K.; Prasher, P.; Aljabali, A.A.; Mishra, V.; Gandhi, H.; Kumar, S.; Mutalik, S.; Chellappan, D.K.; Tambuwala, M.M.; Dua, K. Emerging era of “somes”: Polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy. Drug Deliv. Transl. Res. 2020, 10, 1171–1190. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Zhang, Y.; Meng, H.; Sun, H.; Zhong, Z. Smart polymersomes dually functionalized with cRGD and fusogenic GALA peptides enable specific and high-efficiency cytosolic delivery of apoptotic proteins. Biomacromolecules 2018, 20, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ge, Z.; Toh, K.; Liu, X.; Dirisala, A.; Ke, W.; Wen, P.; Zhou, H.; Wang, Z.; Xiao, S. Enzymatically Transformable Polymersome-Based Nanotherapeutics to Eliminate Minimal Relapsable Cancer. Adv. Mater. 2021, 33, 2105254. [Google Scholar] [CrossRef] [PubMed]
- Japir, A.A.-W.M.M.; Ke, W.; Li, J.; Mukerabigwi, J.F.; Ibrahim, A.; Wang, Y.; Li, X.; Zhou, Q.; Mohammed, F.; Ge, Z. Tumor-dilated polymersome nanofactories for enhanced enzyme prodrug chemo-immunotherapy. J. Control. Release 2021, 339, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kataoka, K. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: The next generation. J. Am. Chem. Soc. 2020, 143, 538–559. [Google Scholar] [CrossRef] [PubMed]
- Anajafi, T.; Mallik, S. Polymersome-based drug-delivery strategies for cancer therapeutics. Ther. Deliv. 2015, 6, 521–534. [Google Scholar] [CrossRef]
- Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomed. 2015, 10, 1001. [Google Scholar]
- Guo, J.; Schlich, M.; Cryan, J.F.; O′Driscoll, C.M. Targeted drug delivery via folate receptors for the treatment of brain cancer: Can the promise deliver? J. Pharm. Sci. 2017, 106, 3413–3420. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Chang, D.-S. Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicin-encapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Pawar, P.V.; Gohil, S.V.; Jain, J.P.; Kumar, N. Functionalized polymersomes for biomedical applications. Polym. Chem. 2013, 4, 3160–3176. [Google Scholar] [CrossRef]
- Wang, T.; Qin, J.; Cheng, J.; Li, C.; Du, J. Intelligent design of polymersomes for antibacterial and anticancer applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2022, e1822. [Google Scholar] [CrossRef] [PubMed]
- Khanna, V.; Kalscheuer, S.; Kirtane, A.; Zhang, W.; Panyam, J. Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer. Future Drug Discov. 2019, 1, FDD8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oz, U.C.; Bolat, Z.B.; Ozkose, U.U.; Gulyuz, S.; Kucukturkmen, B.; Khalily, M.P.; Ozcubukcu, S.; Yilmaz, O.; Telci, D.; Esendagli, G. A robust optimization approach for the breast cancer targeted design of PEtOx-b-PLA polymersomes. Mater. Sci. Eng. C 2021, 123, 111929. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Feijen, J.; Zhong, Z. Dual-targeted nanomedicines for enhanced tumor treatment. Nano Today 2018, 18, 65–85. [Google Scholar] [CrossRef]
- Figueiredo, P.; Balasubramanian, V.; Shahbazi, M.-A.; Correia, A.; Wu, D.; Palivan, C.G.; Hirvonen, J.T.; Santos, H.A. Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells. Int. J. Pharm. 2016, 511, 794–803. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chiang, C.-F.; Chen, L.-F.; Liang, P.-C.; Hsieh, W.-Y.; Lin, W.-L. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials 2014, 35, 4066–4081. [Google Scholar] [CrossRef]
- Li, F.; Qin, Y.; Lee, J.; Liao, H.; Wang, N.; Davis, T.P.; Qiao, R.; Ling, D. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J. Control. Release 2020, 322, 566–592. [Google Scholar] [CrossRef]
- Sharmiladevi, P.; Akhtar, N.; Haribabu, V.; Girigoswami, K.; Chattopadhyay, S.; Girigoswami, A. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl. Bio Mater. 2019, 2, 1634–1642. [Google Scholar] [CrossRef]
- Thomas, R.G.; Surendran, S.P.; Jeong, Y.Y. Tumor Microenvironment-Stimuli Responsive Nanoparticles for Anticancer Therapy. Front. Mol. Biosci. 2020, 7, 414. [Google Scholar] [CrossRef]
- Girigoswami, A.; Yassine, W.; Sharmiladevi, P.; Haribabu, V.; Girigoswami, K. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Haribabu, V.; Sharmiladevi, P.; Akhtar, N.; Farook, A.S.; Girigoswami, K.; Girigoswami, A. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr. Drug Del. 2019, 16, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Ling, Z.; Zhou, Z.; He, J.; Ran, H.; Wang, Z.; Zhang, Q.; Song, W.; Zhang, Y.; Luo, J. Herceptin-decorated paclitaxel-loaded poly (lactide-co-glycolide) nanobubbles: Ultrasound-facilitated release and targeted accumulation in breast cancers. Pharm. Dev. Technol. 2020, 25, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhao, W.; Yu, J.; Li, Y.; Zhao, C. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules 2018, 24, 4. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, L.J.; Sincari, V.; Jager, A.; Konefal, R.; Panek, J.; Cernoch, P.; Pavlova, E.; Stepanek, P.; Giacomelli, F.C.; Jager, E. Microfluidic-assisted engineering of quasi-monodisperse pH-responsive polymersomes toward advanced platforms for the intracellular delivery of hydrophilic therapeutics. Langmuir 2019, 35, 8363–8372. [Google Scholar] [CrossRef]
- Pani, G.; Galeotti, T.; Chiarugi, P. Metastasis: Cancer cell’s escape from oxidative stress. Cancer Metastasis Rev. 2010, 29, 351–378. [Google Scholar] [CrossRef]
- Phillips, D.J.; Gibson, M.I. Redox-sensitive materials for drug delivery: Targeting the correct intracellular environment, tuning release rates, and appropriate predictive systems. Antioxid. Redox Signal. 2014, 21, 786–803. [Google Scholar] [CrossRef]
- Liu, L.; Liu, P. Synthesis strategies for disulfide bond-containing polymer-based drug delivery system for reduction-responsive controlled release. Front. Mater. Sci. 2015, 9, 211–226. [Google Scholar] [CrossRef]
- Liao, J.; Jia, Y.; Wu, Y.; Shi, K.; Yang, D.; Li, P.; Qian, Z. Physical-, chemical-, and biological-responsive nanomedicine for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2020, 12, e1581. [Google Scholar] [CrossRef]
- Liu, F.; Kozlovskaya, V.; Medipelli, S.; Xue, B.; Ahmad, F.; Saeed, M.; Cropek, D.; Kharlampieva, E. Temperature-sensitive polymersomes for controlled delivery of anticancer drugs. Chem. Mater. 2015, 27, 7945–7956. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, G.; Hu, J.; Liu, S. Photo-and reduction-responsive polymersomes for programmed release of small and macromolecular payloads. Biomacromolecules 2018, 19, 2071–2081. [Google Scholar] [CrossRef]
- Barrella, M.C.; Di Capua, A.; Adami, R.; Reverchon, E.; Mella, M.; Izzo, L. Impact of intermolecular drug-copolymer interactions on size and drug release kinetics from pH-responsive polymersomes. Supramol. Chem. 2017, 29, 796–807. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Wang, X.; Hu, J.; Zhang, G.; Liu, S. Acid-disintegratable polymersomes of pH-responsive amphiphilic diblock copolymers for intracellular drug delivery. Macromolecules 2015, 48, 7262–7272. [Google Scholar] [CrossRef]
- Wang, W.-l.; Ma, X.-j.; Yu, X.-f. pH-responsive polymersome based on PMCP-b-PDPA as a drug delivery system to enhance cellular internalization and intracellular drug release. Chin. J. Polym. Sci. 2017, 35, 1352–1362. [Google Scholar] [CrossRef]
- Zhou, D.; Fei, Z.; Jin, L.; Zhou, P.; Li, C.; Liu, X.; Zhao, C. Dual-responsive polymersomes as anticancer drug carriers for the co-delivery of doxorubicin and paclitaxel. J. Mater. Chem. B 2021, 9, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Kozlovskaya, V.; Liu, F.; Yang, Y.; Ingle, K.; Qian, S.; Halade, G.V.; Urban, V.S.; Kharlampieva, E. Temperature-responsive polymersomes of poly (3-methyl-N-vinylcaprolactam)-block-poly (N-vinylpyrrolidone) to decrease doxorubicin-induced cardiotoxicity. Biomacromolecules 2019, 20, 3989–4000. [Google Scholar] [CrossRef]
- DiazDuarte-Rodriguez, M.; Cortez-Lemus, N.A.; Licea-Claverie, A.; Licea-Rodriguez, J.; Méndez, E.R. Dual responsive polymersomes for gold nanorod and doxorubicin encapsulation: Nanomaterials with potential use as smart drug delivery systems. Polymers 2019, 11, 939. [Google Scholar] [CrossRef]
- Wei, P.; Sun, M.; Yang, B.; Xiao, J.; Du, J. Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy. J. Control. Release 2020, 322, 81–94. [Google Scholar] [CrossRef]
- Oroojalian, F.; Babaei, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M.; Alibolandi, M. Encapsulation of thermo-responsive gel in pH-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin. J. Control. Release 2018, 288, 45–61. [Google Scholar] [CrossRef]
- Kozlovskaya, V.; Yang, Y.; Liu, F.; Ingle, K.; Ahmad, A.; Halade, G.V.; Kharlampieva, E. Dually Responsive Poly (N-vinylcaprolactam)-b-poly (dimethylsiloxane)-b-poly (N-vinylcaprolactam) Polymersomes for Controlled Delivery. Molecules 2022, 27, 3485. [Google Scholar] [CrossRef]
- de Souza, V.V.; Carretero, G.P.; Vitale, P.A.; Todeschini, Í.; Kotani, P.O.; Saraiva, G.K.; Guzzo, C.R.; Chaimovich, H.; Florenzano, F.H.; Cuccovia, I.M. Stimuli-responsive polymersomes of poly [2-(dimethylamino) ethyl methacrylate]-b-polystyrene. Polym. Bull. 2022, 79, 785–805. [Google Scholar] [CrossRef]
- Saravanakumar, G.; Park, H.; Kim, J.; Park, D.; Lim, J.; Lee, J.; Kim, W.J. Polymersomes with singlet oxygen-labile poly (β-aminoacrylate) membrane for NIR light-controlled combined chemo-phototherapy. J. Controlled Release 2020, 327, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Li, J.; Mohammed, F.; Wang, Y.; Tou, K.; Liu, X.; Wen, P.; Kinoh, H.; Anraku, Y.; Chen, H. Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative cancer therapy. ACS Nano 2019, 13, 2357–2369. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Hu, P.; Peng, H.; Zhang, N.; Zheng, Q.; He, Y. Near-infrared laser-triggered, self-immolative smart polymersomes for in vivo cancer therapy. Int. J. Nanomed. 2020, 15, 137. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Yu, H.; Wang, L.; Zhang, Q.; Xiong, W.; Nazir, A.; Fahad, S.; Chen, X.; Elsharaarani, T. Synthesis of polyorganophosphazenes and preparation of their polymersomes for reductive/acidic dual-responsive anticancer drugs release. J. Mater. Sci. 2020, 55, 8264–8284. [Google Scholar] [CrossRef]
- Poschenrieder, S.T.; Schiebel, S.K.; Castiglione, K. Polymersomes for biotechnological applications: Large-scale production of nano-scale vesicles. Eng. Life Sci. 2017, 17, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Rameez, S.; Bamba, I.; Palmer, A.F. Large scale production of vesicles by hollow fiber extrusion: A novel method for generating polymersome encapsulated hemoglobin dispersions. Langmuir 2010, 26, 5279–5285. [Google Scholar] [CrossRef] [Green Version]
Scheme. No | Polymer Used | Target Moiety Or Payload | Method of Polymersomes Formation | Application | Ref. |
---|---|---|---|---|---|
1 | Poly(lactic acid)-co-poly(ethylene glycol) (PLA-PEG) | Azobenzene | Solvent exchange method | Pancreatic adenocarcinoma | [50] |
2 | Amphiphilic triblock copolymer (PVBz-b-PEG-b-PVBz) | - | Solvent injection method | Intracellular drug release | [51] |
3 | Leukoadhesive Biocytin-terminated copolymer (PEO(1300)-b-PBD(2500) | Avidin, Sialyl Lewis X tetramer, anti-ICAM-1 antibody and fluorophores PZn2 | Self-assembling | Targeted drug delivery in inflammation | [52] |
4 | PEG-b-PCL | Hypericin, peptides, and ceftriaxone | Dual asymmetric centrifugation | Biomedical applications | [41] |
5 | Poly(ethylene oxide)-b-poly(acrylic acid)-b-poly(N-isopropylacrylamide) | FITC-dextran | Self-assembled | Smart carriers for pDNA, siRNA, peptides, and proteins | [53] |
6 | Poly (o-nitrobenzyl acrylate) and Poly (N,Nʹ-dimethylacrylamide) | Hydrophilic and hydrophobic drugs | Self-assembled | Photoresponsive drug carrier | [54] |
7 | Polymer of Didodecyl substituted o-nitrobenzyl | Folic acid and doxorubicin | Self-assembled | Targeted photoresponsive drug delivery | [55] |
8 | N-(2-hydroxyproyl) methacrylamide (HPMA)-analog | Fluorescent dye and a hydrophilic moiety | Solvent switching method | Hydrophilic cargo like siRNA | [56] |
9 | Triphenylphosphonium cation conjugated PLA-PEG | Doxorubicin | Self-assembled | Anticancer drug delivery to mitochondria | [57] |
10 | Pluronic/Poly(lactic acid) | Biotinylated Transferrin, folic acid and paclitaxel | Self-aggregation | Dual targeting drug delivery | [58] |
11 | Pluronic F127-PLA/D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) | Folate conjugated and paclitaxel loaded | Self-aggregation followed by dialysis | Oral anticancer delivery | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallavi, P.; Harini, K.; Gowtham, P.; Girigoswami, K.; Girigoswami, A. Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics. Chemistry 2022, 4, 1028-1043. https://doi.org/10.3390/chemistry4030070
Pallavi P, Harini K, Gowtham P, Girigoswami K, Girigoswami A. Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics. Chemistry. 2022; 4(3):1028-1043. https://doi.org/10.3390/chemistry4030070
Chicago/Turabian StylePallavi, Pragya, Karthick Harini, Pemula Gowtham, Koyeli Girigoswami, and Agnishwar Girigoswami. 2022. "Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics" Chemistry 4, no. 3: 1028-1043. https://doi.org/10.3390/chemistry4030070
APA StylePallavi, P., Harini, K., Gowtham, P., Girigoswami, K., & Girigoswami, A. (2022). Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics. Chemistry, 4(3), 1028-1043. https://doi.org/10.3390/chemistry4030070