An Untargeted Metabolomic Comparison of Milk Composition from Sheep Kept Under Different Grazing Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animals and Pasture
2.3. Samples Collection
2.4. Milk Composition Analysis
2.5. GC-MS Analysis
2.6. Statistical Data Analysis
3. Results
3.1. Main Traits
3.2. Metabolomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scintu, M.F.; Piredda, G. Typicity and biodiversity of goat and sheep milk products. Small Rumin. Res. 2007, 68, 221–231. [Google Scholar] [CrossRef]
- Molle, G.; Decandia, M.; Cabiddu, A.; Landau, S.Y.; Cannas, A. An update on the nutrition of dairy sheep grazing Mediterranean pastures. Small Rumin. Res. 2008, 77, 93–112. [Google Scholar] [CrossRef]
- Morand-Fehr, P.; Fedele, V.; Decandia, M.; Le Frileux, Y. Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Rumin. Res. 2007, 68, 20–34. [Google Scholar] [CrossRef]
- Cannas, A.; Pes, A.; Mancuso, R.; Vodret, B.; Nudda, A. Effect of dietary energy and protein concentration on the concentration of milk urea nitrogen in dairy ewes. J. Dairy Sci. 1998, 81, 499–508. [Google Scholar] [CrossRef]
- Cabiddu, A.; Decandia, M.; Addis, M.; Piredda, G.; Pirisi, A.; Molle, G. Managing mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Rumin. Res. 2005, 59, 169–180. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. The effect of feeding systems on the characteristics of products from small ruminants. Small Rumin. Res. 2011, 101, 140–149. [Google Scholar] [CrossRef]
- Caprioli, G.; Kamgang Nzekoue, F.; Fiorini, D.; Scocco, P.; Trabalza-Marinucci, M.; Acuti, G.; Tardella, F.M.; Sagratini, G.; Catorci, A. The effects of feeding supplementation on the nutritional quality of milk and cheese from sheep grazing on dry pasture. Int. J. Food Sci. Nutr. 2019, 71, 50–62. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep milk: Physicochemical characteristics and relevance for functional food development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef]
- Scano, P.; Ibba, I.; Casula, M.; Contu, M.; Caboni, P. Effects of seasons on ovine milk composition. J. Dairy Res. Tech. 2019, 2, 004. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Raynal-Ljutovac, K.; Lagriffoul, G.; Paccard, P.; Guillet, I.; Chilliard, Y. Composition of goat and sheep milk products: An update. Small Rumin. Res. 2008, 79, 57–72. [Google Scholar] [CrossRef]
- Caboni, P.; Manis, C.; Ibba, I.; Contu, M.; Coroneo, V.; Scano, P. Compositional profile of ovine milk with a high somatic cell count: A metabolomics approach. Int. Dairy J. 2017, 69, 33–39. [Google Scholar] [CrossRef]
- Caboni, P.; Maxia, D.; Scano, P.; Addis, M.; Dedola, A.; Pes, M.; Murgia, A.; Casula, M.; Profumo, A.; Pirisi, A. A gas chromatography-mass spectrometry untargeted metabolomics approach to discriminate Fiore Sardo cheese produced from raw or thermized ovine milk. J. Dairy Sci. 2019, 102, 5005–5018. [Google Scholar] [CrossRef] [PubMed]
- Caboni, P.; Murgia, A.; Porcu, A.; Manis, C.; Ibba, I.; Contu, M.; Scano, P. A metabolomics comparison between sheep’s and goat’s milk. Food Res. 2019, 119, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, J.; Yun, E.J.; Kim, K.H. Food metabolomics: From farm to human. Curr. Opin. Biotech. 2016, 37, 16–23. [Google Scholar] [CrossRef]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef] [Green Version]
- Melzer, N.; Wittenburg, D.; Hartwig, S.; Jakubowski, S.; Kesting, U.; Willmitzer, L.; Lisec, J.; Reinsch, N.; Repsilber, D. Investigating associations between milk metabolite profiles and milk traits of Holstein cows. J. Dairy Sci. 2013, 96, 1521–1534. [Google Scholar] [CrossRef] [Green Version]
- Melzer, N.; Wittenburg, D.; Repsilber, D. Integrating milk metabolite profile information for the prediction of traditional milk traits based on SNP information for Holstein cows. PLoS ONE 2013, 8, e70256. [Google Scholar] [CrossRef] [Green Version]
- Boudonck, K.J.; Mitchell, M.W.; Wulff, J.; Ryals, J.A. Characterization of the biochemical variability of bovine milk using metabolomics. Metabolomics 2009, 5, 375–386. [Google Scholar] [CrossRef]
- van Gastelen, S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Dijkstra, J. The relationship between milk metabolome and methane emission of Holstein Friesian dairy cows: Metabolic interpretation and prediction potential. J. Dairy Sci. 2018, 101, 2110–2126. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.S.; Almstetter, M.F.; Nürnberger, N.; Sigl, G.; Gronwald, W.; Wiedemann, S.; Dettmer, K.; Oefner, P.J. Correlations between milk and plasma levels of amino and carboxylic acids in dairy cows. J. Proteome Res. 2013, 12, 5223–5232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caredda, M.; Addis, M.; Ibba, I.; Leardi, R.; Scintu, M.F.; Piredda, G.; Sanna, G. Prediction of fatty acid content in sheep milk by Mid-Infrared spectrometry with a selection of wavelengths by Genetic Algorithms. LWT Food Sci. Technol. 2016, 65, 503–510. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A web-based platform to process untargeted metabolomic data. Anal. Chem. 2012, 84, 5035–5039. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D.; Power, A.; Chapman, J. Interpreting and reporting principal component analysis in food science analysis and beyond. Food Anal. Methods 2019, 12, 2469–2473. [Google Scholar] [CrossRef]
- Scano, P.; Murgia, A.; Pirisi, F.M.; Caboni, P. A gas chromatography-mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk. J. Dairy Sci. 2014, 97, 6057–6066. [Google Scholar] [CrossRef]
- Correddu, F.; Cellesi, M.; Serdino, J.; Manca, M.G.; Contu, M.; Dimauro, C.; Ibba, I.; Macciotta, N.P.P. Genetic parameters of milk fatty acid profile in sheep: Comparison between gas chromatographic measurements and Fourier-transform IR spectroscopy predictions. Animal 2019, 13, 469–476. [Google Scholar] [CrossRef]
- Lock, A.L.; Preseault, C.L.; Rico, J.E.; DeLand, K.E.; Allen, M.S. Feeding a C16:0-enriched fat supplement increased the yield of milk fat and improved conversion of feed to milk. J. Dairy Sci. 2013, 96, 6650–6659. [Google Scholar] [CrossRef]
- Pegolo, S.; Cecchinato, A.; Casellas, J.; Conte, G.; Mele, M.; Schiavon, S.; Bittante, G. Genetic and environmental relationships of detailed milk fatty acids profile determined by gas chromatography in Brown Swiss cows. J. Dairy Sci. 2016, 99, 1315–1330. [Google Scholar] [CrossRef] [Green Version]
- Júnior, O.S.; Pedrao, M.R.; Dias, L.F.; Paula, L.N.; Coro, F.A.G.; De Souza, N.E. Fatty acid content of bovine milkfat from raw milk to yoghurt. Am. J. Appl. Sci. 2012, 9, 1300–1306. [Google Scholar]
- Melendez, P.; Donovan, A.; Hernandez, J. Milk Urea Nitrogen and Infertility in Florida Holstein Cows1. J. Dairy Sci. 2000, 83, 459–463. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Bencini, R.; Pulina, G. Nutrition and milk quality. In Dairy Sheep Nutrition; CABI Publishing: Wallingford, UK, 2004; pp. 129–149. ISBN 0-85199-681-7. [Google Scholar]
- Pulina, G.; Nudda, A.; Battacone, G.; Cannas, A. Effects of nutrition on the contents of fat, protein, somatic cells, aromatic compounds, and undesirable substances in sheep milk. Anim. Feed Sci. Technol. 2006, 131, 255–291. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Zebeli, Q.; Saleem, F.; Psychogios, N.; Lewis, M.J.; Dunn, S.M.; Xia, J.; Wishart, D.S. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 2010, 6, 583–594. [Google Scholar] [CrossRef]
- Saleem, F.; Ametaj, B.N.; Bouatra, S.; Mandal, R.; Zebeli, Q.; Dunn, S.M.; Wishart, D.S. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci. 2012, 95, 6606–6623. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, T.F.; Vázquez-Fresno, R.; Serra-Cayuela, A.; Dong, E.; Mandal, R.; Hennessy, D.; McAuliffe, S.; Dillon, P.; Wishart, D.S.; Stanton, C.; et al. Pasture feeding changes the bovine rumen and milk metabolome. Metabolites 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Schlimme, E.; Martin, D.; Meisel, H. Nucleosides and nucleotides: Natural bioactive substances in milk and colostrum. Br. J Nutr. 2000, 84 (Suppl. 1), 59–68. [Google Scholar] [CrossRef] [Green Version]
- Woollard, D.C.; Macfadzean, C.; Indyk, H.E.; McMahon, A.; Christiansen, S. Determination of myo-inositol in infant formulae and milk powders using capillary gas chromatography with flame ionisation detection. Int. Dairy J. 1996, 37, 74–81. [Google Scholar] [CrossRef]
- Ramachandran, S.; Fontanille, P.; Pandey, A.; Larroche, C. Gluconic acid: Properties, applications and microbial production. Food Technol. Biotech. 2006, 44, 185–195. [Google Scholar]
- Wiese, B.I.; Górka, P.; Mutsvangwa, T.; Okine, E.; Penner, G.B. Interrelationship between butyrate and glucose supply on butyrate and glucose oxidation by ruminal epithelial preparations. J. Dairy Sci. 2013, 96, 5914–5918. [Google Scholar] [CrossRef] [Green Version]
- Besle, J.M.; Viala, D.; Martin, B.; Pradel, P.; Meunier, B.; Berdagué, J.L.; Fraisse, D.; Lamaison, J.L.; Coulon, J.B. Ultraviolet-absorbing compounds in milk are related to forage polyphenols. J. Dairy Sci. 2010, 93, 2846–2856. [Google Scholar] [CrossRef] [Green Version]
- Carpio, A.; Bonilla-Valverde, D.; Arce, C.; Rodríguez-Estévez, V.; Sánchez-Rodríguez, M.; Arce, L.; Valcárcel, M. Evaluation of hippuric acid content in goat milk as a marker of feeding regimen. J. Dairy Sci. 2013, 96, 5426–5434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shennan, D.B.; Peaker, M. Transport of milk constituents by the mammary gland. Physiol. Rev. 2000, 80, 925–951. [Google Scholar] [CrossRef] [PubMed]
- Toffanin, V.; Penasa, M.; McParland, S.; Berry, D.P.; Cassandro, M.; De Marchi, M. Genetic parameters for milk mineral content and acidity predicted by mid-infrared spectroscopy in Holstein-Friesan cows. Animal 2015, 9, 775–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klop, G.; Ellis, J.L.; Blok, M.C.; Brandsma, G.G.; Bannink, A.; Dijkstra, J. Variation in phosphorus content of milk from dairy cattle as affected by differences in milk composition. J. Agric. Sci. 2014, 152, 860–869. [Google Scholar] [CrossRef]
- Eeckhout, W.; De Paepe, M. Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. Tech. 1994, 47, 19–29. [Google Scholar] [CrossRef]
- Yanke, L.J.; Bae, H.D.; Selinger, L.B.; Cheng, K.J. Phytase activity of anaerobic ruminal bacteria. Microbiology 1998, 144, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Park, W.Y.; Matsui, T.; Yano, H. Post-ruminal phytate degradation in sheep. Anim. Feed Sci. Tech. 2002, 101, 55–60. [Google Scholar] [CrossRef]
- Kincaid, R.L.; Garikipati, D.K.; Nennich, T.D.; Harrison, J.H. Effect of grain source and exogenous phytase on phosphorus digestibility in dairy cows. J. Dairy Sci. 2005, 88, 2893–2902. [Google Scholar] [CrossRef]
Schedule | Grazing system 1 (GS1) | Grazing system 2 (GS2) |
---|---|---|
Day-grazing | Natural pasture 1 10–12 h/d | Natural pasture 1 4–6 h/d Selected pasture 2 1–2 h/d |
Milking | Barley and corn grains (50/50) 500 g/head/d DMI 3 = 437.5 g/head/d | Barley and corn grains (50/50) 200 g/head/d DMI = 175 g/head/d |
Night | Forage ad libitum |
GS1 (n = 37) | GS2 (n = 33) | ||||
---|---|---|---|---|---|
Component | mean | SD a | mean | SD | Pb |
Fat (g/100 mL) | 5.9 | 1.0 | 4.8 | 1.2 | *** |
Proteins (g/100 mL) | 5.6 | 0.6 | 5.8 | 0.4 | |
Caseins (g/100 mL) | 4.3 | 0.5 | 4.4 | 0.4 | |
Lactose (g/100 mL) | 4.8 | 0.4 | 4.9 | 0.3 | |
SCC c (103 cell/ mL) | 1421 | 1337 | |||
SCC (GM) d | 119 | 175 | |||
Urea (mg/100 mL) | 24 | 5 | 41 | 8 | *** |
Freezing point (milliHorvet) | −581 | 8 | −582 | 7 | |
pH | 6.9 | 0.1 | 6.8 | 0.1 | |
Chlorides (mg/100 mL) | 141 | 46 | 129 | 32 | |
Total solids (g/100 mL) | 16.4 | 1.5 | 15.5 | 1.2 | ** |
SNF e (g/100 mL) | 10.8 | 0.5 | 11.0 | 0.5 | |
Fatty acids (FA) (g/100 mL) | |||||
Saturated FA | 3.5 | 0.6 | 2.9 | 0.7 | *** |
Unsaturated FA | 1.8 | 0.3 | 1.4 | 0.4 | *** |
Monounsaturated FA | 1.4 | 0.3 | 1.1 | 0.3 | *** |
Polyunsaturated FA | 0.44 | 0.07 | 0.36 | 0.09 | *** |
n-6 FA | 0.12 | 0.04 | 0.09 | 0.04 | *** |
n-3 FA | 0.12 | 0.03 | 0.13 | 0.02 | |
C4:0 | 0.22 | 0.04 | 0.18 | 0.05 | *** |
C6:0 | 0.15 | 0.03 | 0.15 | 0.03 | |
C8:0 | 0.12 | 0.03 | 0.12 | 0.03 | |
C10:0 | 0.32 | 0.09 | 0.35 | 0.10 | |
C12:0 | 0.16 | 0.05 | 0.17 | 0.04 | |
C14:0 | 0.5 | 0.1 | 0.4 | 0.1 | *** |
C16:0 | 1.3 | 0.3 | 1.0 | 0.3 | *** |
C18:0 | 0.6 | 0.2 | 0.4 | 0.2 | *** |
C18:1 | 0.8 | 0.3 | 0.5 | 0.2 | *** |
C18:2 | 0.13 | 0.04 | 0.11 | 0.03 | *** |
C18:1 trans-11 (g/100g of fat) | 3.0 | 0.7 | 3.7 | 0.5 | *** |
C18:3 n-3 (g/100g of fat) | 1.7 | 0.3 | 1.7 | 0.2 | |
C18:2 cis-9, trans-11 (g/100g of fat) | 1.6 | 0.3 | 2.0 | 0.2 | *** |
GS1 | GS2 | ||
---|---|---|---|
Metabolite | VIP b | Metabolite | VIP |
Maltose | 1.86 | Unk#1 c | 1.50 |
Myo-inositol | 1.83 | Unk#2 | 1.49 |
Malic acid | 1.48 | Phosphate | 1.28 |
Hippuric acid | 1.38 | ||
Scyllo-inositol | 1.27 | ||
Succinic acid | 1.25 | ||
Uridine | 1.24 | ||
Glutaric acid | 1.18 | ||
Inosine | 1.10 | ||
Gluconic acid | 1.09 |
Component | R2Y | Q2Y | R2 − Q2 |
---|---|---|---|
C18:2 cis-9, trans-11 | 0.95 | 0.64 | 0.31 |
C18:1 | 0.93 | 0.64 | 0.29 |
C18:1 trans-11 | 0.92 | 0.56 | 0.36 |
Monounsaturated FA | 0.91 | 0.59 | 0.32 |
n-6 FA a | 0.85 | 0.54 | 0.31 |
Polyunsaturated FA | 0.85 | 0.54 | 0.31 |
C18:0 | 0.84 | 0.54 | 0.30 |
Unsaturated FA | 0.84 | 0.56 | 0.28 |
SCC (log) | 0.84 | 0.66 | 0.18 |
Lactose | 0.83 | 0.61 | 0.22 |
Chlorides | 0.81 | 0.59 | 0.22 |
pH | 0.77 | 0.55 | 0.22 |
Urea | 0.59 | 0.54 | 0.05 |
C18:2 | 0.35 | 0.24 | 0.11 |
C4:0 | 0.35 | 0.25 | 0.10 |
Fat | 0.34 | 0.25 | 0.09 |
C16:0 | 0.33 | 0.25 | 0.08 |
Saturated FA | 0.32 | 0.20 | 0.12 |
C18:3 n-3 | 0.30 | 0.14 | 0.16 |
C14:0 | 0.27 | 0.16 | 0.11 |
Total solids | 0.23 | 0.12 | 0.11 |
Freezing point | n b | ||
SNF c | n | ||
n-3 FA | n | ||
C10:0 | n | ||
C12:0 | n | ||
Proteins | n | ||
Caseins | n | ||
C8:0 | n | ||
C6:0 | n |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scano, P.; Carta, P.; Ibba, I.; Manis, C.; Caboni, P. An Untargeted Metabolomic Comparison of Milk Composition from Sheep Kept Under Different Grazing Systems. Dairy 2020, 1, 30-41. https://doi.org/10.3390/dairy1010004
Scano P, Carta P, Ibba I, Manis C, Caboni P. An Untargeted Metabolomic Comparison of Milk Composition from Sheep Kept Under Different Grazing Systems. Dairy. 2020; 1(1):30-41. https://doi.org/10.3390/dairy1010004
Chicago/Turabian StyleScano, Paola, Patrizia Carta, Ignazio Ibba, Cristina Manis, and Pierluigi Caboni. 2020. "An Untargeted Metabolomic Comparison of Milk Composition from Sheep Kept Under Different Grazing Systems" Dairy 1, no. 1: 30-41. https://doi.org/10.3390/dairy1010004
APA StyleScano, P., Carta, P., Ibba, I., Manis, C., & Caboni, P. (2020). An Untargeted Metabolomic Comparison of Milk Composition from Sheep Kept Under Different Grazing Systems. Dairy, 1(1), 30-41. https://doi.org/10.3390/dairy1010004