Effects of Yucca schidigera Based Feed Additive on In Vitro Dry Matter Digestibility, Efficiency of Microbial Production, and Greenhouse Gas Emissions of Four Dairy Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Batch Culture Study
2.2. Chemical Analyses
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks; EPA 430-P-17–001; Environmental Protection Agency (EPA): Washington, DC, USA, 2017; pp. 1990–2015.
- Basarab, J.; Baron, V.; López-Campos, Ó.; Aalhus, J.; Haugen-Kozyra, K.; Okine, E. Greenhouse gas emissions from calf- and yearling-fed beef production systems, with and without the use of growth promotants. Animals 2012, 2, 195–220. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food and Agriculture Organization of the United Nations Statistical Databases. 2017. Available online: http://faostat.fao.org/ (accessed on 3 June 2019).
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.H.; Lauk, C.; Harper, R.; Tubiello, F.N.; Siqueira Pinto, A.; Jafari, M.; Sohi, S.; et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Chang. Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revoredo-Giha, C.; Chalmers, N.; Akaichi, F. Simulating the impact of carbon taxes on greenhouse gas emission and nutrition in the UK. Sustainability 2018, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Bodas, R.; Prieto, N.; García-González, R.; Andrés, S.; Giráldez, F.J.; López, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McAllister, T.A.; Beauchemin, K.A. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Wallace, R.J.; Arthaud, L.; Newbold, C.J. Influence of Yucca schidigera extract on ruminal ammonia concentrations and ruminal microorganism. Appl. Environ. Microbiol. 1994, 60, 1762–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anele, U.Y.; Südekum, K.-H.; Hummel, J.; Arigbede, O.M.; Oni, A.O.; Olanite, J.A.; Böttger, C.; Ojo, V.O.; Jolaosho, A.O. Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vigna unguiculata L. Walp) haulm varieties. Anim. Feed Sci. Technol. 2011, 163, 161–169. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1997. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 2009, 22, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Morgavi, D.P.; Martin, C.; Jouany, J.P.; Ranilla, M.J. Rumen protozoa and methanogenesis: Not a simple cause-effect relationship. Br. J. Nutr. 2012, 107, 388–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanapat, M.; Chanthakhoun, V.; Phesatcha, K.; Kang, S. Influence of mangosteen peel powder as a source of plant secondary compounds on rumen microorganisms, volatile fatty acids, methane and microbial protein synthesis in swamp buffaloes. Livest. Sci. 2014, 162, 126–133. [Google Scholar] [CrossRef]
- Jayanegara, A.; Wina, E.; Takahashi, J. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: Influence of addition levels and plant sources. Asian-Austral. J. Anim. Sci. 2014, 27, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Hess, H.D.; Kreuzer, M.; Diaz, T.E.; Lascano, C.E.; Carulla, J.E.; Soliva, C.R.; Machmüller, A. Saponin rich tropical fruits affect fermentation and methanogensesis in faunated and defaunated rumen fluid. Anim. Feed Sci. Technol. 2003, 109, 79–94. [Google Scholar] [CrossRef]
- Hu, W.L.; Liu, J.X.; Ye, J.A.; Wu, Y.M.; Guo, Y.Q. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol. 2005, 120, 333–339. [Google Scholar] [CrossRef]
- Albores-Moreno, S.; Alayón-Gamboa, J.A.; Ayala-Burgos, A.J.; Solorio-Sánchez, F.J.; Aguilar-Pérez, C.F.; Olivera-Castillo, L.; Ku-Vera, J.C. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass. Trop. Anim. Health Prod. 2017, 49, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Valencia, S.; Piñeiro, A.T.; Molina, I.C.; Lazos, F.J.; Uuh, J.J.; Segura, M.; Ramírez, L.; Solorio, F.J.; Ku, J.C. Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agric. For. Meteorol. 2018, 258, 108–116. [Google Scholar] [CrossRef]
- Bharathidhasan, A.; Viswanathan, K.; Balakrishnan, V.; Valli, C.; Ramesh, S.; Senthilkumar, S.M.A. Effects of purified saponin on rumen methanogenesis and rumen fermentation characteristics studied using in vitro gas production technique. Int. J. Vet. Sci. 2013, 2, 44–49. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994; p. 476. [Google Scholar]
- Sirohi, S.K.; Goel, N.; Singh, N. Influence of Albizia lebbeck saponin and its fractions on in vitro gas production kinetics, rumen methanogenesis, and rumen fermentation characteristics. Int. Sch. Res. Not. 2014. [Google Scholar] [CrossRef] [Green Version]
Dry Matter (g/kg) | Crude Protein | Ether Extract | NDF 1 | |
---|---|---|---|---|
Corn silage_1 | 975 | 7.63 | 3.42 | 46.2 |
Corn silage_2 | 875 | 8.29 | 4.86 | 60.5 |
Total mixed ration_1 | 972 | 22.9 | 10.2 | 25.0 |
Total mixed ration_2 | 919 | 27.1 | 12.1 | 29.2 |
M 1 | K 2 | L 3 | ||
---|---|---|---|---|
Corn silage_1 | Control | 136 | 6.45 | 1.63 |
Saport | 119 | 8.44 | 2.01 | |
Corn silage_2 | Control | 116 | 11.3 | 2.56 |
Saport | 115 | 9.22 | 2.17 | |
Total mixed ration_1 | Control | 150 | 14.2 | 2.10 |
Saport | 137 | 12.9 | 1.74 | |
Total mixed ration_2 | Control | 140 | 13.8 | 2.06 |
Saport | 147 | 14.0 | 2.02 | |
Average (Substrate) | Corn silage | 122 b | 8.83 b | 2.09 |
TMR | 143 a | 13.7 a | 1.98 | |
Average (Treatment) | Control | 135 | 11.4 | 2.09 |
Saport | 130 | 11.1 | 1.98 | |
SEM 4 | 5.2 | 0.939 | 0.403 | |
LSD 5 (Interaction) | 35 | 7.72 | 0.933 | |
p-value (Main effect of substrate) | 0.004 | <0.001 | 0.572 | |
p-value (Main effect of treatment) | 0.290 | 0.679 | 0.728 | |
p-value (Interaction) | 0.384 | 0.189 | 0.751 |
CH4 | CO2 | NH3 | H2S | ||
---|---|---|---|---|---|
Corn silage_1 | Control | 2.68 | 33.9 | 1.06 | 0.95 |
Saport | 1.78 | 23.5 | 0.73 | 0.57 | |
Corn silage_2 | Control | 2.42 | 31.9 | 1.15 | 0.97 |
Saport | 2.00 | 26.1 | 1.16 | 0.73 | |
Total mixed ration_1 | Control | 4.99 | 43.8 | 1.89 | 1.71 |
Saport | 3.11 | 33.3 | 1.56 | 1.46 | |
Total mixed ration_2 | Control | 3.64 | 42.5 | 1.87 | 1.56 |
Saport | 3.72 | 42.4 | 1.75 | 1.54 | |
Average (Substrate) | Corn silage | 2.22 b | 28.9 b | 1.03 b | 0.80 b |
TMR | 3.87 a | 40.5 a | 1.77 a | 1.57 a | |
Average (Treatment) | Control | 3.43 a | 38.0 a | 1.49 | 1.29 |
Saport | 2.65 b | 31.3 b | 1.30 | 1.07 | |
1 SEM | 0.469 | 6.49 | 0.233 | 0.245 | |
2 LSD (Interaction) | 3.22 | 18.9 | 1.16 | 1.15 | |
p-value (Main effect of substrate) | <0.001 | <0.001 | <0.001 | <0.001 | |
p-value (Main effect of treatment) | 0.019 | 0.013 | 0.247 | 0.203 | |
p-value (Interaction) | 0.190 | 0.466 | 0.858 | 0.905 |
IVADMD | IVTDMD | PF | Mmass | SCFA | ||
---|---|---|---|---|---|---|
Corn silage_1 | Control | 0.443 | 0.635 | 1.93 | 197 | 3.96 |
Saport | 0.473 | 0.624 | 1.91 | 164 | 3.93 | |
Corn silage_2 | Control | 0.436 | 0.589 | 1.50 | 143 | 4.36 |
Saport | 0.462 | 0.603 | 1.49 | 156 | 4.43 | |
Total mixed ration_1 | Control | 0.595 | 0.896 | 2.41 | 309 | 4.52 |
Saport | 0.580 | 0.887 | 2.33 | 308 | 4.50 | |
Total mixed ration_2 | Control | 0.546 | 0.846 | 2.45 | 288 | 3.99 |
Saport | 0.561 | 0.846 | 2.28 | 273 | 4.20 | |
Average (Substrate) | Corn silage | 0.453 b | 0.613 b | 1.71 b | 165 b | 4.17 b |
TMR | 0.570 a | 0.868 a | 2.37 a | 294 a | 4.30 a | |
Average (Treatment) | Control | 0.505 | 0.741 | 2.07 | 234 | 4.21 |
Saport | 0.519 | 0.740 | 2.00 | 225 | 4.27 | |
1 SEM | 0.0139 | 0.0130 | 0.085 | 12.3 | 0.150 | |
2 LSD (Interaction) | 0.160 | 0.307 | 0.96 | 166 | 0.59 | |
p-value (Main effect of substrate) | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | |
p-value (Main effect of treatment) | 0.165 | 0.847 | 0.247 | 0.308 | 0.572 | |
p-value (Interaction) | 0.361 | 0.764 | 0.762 | 0.285 | 0.833 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anele, U.Y.; Crumel, X.; Olagunju, L.; Compart, D.P. Effects of Yucca schidigera Based Feed Additive on In Vitro Dry Matter Digestibility, Efficiency of Microbial Production, and Greenhouse Gas Emissions of Four Dairy Diets. Dairy 2022, 3, 326-332. https://doi.org/10.3390/dairy3020025
Anele UY, Crumel X, Olagunju L, Compart DP. Effects of Yucca schidigera Based Feed Additive on In Vitro Dry Matter Digestibility, Efficiency of Microbial Production, and Greenhouse Gas Emissions of Four Dairy Diets. Dairy. 2022; 3(2):326-332. https://doi.org/10.3390/dairy3020025
Chicago/Turabian StyleAnele, Uchenna Young, Xavier Crumel, Lydia Olagunju, and Devan Paulus Compart. 2022. "Effects of Yucca schidigera Based Feed Additive on In Vitro Dry Matter Digestibility, Efficiency of Microbial Production, and Greenhouse Gas Emissions of Four Dairy Diets" Dairy 3, no. 2: 326-332. https://doi.org/10.3390/dairy3020025
APA StyleAnele, U. Y., Crumel, X., Olagunju, L., & Compart, D. P. (2022). Effects of Yucca schidigera Based Feed Additive on In Vitro Dry Matter Digestibility, Efficiency of Microbial Production, and Greenhouse Gas Emissions of Four Dairy Diets. Dairy, 3(2), 326-332. https://doi.org/10.3390/dairy3020025