Balancing Trade-Offs in Milk Production by Making Use of Animal Individual Energy Balancing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Housing and Diet
2.2. Data and Sample Collection
2.3. Chemical Analysis
2.4. Calculations and Statistical Analysis
[fecal OM content (% of DM)/TMR OM content (% of DM)]}
3. Results
3.1. Variation of Energy Supply Parameter
3.2. Variation of Energy Requirement Parameters
3.3. Variation of Energy Balance during Early Lactation
4. Discussion
4.1. Variation in Energy Supply Variables
4.2. Variation in Energy Requirement Variables
4.3. Variation in Energy Balance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADF | acid detergent fiber |
ADFD | digestible acid detergent fiber |
aNDFom | neutral detergent fiber assayed with heat-stable amylase and expressed exclusive of residual ash |
ANOVA | analysis of variance |
CP | crude protein |
CPD | digestible crude protein |
CV | coefficient of variation |
CVAS | Cumberland Valley Analytical Services Inc. |
DM | dry matter |
DMI | dry matter intake |
EB | energy balance |
EE | ether extract |
ESC | ethanol-soluble carbohydrates |
GLM | generalized linear models |
iNDF240 | 240 h in vitro indigestible neutral detergent fiber |
IQR | interquartile range |
LMM | linear mixed model |
NDFD | digestible neutral detergent fiber |
NEFA | non-esterified fatty acids |
NEB | negative energy balance |
NEL | net energy for lactation |
NIRS | near infrared reflectance spectroscopy |
OM | organic matter |
OMD | digestible organic matter |
RIC | roughage intake control |
RSE | relative standard error |
SD | standard deviation |
SP | soluble protein |
TDN | total digestibly nutrient |
TER | total energy requirement |
TES | total energy supply |
TMR | totally mixed ration |
References
- Hansen, L.B. Consequences of Selection for Milk Yield from a Geneticist’s Viewpoint. J. Dairy Sci. 2000, 83, 1145–1150. [Google Scholar] [CrossRef]
- VandeHaar, M.J.; St-Pierre, N. Major Advances in Nutrition: Relevance to the Sustainability of the Dairy Industry. J. Dairy Sci. 2006, 89, 1280–1291. [Google Scholar] [CrossRef]
- Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.-P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.W. Regulation of Organic Nutrient Metabolism During Transition from Late Pregnancy to Early Lactation. J. Anim. Sci. 1995, 73, 2804–2819. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th Revised ed.; National Academies Press: Washington, DC, USA, 2001.
- de Souza, R.A.; Tempelman, R.J.; Allen, M.S.; VandeHaar, M.J. Updating predictions of dry matter intake of lactating dairy cows. J. Dairy Sci. 2019, 102, 7948–7960. [Google Scholar] [CrossRef] [Green Version]
- Oltenacu, P.A.; Broom, D.M. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf. 2010, 19, 39–49. [Google Scholar]
- Bauman, D.E.; Currie, W.B. Partitioning of Nutrients During Pregnancy and Lactation: A Review of Mechanisms Involving Homeostasis and Homeorhesis. J. Dairy Sci. 1980, 63, 1514–1529. [Google Scholar] [CrossRef]
- Sundrum, A. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows’ Ability to Adapt is Overstressed. Animals 2015, 5, 978–1020. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Raphael, W. Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet. Clin. Food Anim. Pract. 2013, 29, 267–278. [Google Scholar] [CrossRef]
- Collard, B.L.; Boettcher, P.J.; Dekkers, J.; Petitclerc, D.; Schaeffer, L.R. Relationships Between Energy Balance and Health Traits of Dairy Cattle in Early Lactation. J. Dairy Sci. 2000, 83, 2683–2690. [Google Scholar] [CrossRef]
- Knight, C.H.; Beever, D.E.; Sorensen, A. Metabolic loads to be expected from different genotypes under different systems. BSAP Occas. Publ. 1999, 24, 27–35. [Google Scholar] [CrossRef]
- Butler, W.R.; Smith, R.D. Interrelationships Between Energy Balance and Postpartum Reproductive Function in Dairy Cattle. J. Dairy Sci. 1989, 72, 767–783. [Google Scholar] [CrossRef]
- Nebel, R.L.; McGilliard, M.L. Interactions of High Milk Yield and Reproductive Performance in Dairy Cows. J. Dairy Sci. 1993, 76, 3257–3268. [Google Scholar] [CrossRef]
- Domecq, J.J.; Skidmore, A.L.; Lloyd, J.W.; Kaneene, J.B. Relationship Between Body Condition Scores and Conception at First Artificial Insemination in a Large Dairy Herd of High Yielding Holstein Cows. J. Dairy Sci. 1997, 80, 113–120. [Google Scholar] [CrossRef]
- Habel, J.; Sundrum, A. Mismatch of Glucose Allocation between Different Life Functions in the Transition Period of Dairy Cows. Animals 2020, 10, 1028. [Google Scholar] [CrossRef]
- Habel, J.; Uhlig, V.; Hoischen-Taubner, S.; Schwabenbauer, E.-M.; Rumphorst, T.; Ebert, L.; Möller, D.; Sundrum, A. Income over service life cost—Estimation of individual profitability of dairy cows at time of death reveals farm-specific economic trade-offs. Livest. Sci. 2021, 254, 104765. [Google Scholar] [CrossRef]
- Langford, F.M.; Stott, A.W. Culled early or culled late: Economic decisions and risks to welfare in dairy cows. Anim. Welf. 2012, 21, 41–55. [Google Scholar] [CrossRef]
- van Soest, F.J.S.; Mourits, M.C.M.; Blanco-Penedo, I.; Duval, J.; Fall, N.; Krieger, M.; Sjöstrom, K.; Hogeveen, H. Farm-specific failure costs of production disorders in European organic dairy herds. Prev. Vet. Med. 2019, 168, 19–29. [Google Scholar] [CrossRef]
- Beerda, B.; Ouweltjes, W.; Šebek, L.; Windig, J.J.; Veerkamp, R.F. Effects of Genotype by Environment Interactions on Milk Yield, Energy Balance, and Protein Balance. J. Dairy Sci. 2007, 90, 219–228. [Google Scholar] [CrossRef]
- Roseler, D.K.; Fox, D.G.; Pell, A.N.; Chase, L.E. Evaluation of Alternative Equations for Prediction of Intake for Holstein Dairy Cows. J. Dairy Sci. 1997, 80, 864–877. [Google Scholar] [CrossRef]
- Martin, O.; Sauvant, D. Metaanalysis of Input/Output Kinetics in Lactating Dairy Cows. J. Dairy Sci. 2002, 85, 3363–3381. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Price, W.J.; Shafii, B. A Meta-Analysis on the Relationship Between Intake of Nutrients and Body Weight with Milk Volume and Milk Protein Yield in Dairy Cows. J. Dairy Sci. 2005, 88, 2860–2869. [Google Scholar] [CrossRef] [Green Version]
- Thornton, R.F.; Minson, D.J. The relationship between apparent retention time in the rumen, voluntary intake, and apparent digestibility of legume and grass diets in sheep. Aust. J. Agric. Res. 1973, 24, 889. [Google Scholar] [CrossRef]
- Mertens, D.R.; Grant, R.J. Digestibility and Intake. In Forages, 7th ed.; Collins, M., Nelson, C.J., Moore, K.J., Barnes, R.F., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2020; pp. 609–631. ISBN 9781119436669. [Google Scholar]
- Jorritsma, R.; Wensing, T.; Kruip, T.A.M.; Vos, P.L.A.M.; Noordhuizen, J.P.T.M. Metabolic changes in early lactation and impaired reproductive performance in dairy cows. Vet. Res. 2003, 34, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal Descriptors of Body Condition Score in Holstein Cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized Additive Models, 1st ed.; Chapman and Hall: London, UK, 1990; ISBN 978-0412343902. [Google Scholar]
- Thorup, V.M.; Edwards, D.; Friggens, N.C. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. J. Dairy Sci. 2012, 95, 1784–1793. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Krishnamoorthy, U.; Muscato, T.V.; Sniffen, C.J.; van Soest, P.J. Nitrogen Fractions in Selected Feedstuffs. J. Dairy Sci. 1982, 65, 217–225. [Google Scholar] [CrossRef]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hall, M.B. Determination of starch, including maltooligosaccharides, in animal feeds: Comparison of methods and a method recommended for AOAC collaborative study. J. AOAC Int. 2009, 92, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Raffrenato, E. Physical, Chemical and Kinetic Factors Associated with Fiber Digestibility in Ruminants and Models Describing These Relationships. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2011. [Google Scholar]
- Althaus, B.; Papke, G.; Sundrum, A. Technical note: Use of near infrared reflectance spectroscopy to assess nitrogen and carbon fractions in dairy cow feces. Anim. Feed Sci. Technol. 2013, 185, 53–59. [Google Scholar] [CrossRef]
- Gruber, L.; Schwarz, F.J.; Erdin, D.; Fischer, B.; Spiekers, H.; Steingass, H. Vorhersage der Futteraufnahme von Milchkühen—Datenbasis von 10 Forschungs- und Universitätsinstituten Deutschlands, Österreichs und der Schweiz; VDLUFA-Verl.: Darmstadt, Germany, 2004. [Google Scholar]
- Jensen, L.M.; Nielsen, N.I.; Nadeau, E.; Markussen, B.; Nørgaard, P. Evaluation of five models predicting feed intake by dairy cows fed total mixed rations. Livest. Sci. 2015, 176, 91–103. [Google Scholar] [CrossRef]
- Schalla, A.; Meyer, L.; Meyer, Z.; Onetti, S.; Schultz, A.; Goeser, J. Hot topic: Apparent total-tract nutrient digestibilities measured commercially using 120-hour in vitro indigestible neutral detergent fiber as a marker are related to commercial dairy cattle performance. J. Dairy Sci. 2012, 95, 5109–5114. [Google Scholar] [CrossRef]
- Spiekers, H.; Nußbaum, H.; Potthast, V. Erfolgreiche Milchviehfütterung, 5., erw. und Aktualisiert Aufl.; DLG-Verl.: Frankfurt am Main, Germany, 2009; ISBN 3769007301. [Google Scholar]
- GfE. Gesellschaft für Ernährungsphysiologie.Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. Energie- und Nährstoffbedarf Landwirtschaftlicher Nutztiere Nr, 8th ed.; DLG-Verl.: Frankfurt am Main, Germany, 2001. [Google Scholar]
- Girden, E.R. ANOVA: Repeated Measures; Sage Publications: Newbury Park, CA, USA, 2003; ISBN 9780803942578. [Google Scholar]
- Rumphorst, T.; Scheu, T.; Koch, C.; Sundrum, A. Inter- and Intra-Individual Variation in the Behavior of Feed Intake on Nutrient Availability in Early Lactating Dairy Cows. Animals 2021, 12, 37. [Google Scholar] [CrossRef]
- DeVries, M.J.; Veerkamp, R.F. Energy Balance of Dairy Cattle in Relation to Milk Production Variables and Fertility. J. Dairy Sci. 2000, 83, 62–69. [Google Scholar] [CrossRef]
- Kessel, S.; Stroehl, M.; Meyer, H.H.D.; Hiss, S.; Sauerwein, H.; Schwarz, F.J.; Bruckmaier, R.M. Individual variability in physiological adaptation to metabolic stress during early lactation in dairy cows kept under equal conditions. J. Anim. Sci. 2008, 86, 2903–2912. [Google Scholar] [CrossRef]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Krizsan, S.J.; Shingfield, K.J. Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows. J. Dairy Sci. 2015, 98, 3182–3196. [Google Scholar] [CrossRef] [Green Version]
- Cabezas-Garcia, E.H.; Krizsan, S.J.; Shingfield, K.J.; Huhtanen, P. Between-cow variation in digestion and rumen fermentation variables associated with methane production. J. Dairy Sci. 2017, 100, 4409–4424. [Google Scholar] [CrossRef]
- Grant, R.J.; Albright, J.L. Feeding Behaviour. In Farm Animal Metabolism and Nutrition; D’Mello, J.P.F., Ed.; CABI Publishing: Wallingford, UK, 2000; ISBN 9780851993782. [Google Scholar]
- Dado, R.G.; Allen, M.S. Variation in and Relationships Among Feeding, Chewing, and Drinking Variables for Lactating Dairy Cows. J. Dairy Sci. 1994, 77, 132–144. [Google Scholar] [CrossRef]
- Allen, M.S.; Piantoni, P. Metabolic control of feed intake: Implications for metabolic disease of fresh cows. Vet. Clin. North. Am. Food Anim. Pract. 2013, 29, 279–297. [Google Scholar] [CrossRef]
- Dulphy, J.P.; Demarquilly, C. The regulation and prediction of feed intake in ruminants in relation to feed characteristics. Livest. Prod. Sci. 1994, 39, 1–12. [Google Scholar] [CrossRef]
- Huhtanen, P.; Ahvenjärvi, S.; Broderick, G.A.; Reynal, S.M.; Shingfield, K.J. Quantifying ruminal digestion of organic matter and neutral detergent fiber using the omasal sampling technique in cattle—A meta-analysis. J. Dairy Sci. 2010, 93, 3203–3215. [Google Scholar] [CrossRef]
- Guinguina, A.; Yan, T.; Lund, P.; Bayat, A.R.; Hellwing, A.L.F.; Huhtanen, P. Between-cow variation in the components of feed efficiency. J. Dairy Sci. 2020, 103, 7968–7982. [Google Scholar] [CrossRef]
- Bezen, R.; Edan, Y.; Halachmi, I. Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms. Comput. Electron. Agric. 2020, 172, 105345. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Thraen, C.S. Animal Grouping Strategies, Sources of Variation, and Economic Factors Affecting Nutrient Balance on Dairy Farms. J. Anim. Sci. 1999, 77, 72–83. [Google Scholar] [CrossRef] [Green Version]
- McGilliard, M.L.; Swisher, J.M.; James, R.E. Grouping Lactating Cows by Nutritional Requirements for Feeding. J. Dairy Sci. 1983, 66, 1084–1093. [Google Scholar] [CrossRef]
- Poncheki, J.K.; Canha, M.L.S.; Viechnieski, S.L.; de Almeida, R. Analysis of daily body weight of dairy cows in early lactation and associations withproductive and reproductive performance. R. Bras. Zootec. 2015, 44, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation. J. Dairy Sci. 2011, 94, 1820–1830. [Google Scholar] [CrossRef]
- Komaragiri, M.; Erdman, R.A. Factors Affecting Body Tissue Mobilization in Early Lactation Dairy Cows. 1. Effect of Dietary Protein on Mobilization of Body Fat and Protein. J. Dairy Sci. 1997, 80, 929–937. [Google Scholar]
- Azizi, O.; Kaufmann, O.; Hasselmann, L. Relationship between feeding behaviour and feed intake of dairy cows depending on their parity and milk yield. Livest. Sci. 2009, 122, 156–161. [Google Scholar] [CrossRef]
- McParland, S.; Kennedy, E.; Lewis, E.; Moore, S.G.; McCarthy, B.; O'Donovan, M.; Berry, D.P. Genetic parameters of dairy cow energy intake and body energy status predicted using mid-infrared spectrometry of milk. J. Dairy Sci. 2015, 98, 1310–1320. [Google Scholar] [CrossRef] [Green Version]
- McNamara, J.P. TRIENNIAL LACTATION SYMPOSIUM: Systems biology of regulatory mechanisms of nutrient metabolism in lactation. J. Anim. Sci. 2015, 93, 5575–5585. [Google Scholar] [CrossRef]
- DeVries, M.J.; van der Beek, S.; Kaal-Lansbergen, L.; Ouweltjes, W.; Wilmink, J. Modeling of Energy Balance in Early Lactation and the Effect of Energy Deficits in Early Lactation on First Detected Estrus Postpartum in Dairy Cows. J. Dairy Sci. 1999, 82, 1927–1934. [Google Scholar] [CrossRef]
- Grummer, R.R.; Rastani, R.R. When Should Lactating Dairy Cows Reach Positive Energy Balance? Prof. Anim. Sci. 2003, 19, 197–203. [Google Scholar] [CrossRef]
- Grieve, D.; Korver, S.; Rijpkema, Y.; Hof, G. Relationship between milk composition and some nutritional parameters in early lactation. Livest. Prod. Sci. 1986, 14, 239–254. [Google Scholar] [CrossRef]
- Heuer, C.; Schukken, Y.H.; Dobbelaar, P. Postpartum Body Condition Score and Results from the First Test Day Milk as Predictors of Disease, Fertility, Yield, and Culling in Commercial Dairy Herds. J. Dairy Sci. 1999, 82, 295–304. [Google Scholar] [CrossRef]
- Mäntysaari, P.; Mäntysaari, E.A.; Kokkonen, T.; Mehtiö, T.; Kajava, S.; Grelet, C.; Lidauer, P.; Lidauer, M.H. Body and milk traits as indicators of dairy cow energy status in early lactation. J. Dairy Sci. 2019, 102, 7904–7916. [Google Scholar] [CrossRef] [Green Version]
- Sundrum, A. Nutrition and Health-Management in Dairy Production. In Livestock Health and Farming; IntechOpen: London, UK, 2020. [Google Scholar]
- Bar-Pelled, U.; Maltz, E.; Bruckental, I.; Folman, Y.; Kali, Y.; Gacitua, H.; Lehrer, A.R.; Knight, C.H.; Robinson, B.; Voet, H.; et al. Relationship Between Frequent Milking or Suckling in Early Lactation and Milk Production of High Producing Dairy Cows. J. Dairy Sci. 1995, 78, 2726–2736. [Google Scholar] [CrossRef]
- Stelwagen, K.; Phyn, C.V.C.; Davis, S.R.; Guinard-Flament, J.; Pomiès, D.; Roche, J.R.; Kay, J.K. Invited review: Reduced milking frequency: Milk production and management implications. J. Dairy Sci. 2013, 96, 3401–3413. [Google Scholar] [CrossRef]
- Lacasse, P.; Vanacker, N.; Ollier, S.; Ster, C. Innovative dairy cow management to improve resistance to metabolic and infectious diseases during the transition period. Res. Vet. Sci. 2018, 116, 40–46. [Google Scholar] [CrossRef]
Diet Composition (g/kg) a | Chemical Composition (g/kg) b | |||
---|---|---|---|---|
Mean | SD | |||
Beet pressed pulp silage | 188.3 | Dry matter | 402.0 | 13.8 |
Grass silage | 97.0 | |||
Grass hay | 74.7 | OM | 931.4 | 3.8 |
Maize silage | 259.6 | CP | 157.4 | 8.1 |
Concentrate | 380.4 | SP | 63.2 | 7.3 |
EE | 43.0 | 2.4 | ||
aNDFom | 355.1 | 8.8 | ||
ADF | 219.3 | 4.9 | ||
Lignin | 28.3 | 1.2 | ||
iNDF240 | 86.4 | 4.5 | ||
Starch | 182.3 | 14.8 | ||
ESC | 63.1 | 3.4 | ||
TDN c | 732.0 | 5.0 | ||
Energy (MJ/kg DM) | ||||
NEL d | 7.0 | 0.0 |
Up to 4th Week of Lactation | Up to 8th Week of Lactation | Up to 12th Week of Lactation | Up to 15th Week of Lactation | |
---|---|---|---|---|
Intercept | 2274 | 2274 | 2274 | 2274 |
country × breed | HF h (GER + AT) d | HF h (GER + AT) | HF h (GER + AT) | HF h (GER + AT) |
lactation | 2–3 | 2–3 | 2–3 | 2–3 |
DIM a | 28 | 56 | 84 | 105 |
BW b | 667.16 | 663.40 | 664.13 | 663.33 |
MY c | 42.66 | 47.50 | 46.82 | 44.72 |
Concentrate proportion | 38.10 | 38.10 | 38.10 | 38.10 |
NEL value of forage | 6.80 | 6.80 | 6.80 | 6.80 |
Predicted DMI e | 23.49 | 25.52 | 26.01 | 25.77 |
Mean measured DMI | 16.79 | 20.13 | 21.72 | 21.39 |
SD measured DMI | 2.60 | 2.51 | 2.34 | 2.71 |
CV measured DMI | 0.15 | 0.12 | 0.11 | 0.13 |
Mean max DMI | 22.12 | 24.89 | 25.79 | 25.77 |
Mean min DMI | 11.27 | 15.23 | 16.94 | 15.07 |
Difference mean predicted and measured DMI | 6.70 | 5.39 | 4.29 | 4.38 |
Quartile of Mean Energy Balance Value during Early Lactation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lower Quartile (<25%) | Intermediate Quartile | Upper Quartile (>75%) | |||||||||||
Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | p | |
Lactation | 3.2 | 0.8 | 2.0 | 4.0 | 2.9 | 1.6 | 2.0 | 8.0 | 3.0 | 1.1 | 2.0 | 5.0 | |
Milk yield (kg/d) | 47.8 a | 5.2 | 35.0 | 56.5 | 46.7 ab | 5.9 | 25.4 | 61.0 | 41.9 b | 4.8 | 19.0 | 50.4 | * |
Milk yield (kg/d) in 1st milk check | 42.1 a | 3.9 | 36.4 | 47.6 | 39.6 ab | 6.4 | 25.4 | 46.2 | 35.9 b | 8.9 | 19.0 | 44.6 | * |
Milk fat (%) | 3.9 | 0.9 | 2.5 | 6.2 | 3.7 | 0.7 | 2.1 | 5.8 | 3.6 | 0.7 | 2.4 | 6.4 | NS 1 |
Milk protein (%) | 3.0 b | 0.3 | 2.6 | 3.7 | 2.9 b | 0.2 | 2.5 | 3.9 | 3.2 a | 0.2 | 2.8 | 3.9 | ** |
Ratio fat:protein | 1.3 a | 0.3 | 0.9 | 2.4 | 1.2 ab | 0.2 | 0.8 | 1.7 | 1.1 b | 0.2 | 0.7 | 1.7 | ** |
ECM (kg/d) | 45.8 a | 5.2 | 34.0 | 56.5 | 43.5 ab | 6.0 | 25.6 | 60.8 | 39.4 b | 5.6 | 16.7 | 50.4 | * |
ECM (kg/d) in 1st milk check | 48.0 a | 4.2 | 41.4 | 53.1 | 43.3 ab | 8.9 | 25.6 | 52.4 | 38.7 b | 10.8 | 16.7 | 49.9 | * |
Week of Peak Milk | 4.7 | 2.7 | 2 | 9 | 4.3 | 2.3 | 2 | 9 | 4.0 | 2.8 | 2 | 10 | NS |
Peak Milk (kg ECM/d) | 51.8 a | 3.8 | 46.3 | 56.5 | 48.6 ab | 6.3 | 37.8 | 60.8 | 44.4 b | 5.0 | 36.6 | 50.4 | * |
Body weight (BW) (kg/d) | 669.1 | 76.1 | 574.5 | 801.4 | 653.7 | 43.6 | 565.6 | 781.2 | 682.1 | 69.2 | 604.5 | 841.9 | NS |
BW changes wk 2–5 | −2.7 | 14.8 | −32.6 | 12.4 | −3.6 | 19.7 | −41.7 | 30.2 | −16.7 | 19.8 | −43.2 | 3.4 | NS |
BW changes wk 6–10 | −3.4 | 11.1 | −20.0 | 15.1 | 5.7 | 24.6 | −46.3 | 44.6 | 11.7 | 16.3 | −5.2 | 44.5 | NS |
BW changes wk 11–15 | −1.3 | 6.3 | −10.6 | 3.6 | 1.2 | 23.3 | −35.1 | 37.9 | 18.3 | 20.1 | −6.8 | 47.5 | NS |
BCS | 2.9 | 0.4 | 2.3 | 3.8 | 2.8 | 0.3 | 2.3 | 3.5 | 3.2 | 0.4 | 2.8 | 4.3 | NS |
BCS (1st test) | 3.3 | 0.4 | 2.3 | 3.8 | 3.0 | 0.2 | 2.8 | 3.3 | 3.3 | 0.4 | 3.0 | 4.0 | NS |
BCS changes wk 2–5 | −0.1 | 0.2 | −0.4 | 0.3 | −0.1 | 0.2 | −0.5 | 0.0 | −0.1 | 0.3 | −0.6 | 0.3 | NS |
BCS changes wk 6–10 | −0.4 | 0.3 | −0.8 | 0.0 | −0.1 | 0.1 | −0.3 | 0.0 | 0.2 | 0.4 | −0.1 | 0.8 | NS |
BCS changes wk 11–15 | 0.1 | 0.3 | 0.0 | 0.5 | 0.0 | 0.1 | −0.3 | 0.3 | 0.0 | 0.4 | −0.8 | 0.5 | NS |
DMI (kg/d) | 19.2 | 3.2 | 10.9 | 26.3 | 20.2 | 3.3 | 10.1 | 26.5 | 20.6 | 3.0 | 12.2 | 26.1 | NS |
OMD(g/kg) | 731.0 | 21.3 | 681.9 | 774.8 | 728.5 | 19.6 | 667.3 | 786.6 | 727.2 | 19.0 | 679.2 | 787.6 | NS |
TES (MJ NEL/d) | 134.4 | 22.9 | 76.2 | 185.7 | 141.6 | 23.0 | 70.9 | 186.6 | 144.0 | 20.7 | 85.6 | 181.5 | NS |
ES as a multiple of ERmain | 3.2 | 0.5 | 1.9 | 4.1 | 3.4 | 0.6 | 1.7 | 4.7 | 3.4 | 0.5 | 1.8 | 4.3 | NS |
ERmain (MJ NEL/d) | 38.5 | 3.3 | 34.4 | 44.1 | 37.9 | 1.9 | 34.0 | 43.3 | 38.7 | 3.3 | 33.7 | 45.8 | NS |
ERpro (MJ NEL/d) | 143.7 a | 16.3 | 106.1 | 177.4 | 136.3 ab | 18.9 | 80.4 | 191.3 | 123.5 b | 17.8 | 52.5 | 158.5 | * |
TER (MJ NEL/d) | 182.2 a | 18.1 | 143.7 | 221.5 | 174.2 ab | 18.6 | 117.2 | 229.0 | 162.2 b | 17.0 | 93.7 | 197.5 | * |
EB (MJ NEL/d) | −47.6 c | 26.0 | −107.2 | −7.1 | −32.8 b | 21.5 | −101.4 | 10.7 | −18.2 a | 21.7 | −84.5 | 23.9 | *** |
Variable | Estimate | SE a | p |
---|---|---|---|
Intercept | −1.498 | 0.631 | 0.026 |
CV DMI b | 0.382 | 2.297 | 0.869 |
CV OMD c | −9.015 | 18.202 | 0.625 |
CV ECM d | 12.444 | 3.468 | 0.001 |
R² | 0.375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumphorst, T.; Scheu, T.; Koch, C.; Sundrum, A. Balancing Trade-Offs in Milk Production by Making Use of Animal Individual Energy Balancing. Dairy 2022, 3, 345-363. https://doi.org/10.3390/dairy3020027
Rumphorst T, Scheu T, Koch C, Sundrum A. Balancing Trade-Offs in Milk Production by Making Use of Animal Individual Energy Balancing. Dairy. 2022; 3(2):345-363. https://doi.org/10.3390/dairy3020027
Chicago/Turabian StyleRumphorst, Theresa, Theresa Scheu, Christian Koch, and Albert Sundrum. 2022. "Balancing Trade-Offs in Milk Production by Making Use of Animal Individual Energy Balancing" Dairy 3, no. 2: 345-363. https://doi.org/10.3390/dairy3020027
APA StyleRumphorst, T., Scheu, T., Koch, C., & Sundrum, A. (2022). Balancing Trade-Offs in Milk Production by Making Use of Animal Individual Energy Balancing. Dairy, 3(2), 345-363. https://doi.org/10.3390/dairy3020027