Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk
Abstract
:1. Introduction
2. Macronutrients
2.1. Proteins
2.2. Fats
2.3. Carbohydrate
3. Comparison of Goat Milk with Other Species’ Milk
3.1. Comparison by Protein Content
3.2. Comparison by the Carbohydrate Content
3.3. Comparison by Fat Content
3.4. Comparison by Vitamins and Minerals Content
4. Influence of Milking Parlors on Goat Milk
5. GM Based Products
5.1. Yoghurt
5.2. Cheese
5.3. Fermented Milk
5.4. Ice Cream
5.5. Powder and Condensed Milk
5.6. Other GM Products
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zervas, G.; Tsiplakou, E. Goat Milk. In Milk and Dairy Products in Human Nutrition; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 498–518. ISBN 978-1-118-53416-8. [Google Scholar]
- Ribeiro, A.C.; Ribeiro, S.D.A. Specialty Products Made from Goat Milk. Small Rumin. Res. 2010, 89, 225–233. [Google Scholar] [CrossRef]
- Turkmen, N. Chapter 35—The Nutritional Value and Health Benefits of Goat Milk Components. In Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 441–449. ISBN 978-0-12-809762-5. [Google Scholar]
- Marques de Almeida, M.; Haenlein, G.F.W. Goat Milk. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 11–41. ISBN 978-1-119-11031-6. [Google Scholar]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-Chemical Characteristics of Goat and Sheep Milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Ameta, R.; Sharma, H.; Singh, A.K.; Panjagari, N.R.; Baria, B. Effect of Ultrafiltration and Fat Content on Chemical, Functional, Textural and Sensory Characteristics of Goat Milk-Based Halloumi Type Cheese. LWT 2020, 126, 109341. [Google Scholar] [CrossRef]
- Panchal, G.; Hati, S.; Sakure, A. Characterization and Production of Novel Antioxidative Peptides Derived from Fermented Goat Milk by L. Fermentum. LWT 2020, 119, 108887. [Google Scholar] [CrossRef]
- Mal, G.; Singh, B.; Mane, B.G.; Sharma, V.; Sharma, R.; Bhar, R.; Dhar, J.B. Milk Composition, Antioxidant Activities and Protein Profile of Gaddi Goat Milk. J. Food Biochem. 2018, 42, e12660. [Google Scholar] [CrossRef]
- Park, Y.W. Goat Milk—Chemistry and Nutrition. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 42–83. ISBN 978-1-119-11031-6. [Google Scholar]
- Prosser, C.G. Compositional and Functional Characteristics of Goat Milk and Relevance as a Base for Infant Formula. J. Food Sci. 2021, 86, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Park, Y. 12—Improving Goat Milk. In Improving the Safety and Quality of Milk; Griffiths, M.W., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2010; pp. 304–346. ISBN 978-1-84569-806-5. [Google Scholar]
- Mayer, H.K.; Fiechter, G. Physicochemical Characteristics of Goat’s Milk in Austria – Seasonal Variations and Differences between Six Breeds. Dairy Sci. Technol. 2012, 92, 167–177. [Google Scholar] [CrossRef]
- Amigo, L.; Fontecha, J. Milk—Goat Milk. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 484–493. ISBN 978-0-12-374407-4. [Google Scholar]
- Haenlein, G.F.W. Past, Present, and Future Perspectives of Small Ruminant Dairy Research1. J. Dairy Sci. 2001, 84, 2097–2115. [Google Scholar] [CrossRef]
- García, V.; Rovira, S.; Boutoial, K.; López, M.B. Improvements in Goat Milk Quality: A Review. Small Rumin. Res. 2014, 121, 51–57. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, X.; Li, X.; Wang, J.; Wang, C. Milk Compositional Changes of Laoshan Goat Milk from Partum up to 261 Days Postpartum. Anim. Sci. J. 2018, 89, 1355–1363. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Wang, C. Research on the Preparation, Uniformity and Stability of Mixed Standard Substance for Rapid Detection of Goat Milk Composition. Anim. Sci. J. 2018, 89, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Kondyli, E.; Svarnas, C.; Samelis, J.; Katsiari, M.C. Chemical Composition and Microbiological Quality of Ewe and Goat Milk of Native Greek Breeds. Small Rumin. Res. 2012, 103, 194–199. [Google Scholar] [CrossRef]
- Trujillo, A.J.; Casals, I.; Guamis, B. Analysis of Major Caprine Milk Proteins by Reverse-Phase High-Performance Liquid Chromatography and Electrospray Ionization-Mass Spectrometry. J. Dairy Sci. 2000, 83, 11–19. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.K.; Katsafadou, A.I.; Pierros, V.; Kontopodis, E.; Fthenakis, G.C.; Arsenos, G.; Karkabounas, S.C.; Tzora, A.; Skoufos, I.; Tsangaris, G.T. Milk of Greek Sheep and Goat Breeds; Characterization by Means of Proteomics. J. Proteom. 2016, 147, 76–84. [Google Scholar] [CrossRef]
- Lu, J.; Liu, L.; Pang, X.; Zhang, S.; Jia, Z.; Ma, C.; Zhao, L.; Lv, J. Comparative Proteomics of Milk Fat Globule Membrane in Goat Colostrum and Mature Milk. Food Chem. 2016, 209, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, C.; Sun, X.; Guo, M. Proteomic Analysis of Whey Proteins in the Colostrum and Mature Milk of Xinong Saanen Goats. J. Dairy Sci. 2020, 103, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Selvaggi, M.; Laudadio, V.; Dario, C.; Tufarelli, V. Major Proteins in Goat Milk: An Updated Overview on Genetic Variability. Mol. Biol. Rep. 2014, 41, 1035–1048. [Google Scholar] [CrossRef]
- Cosman, N.P.; Fatih, K.; Roscoe, S.G. Electrochemical Impedance Spectroscopy Study of the Adsorption Behaviour of α-Lactalbumin and β-Casein at Stainless Steel. J. Electroanal. Chem. 2005, 574, 261–271. [Google Scholar] [CrossRef]
- Bevilacqua, C.; Martin, P.; Candalh, C.; Fauquant, J.; Piot, M.; Roucayrol, A.-M.; Pilla, F.; Heyman, M. Goats’ Milk of Defective As1-Casein Genotype Decreases Intestinal and Systemic Sensitization to β-Lactoglobulin in Guinea Pigs. J. Dairy Res. 2001, 68, 217–227. [Google Scholar] [CrossRef]
- Lara-Villoslada, F.; Olivares, M.; Jiménez, J.; Boza, J.; Xaus, J. Goat Milk Is Less Immunogenic than Cow Milk in a Murine Model of Atopy. J. Pediatr. Gastroenterol. Nutr. 2004, 39, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Li, X.; Zhao, X.; Qin, Y.; Wang, J.; Wang, C. Comparative Proteomics of Goat Milk during Heated Processing. Food Chem. 2019, 275, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Cheng, M.; Li, J.; Zhao, X.; Qin, Y.S.; Chen, D.; Wang, J.M.; Wang, C.F. Change in the Structural and Functional Properties of Goat Milk Protein Due to PH and Heat. J. Dairy Sci. 2020, 103, 1337–1351. [Google Scholar] [CrossRef] [PubMed]
- Farrell, H.M.; Malin, E.L.; Brown, E.M.; Mora-Gutierrez, A. Review of the Chemistry of AS2-Casein and the Generation of a Homologous Molecular Model to Explain Its Properties1. J. Dairy Sci. 2009, 92, 1338–1353. [Google Scholar] [CrossRef]
- Marletta, D.; Bordonaro, S.; Guastella, A.M.; Falagiani, P.; Crimi, N.; D’Urso, G. Goat Milk with Different AS2-Casein Content: Analysis of Allergenic Potency by REAST-Inhibition Assay. Small Rumin. Res. 2004, 52, 19–24. [Google Scholar] [CrossRef]
- Ramunno, L.; Cosenza, G.; Pappalardo, M.; Longobardi, E.; Gallo, D.; Pastore, N.; Gregorio, P.D.; Rando, A. Characterization of Two New Alleles at the Goat CSN1S2 Locus. Anim. Genet. 2001, 32, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Ramunno, L.; Longobardi, E.; Pappalardo, M.; Rando, A.; Gregorio, P.D.; Cosenza, G.; Mariani, P.; Pastore, N.; Masina, P. An Allele Associated with a Non-Detectable Amount of As2 Casein in Goat Milk. Anim. Genet. 2001, 32, 19–26. [Google Scholar] [CrossRef]
- Hodgkinson, A.J.; McDonald, N.A.; Kivits, L.J.; Hurford, D.R.; Fahey, S.; Prosser, C. Allergic Responses Induced by Goat Milk AS1-Casein in a Murine Model of Gastrointestinal Atopy. J. Dairy Sci. 2012, 95, 83–90. [Google Scholar] [CrossRef]
- Mangia, N.P.; Saliba, L.; Zoumpopoulou, G.; Chessa, S.; Anastasiou, R.; Karayiannis, Ι.; Sgouras, D.; Tsakalidou, E.; Nudda, A. Goat Milk with Different Alpha-S1 Casein Genotype (CSN1S1) Fermented by Selected Lactobacillus Paracasei as Potential Functional Food. Fermentation 2019, 5, 55. [Google Scholar] [CrossRef]
- Vázquez-Flores, F.; Montaldo, H.H.; Torres-Vázquez, J.A.; Alonso-Morales, R.A.; Gayosso-Vázquez, A.; Valencia-Posadas, M.; Castillo-Juárez, H. Additive and Dominance Effects of the As1-Casein Locus on Milk Yield and Composition Traits in Dairy Goats. J. Dairy Res. 2012, 79, 367–374. [Google Scholar] [CrossRef]
- Cebo, C.; Lopez, C.; Henry, C.; Beauvallet, C.; Ménard, O.; Bevilacqua, C.; Bouvier, F.; Caillat, H.; Martin, P. Goat As1-Casein Genotype Affects Milk Fat Globule Physicochemical Properties and the Composition of the Milk Fat Globule Membrane. J. Dairy Sci. 2012, 95, 6215–6229. [Google Scholar] [CrossRef] [Green Version]
- Ballabio, C.; Chessa, S.; Rignanese, D.; Gigliotti, C.; Pagnacco, G.; Terracciano, L.; Fiocchi, A.; Restani, P.; Caroli, A.M. Goat Milk Allergenicity as a Function of AS1-Casein Genetic Polymorphism. J. Dairy Sci. 2011, 94, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Farrell, H.M.; Mora-Gutierrez, A. k-Carrageenan Interaction with Bovine and Caprine Caseins as Shown by Sedimentation and NMR Spectroscopic Techniques. In Advances in Biopolymers; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2006; Volume 935, pp. 93–114. ISBN 978-0-8412-3959-3. [Google Scholar]
- Mora-Gutierrez, A.; Farrell, H.M.; Attaie, R.; McWhinney, V.J.; Wang, C. Effects of Bovine and Caprine Monterey Jack Cheeses Fortified with Milk Calcium on Bone Mineralization in Rats. Int. Dairy J. 2007, 17, 255–267. [Google Scholar] [CrossRef]
- Montalbano, M.; Segreto, R.; Di Gerlando, R.; Mastrangelo, S.; Sardina, M.T. Quantitative Determination of Casein Genetic Variants in Goat Milk: Application in Girgentana Dairy Goat Breed. Food Chem. 2016, 192, 760–764. [Google Scholar] [CrossRef]
- Almaas, H.; Cases, A.-L.; Devold, T.G.; Holm, H.; Langsrud, T.; Aabakken, L.; Aadnoey, T.; Vegarud, G.E. In Vitro Digestion of Bovine and Caprine Milk by Human Gastric and Duodenal Enzymes. Int. Dairy J. 2006, 16, 961–968. [Google Scholar] [CrossRef]
- Froehlich, J.W.; Dodds, E.D.; Barboza, M.; McJimpsey, E.L.; Seipert, R.R.; Francis, J.; An, H.J.; Freeman, S.; German, J.B.; Lebrilla, C.B. Glycoprotein Expression in Human Milk during Lactation. J. Agric. Food Chem. 2010, 58, 6440–6448. [Google Scholar] [CrossRef]
- Masson, P.L.; Heremans, J.F.; Dive, C.H. An Iron-Binding Protein Common to Many External Secretions. Clin. Chim. Acta 1966, 14, 735–739. [Google Scholar] [CrossRef]
- Lönnerdal, B. Nutritional and Physiologic Significance of Human Milk Proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S. [Google Scholar] [CrossRef]
- Legrand, D.; Elass, E.; Carpentier, M.; Mazurier, J. Lactoferrin. Cell. Mol. Life Sci. 2005, 62, 2549–2559. [Google Scholar] [CrossRef]
- Orsi, N. The Antimicrobial Activity of Lactoferrin: Current Status and Perspectives. Biometals 2004, 17, 189–196. [Google Scholar] [CrossRef]
- Seganti, L.; Di Biase, A.M.; Marchetti, M.; Pietrantoni, A.; Tinari, A.; Superti, F. Antiviral Activity of Lactoferrin towards Naked Viruses. Biometals 2004, 17, 295–299. [Google Scholar] [CrossRef]
- Barboza, M.; Pinzon, J.; Wickramasinghe, S.; Froehlich, J.W.; Moeller, I.; Smilowitz, J.T.; Ruhaak, L.R.; Huang, J.; Lönnerdal, B.; German, J.B.; et al. Glycosylation of Human Milk Lactoferrin Exhibits Dynamic Changes During Early Lactation Enhancing Its Role in Pathogenic Bacteria-Host Interactions. Mol. Cell. Proteom. 2012, 11. [Google Scholar] [CrossRef] [PubMed]
- Parc, A.L.; Dallas, D.C.; Duaut, S.; Leonil, J.; Martin, P.; Barile, D. Characterization of Goat Milk Lactoferrin N-Glycans and Comparison with the N-Glycomes of Human and Bovine Milk. Electrophoresis 2014, 35, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W. Bioactive Components in Goat Milk. In Bioactive Components in Milk and Dairy Products; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 43–81. ISBN 978-0-8138-2150-4. [Google Scholar]
- Anema, S.G. Heat-Induced Changes in Caseins and Casein Micelles, Including Interactions with Denatured Whey Proteins. Int. Dairy J. 2021, 122, 105136. [Google Scholar] [CrossRef]
- Creamer, L.K.; Berry, G.P.; Matheson, A.R. The Effect of PH on Protein Aggregation in Heated Skim Milk. N. Z. J. Dairy Sci. Technol. 1978, 13, 9–15. [Google Scholar]
- Creamer, L.K.; Matheson, A.R. Effect of Heat Treatment on the Proteins of Pasteurized Skim Milk. N. Z. J. Dairy Sci. Technol. 1980, 15, 37–49. [Google Scholar]
- Morgan, F.; Micault, S.; Fauquant, J. Combined Effect of Whey Protein and AS1-Casein Genotype on the Heat Stability of Goat Milk. Int. J. Dairy Technol. 2001, 54, 64–68. [Google Scholar] [CrossRef]
- Pesic, M.B.; Barac, M.B.; Stanojevic, S.P.; Ristic, N.M.; Macej, O.D.; Vrvic, M.M. Heat Induced Casein–Whey Protein Interactions at Natural PH of Milk: A Comparison between Caprine and Bovine Milk. Small Rumin. Res. 2012, 108, 77–86. [Google Scholar] [CrossRef]
- Pešić, M.B.; Barać, M.B.; Stanojević, S.P.; Vrvić, M.M. Heat-Induced Casein–Whey Protein Interactions in Caprine Milk: Whether Are Similar to Bovine Milk? In Emerging and Traditional Technologies for Safe, Healthy and Quality Food; Nedović, V., Raspor, P., Lević, J., Tumbas Šaponjac, V., Barbosa-Cánovas, G.V., Eds.; Food Engineering Series; Springer International Publishing: Cham, Switzerland, 2016; pp. 163–175. ISBN 978-3-319-24040-4. [Google Scholar]
- Ménard, O.; Camier, B.; Guyomarc’h, F. Effect of Heat Treatment at Alkaline PH on the Rennet Coagulation Properties of Skim Milk. Lait 2005, 85, 515–526. [Google Scholar] [CrossRef]
- Singh, H.; Waungana, A. Influence of Heat Treatment of Milk on Cheesemaking Properties. Int. Dairy J. 2001, 11, 543–551. [Google Scholar] [CrossRef]
- Chavan, R.S.; Chavan, S.R.; Khedkar, C.D.; Jana, A.H. UHT Milk Processing and Effect of Plasmin Activity on Shelf Life: A Review. Compr. Rev. Food Sci. Food Saf. 2011, 10, 251–268. [Google Scholar] [CrossRef]
- Guyomarc’h, F.; Queguiner, C.; Law, A.J.R.; Horne, D.S.; Dalgleish, D.G. Role of the Soluble and Micelle-Bound Heat-Induced Protein Aggregates on Network Formation in Acid Skim Milk Gels. J. Agric. Food Chem. 2003, 51, 7743–7750. [Google Scholar] [CrossRef] [PubMed]
- Guyomarc’h, F.; Mahieux, O.; Renan, M.; Chatriot, M.; Gamerre, V.; Famelart, M.-H. Changes in the Acid Gelation of Skim Milk as Affected by Heat-Treatment and Alkaline PH Conditions. Lait 2007, 87, 119–137. [Google Scholar] [CrossRef]
- Patel, H.A.; Anema, S.G.; Holroyd, S.E.; Singh, H.; Creamer, L.K. Methods to Determine Denaturation and Aggregation of Proteins in Low-, Medium- and High-Heat Skim Milk Powders. Lait 2007, 87, 251–268. [Google Scholar] [CrossRef]
- Gantner, V.; Mijić, P.; Baban, M.; Škrtić, Z.; Turalija, A. The Overall and Fat Composition of Milk of Various Species. Mljekarstvo Čas. Unapr. Proizv. Prerade Mlijeka 2015, 65, 223–231. [Google Scholar] [CrossRef]
- Alonso, L.; Fontecha, J.; Lozada, L.; Fraga, M.J.; Juárez, M. Fatty Acid Composition of Caprine Milk: Major, Branched-Chain, and Trans Fatty Acids. J. Dairy Sci. 1999, 82, 878–884. [Google Scholar] [CrossRef]
- Attaie, R.; Richter, R.L. Size Distribution of Fat Globules in Goat Milk. J. Dairy Sci. 2000, 83, 940–944. [Google Scholar] [CrossRef]
- Roncada, P.; Gaviraghi, A.; Liberatori, S.; Canas, B.; Bini, L.; Greppi, G.F. Identification of Caseins in Goat Milk. Proteomics 2002, 2, 723–726. [Google Scholar] [CrossRef]
- Taylor, M.W.; MacGibbon, A.K.H. Milk Lipids—General Characteristics. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 649–654. ISBN 978-0-12-374407-4. [Google Scholar]
- Clark, S.; Mora García, M.B. A 100-Year Review: Advances in Goat Milk Research. J. Dairy Sci. 2017, 100, 10026–10044. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent Advances in Exploiting Goat’s Milk: Quality, Safety and Production Aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Marten, B.; Pfeuffer, M.; Schrezenmeir, J. Medium-Chain Triglycerides. Int. Dairy J. 2006, 16, 1374–1382. [Google Scholar] [CrossRef]
- Ruiz-Sala, P.; Hierro, M.T.G.; Martínez-Castro, I.; Santa-María, G. Triglyceride Composition of Ewe, Cow, and Goat Milk Fat. J. Am. Oil Chem. Soc. 1996, 73, 283–293. [Google Scholar] [CrossRef]
- Papamandjaris, A.A.; Macdougall, D.E.; Jones, P.J.H. Medium Chain Fatty Acid Metabolism and Energy Expenditure: Obesity Treatment Implications. Life Sci. 1998, 62, 1203–1215. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. Goat Milk in Human Nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Park, Y.W.; Haenlein, G.F.W. Therapeutic and Hypoallergenic Values of Goat Milk and Implication of Food Allergy. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 121–135. ISBN 978-0-470-99973-8. [Google Scholar]
- Watkins, P.J.; Jaborek, J.R.; Teng, F.; Day, L.; Castada, H.Z.; Baringer, S.; Wick, M. Branched Chain Fatty Acids in the Flavour of Sheep and Goat Milk and Meat: A Review. Small Rumin. Res. 2021, 200, 106398. [Google Scholar] [CrossRef]
- Dhiman, T.R.; Helmink, E.D.; McMahon, D.J.; Fife, R.L.; Pariza, M.W. Conjugated Linoleic Acid Content of Milk and Cheese from Cows Fed Extruded Oilseeds1. J. Dairy Sci. 1999, 82, 412–419. [Google Scholar] [CrossRef]
- LeDoux, M.; Rouzeau, A.; Bas, P.; Sauvant, D. Occurrence of Trans-C18:1 Fatty Acid Isomers in Goat Milk: Effect of Two Dietary Regimens. J. Dairy Sci. 2002, 85, 190–197. [Google Scholar] [CrossRef]
- Meena, S.; Rajput, Y.S.; Sharma, R. Comparative Fat Digestibility of Goat, Camel, Cow and Buffalo Milk. Int. Dairy J. 2014, 35, 153–156. [Google Scholar] [CrossRef]
- Weihrauch, J.L.; Son, Y.-S. Phospholipid Content of Foods. J. Am. Oil Chem. Soc. 1983, 60, 1971–1978. [Google Scholar] [CrossRef]
- Morrison, W.R.; Jack, E.L.; Smith, L.M. Fatty Acids of Bovine Milk Glycolipids and Phospholipids and Their Specific Distribution in the Diacylglycerophospholipids. J. Am. Oil Chem. Soc. 1965, 42, 1142–1147. [Google Scholar] [CrossRef]
- Jenness, R. Composition and Characteristics of Goat Milk: Review 1968−19791. J. Dairy Sci. 1980, 63, 1605–1630. [Google Scholar] [CrossRef]
- Keenan, T.W.; Patton, S. Cholesterol Esters of Milk and Mammary Tissue. Lipids 1970, 5, 42–48. [Google Scholar] [CrossRef]
- Verruck, S.; Dantas, A.; Prudencio, E.S. Functionality of the Components from Goat’s Milk, Recent Advances for Functional Dairy Products Development and Its Implications on Human Health. J. Funct. Foods 2019, 52, 243–257. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Barile, D.; Meyrand, M.; Poulsen, N.A.; Larsen, L.B.; Lebrilla, C.B.; German, J.B.; Bertram, H.C. Natural Variability in Bovine Milk Oligosaccharides from Danish Jersey and Holstein-Friesian Breeds. J. Agric. Food Chem. 2012, 60, 6188–6196. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Kelly, P. Milk Oligosaccharides: Structural and Technological Aspects. Int. Dairy J. 2006, 16, 1334–1340. [Google Scholar] [CrossRef]
- Meyrand, M.; Dallas, D.C.; Caillat, H.; Bouvier, F.; Martin, P.; Barile, D. Comparison of Milk Oligosaccharides between Goats with and without the Genetic Ability to Synthesize As1-Casein. Small Rumin. Res. 2013, 113, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ferez, A.; Guadix, A.; Guadix, E.M. Recovery of Caprine Milk Oligosaccharides with Ceramic Membranes. J. Membr. Sci. 2006, 276, 23–30. [Google Scholar] [CrossRef]
- Ceballos, L.S.; Morales, E.R.; de la Torre Adarve, G.; Castro, J.D.; Martínez, L.P.; Sampelayo, M.R.S. Composition of Goat and Cow Milk Produced under Similar Conditions and Analyzed by Identical Methodology. J. Food Compos. Anal. 2009, 22, 322–329. [Google Scholar] [CrossRef]
- Lima, M.J.R.; Teixeira-Lemos, E.; Oliveira, J.; Teixeira-Lemos, L.P.; Monteiro, A.M.C.; Costa, J.M. Nutritional and Health Profile of Goat Products: Focus on Health Benefits of Goat Milk; IntechOpen: London, UK, 2017; ISBN 978-1-78923-203-5. [Google Scholar]
- Rupp, R.; Clément, V.; Piacere, A.; Robert-Granié, C.; Manfredi, E. Genetic Parameters for Milk Somatic Cell Score and Relationship with Production and Udder Type Traits in Dairy Alpine and Saanen Primiparous Goats. J. Dairy Sci. 2011, 94, 3629–3634. [Google Scholar] [CrossRef]
- Bagnicka, E.; Lukaszewicz, M.; Ådnøy, T. Genetic Parameters of Somatic Cell Score and Lactose Content in Goat s Milk. J. Anim. Feed. Sci. 2016, 25, 210–215. [Google Scholar] [CrossRef]
- Martín-Ortiz, A.; Barile, D.; Salcedo, J.; Moreno, F.J.; Clemente, A.; Ruiz-Matute, A.I.; Sanz, M.L. Changes in Caprine Milk Oligosaccharides at Different Lactation Stages Analyzed by High Performance Liquid Chromatography Coupled to Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 3523–3531. [Google Scholar] [CrossRef]
- Sousa, Y.R.F.; Medeiros, L.B.; Pintado, M.M.E.; Queiroga, R.C.R.E. Goat Milk Oligosaccharides: Composition, Analytical Methods and Bioactive and Nutritional Properties. Trends Food Sci. Technol. 2019, 92, 152–161. [Google Scholar] [CrossRef]
- Martín-Ortiz, A.; Salcedo, J.; Barile, D.; Bunyatratchata, A.; Moreno, F.J.; Martin-García, I.; Clemente, A.; Sanz, M.L.; Ruiz-Matute, A.I. Characterization of Goat Colostrum Oligosaccharides by Nano-Liquid Chromatography on Chip Quadrupole Time-of-Flight Mass Spectrometry and Hydrophilic Interaction Liquid Chromatography-Quadrupole Mass Spectrometry. J. Chromatogr. A 2016, 1428, 143–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, D.L.; Wilbey, R.A.; Grandison, A.S.; Duarte, L.C.; Roseiro, L.B. Separation of Oligosaccharides from Caprine Milk Whey, Prior to Prebiotic Evaluation. Int. Dairy J. 2012, 24, 102–106. [Google Scholar] [CrossRef]
- Lara-Villoslada, F.; Debras, E.; Nieto, A.; Concha, A.; Gálvez, J.; López-Huertas, E.; Boza, J.; Obled, C.; Xaus, J. Oligosaccharides Isolated from Goat Milk Reduce Intestinal Inflammation in a Rat Model of Dextran Sodium Sulfate-Induced Colitis. Clin. Nutr. 2006, 25, 477–488. [Google Scholar] [CrossRef]
- Barnett, A.M.; Roy, N.C.; McNabb, W.C.; Cookson, A.L. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium. Nutrients 2016, 8, 267. [Google Scholar] [CrossRef]
- Boehm, G.; Stahl, B. Oligosaccharides from Milk. J. Nutr. 2007, 137, 847S–849S. [Google Scholar] [CrossRef]
- Martinez-Ferez, A.; Rudloff, S.; Guadix, A.; Henkel, C.A.; Pohlentz, G.; Boza, J.J.; Guadix, E.M.; Kunz, C. Goats’ Milk as a Natural Source of Lactose-Derived Oligosaccharides: Isolation by Membrane Technology. Int. Dairy J. 2006, 16, 173–181. [Google Scholar] [CrossRef]
- Polowsky, P.; Coudé, B.; Jiménez-Maroto, L.A.; Johnson, M.; Park, Y.W. Flavor and Sensory Characteristics of Non-Bovine Species Milk and Their Dairy Products. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 595–623. ISBN 978-1-119-11031-6. [Google Scholar]
- Kalyankar, S.D.; Khedkar, C.D.; Patil, A.M. Goat: Milk. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 256–260. ISBN 978-0-12-384953-3. [Google Scholar]
- Wal, J.-M. Cow’s Milk Proteins/Allergens. Ann. Allergy. Asthma. Immunol. 2002, 89, 3–10. [Google Scholar] [CrossRef]
- Taitz, L.S.; Armitage, B.L. Goats’ Milk for Infants and Children. Br. Med. J. Clin. Res. Ed. 1984, 288, 428–429. [Google Scholar] [CrossRef]
- Park, Y.W. Hypo-Allergenic and Therapeutic Significance of Goat Milk. Small Rumin. Res. 1994, 14, 151–159. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Gonçalves-Tenório, A.; Rodrigues, V.; Cadavez, V. Foodborne Pathogens in Raw Milk and Cheese of Sheep and Goat Origin: A Meta-Analysis Approach. Curr. Opin. Food Sci. 2017, 18, 7–13. [Google Scholar] [CrossRef]
- Zabaleta, L.; Albisu, M.; Barron, L.J.R. Volatile Compounds Associated with Desirable Flavour and Off-Flavour Generation in Ewe´s Raw Milk Commercial Cheeses. Eur. Food Res. Technol. 2017, 243, 1405–1414. [Google Scholar] [CrossRef]
- Asensio-Vegas, C.; Tiwari, B.; Gredilla, A.E.; Bueno, F.; Delgado, D.; Martín-Diana, A.B. Development of Yoghurt from Ovine Milk with Enhanced Texture and Flavour Properties. Int. J. Dairy Technol. 2018, 71, 112–121. [Google Scholar] [CrossRef]
- Teng, F.; Reis, M.G.; Ma, Y.; Day, L. Effects of Season and Industrial Processes on Volatile 4-Alkyl-Branched Chain Fatty Acids in Sheep Milk. Food Chem. 2018, 260, 327–335. [Google Scholar] [CrossRef]
- Siefarth, C.; Buettner, A. The Aroma of Goat Milk: Seasonal Effects and Changes through Heat Treatment. J. Agric. Food Chem. 2014, 62, 11805–11817. [Google Scholar] [CrossRef]
- Park, Y.W.; Guo, M. Goat Milk Products: Types of Products, Manufacturing Technology, Chemical Composition, and Marketing. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 59–106. ISBN 978-0-470-99973-8. [Google Scholar]
- Park, Y.W.; Mahoney, A.W.; Hendricks, D.G. Bioavailability of Iron in Goat Milk Compared with Cow Milk Fed to Anemic Rats1, 2. J. Dairy Sci. 1986, 69, 2608–2615. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, C.; Cheng, M.; Zhang, X.; Jiang, H. Influence of Calcium on the Properties of Micellar Casein in Goat Milk. LWT 2021, 150, 111935. [Google Scholar] [CrossRef]
- Clark, S.; Sherbon, J.W. Alphas1-Casein, Milk Composition and Coagulation Properties of Goat Milk. Small Rumin. Res. 2000, 38, 123–134. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, M.; Zhang, X.; Li, X.; Chen, D.; Qin, Y.; Wang, J.; Wang, C. The Effect of Heat Treatment on the Microstructure and Functional Properties of Whey Protein from Goat Milk. J. Dairy Sci. 2020, 103, 1289–1302. [Google Scholar] [CrossRef]
- Jandal, J.M. Comparative Aspects of Goat and Sheep Milk. Small Rumin. Res. 1996, 22, 177–185. [Google Scholar] [CrossRef]
- Fransson, G.-B.; Thorén-Tolling, K.; Jones, B.; Hambraeus, L.; Lönnerdal, B. Absorption of Lactoferrin-Iron in Suckling Pigs. Nutr. Res. 1983, 3, 373–384. [Google Scholar] [CrossRef]
- Cunsolo, V.; Fasoli, E.; Saletti, R.; Muccilli, V.; Gallina, S.; Righetti, P.G.; Foti, S. Zeus, Aesculapius, Amalthea and the Proteome of Goat Milk. J. Proteom. 2015, 128, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.A.; Nguyen, H.V.; Garcia-Bravo, R.; Fiorotto, M.L.; Jackson, E.M.; Lewis, D.S.; Lee, D.R.; Reeds, P.J. Amino Acid Composition of Human Milk Is Not Unique. J. Nutr. 1994, 124, 1126–1132. [Google Scholar] [CrossRef]
- Kiskini, A.; Difilippo, E. Oligosaccharides in Goat Milk: Structure, Health Effects and Isolation. Cell. Mol. Biol. 2013, 59, 25–30. [Google Scholar] [PubMed]
- Hernández-Ledesma, B.; Ramos, M.; Gómez-Ruiz, J.Á. Bioactive Components of Ovine and Caprine Cheese Whey. Small Rumin. Res. 2011, 101, 196–204. [Google Scholar] [CrossRef]
- Albrecht, S.; Lane, J.A.; Mariño, K.; Busadah, K.A.A.; Carrington, S.D.; Hickey, R.M.; Rudd, P.M. A Comparative Study of Free Oligosaccharides in the Milk of Domestic Animals. Br. J. Nutr. 2014, 111, 1313–1328. [Google Scholar] [CrossRef] [PubMed]
- Urashima, T.; Taufik, E.; Fukuda, K.; Asakuma, S. Recent Advances in Studies on Milk Oligosaccharides of Cows and Other Domestic Farm Animals. Biosci. Biotechnol. Biochem. 2013, 77, 455–466. [Google Scholar] [CrossRef]
- Fahmi, A.H.; Sirry, I.; Safwat, A. The Size of Fat Globules and the Creaming Power of Cow, Buffalo, Sheep and Goat Milk. Indian J. Dairy Sci. 1956, 9, 80–86. [Google Scholar]
- Chandan, R.C.; Parry, R.M., Jr.; Shahani, K.M. Lysozyme, Lipase, and Ribonuclease in Milk of Various Species. J. Dairy Sci. 1968, 51, 606–607. [Google Scholar] [CrossRef]
- Luke, B.; Keith, L.G. Calcium Requirements and the Diets of Women and Children. A Review of Dairy Resources. J. Reprod. Med. 1992, 37, 703–709. [Google Scholar]
- Kim Ha, J.; Lindsay, R.C. Contributions of Cow, Sheep, and Goat Milks to Characterizing Branched-Chain Fatty Acid and Phenolic Flavors in Varietal Cheeses1. J. Dairy Sci. 1991, 74, 3267–3274. [Google Scholar] [CrossRef]
- Stergiadis, S.; Nørskov, N.P.; Purup, S.; Givens, I.; Lee, M.R.F. Comparative Nutrient Profiling of Retail Goat and Cow Milk. Nutrients 2019, 11, 2282. [Google Scholar] [CrossRef] [PubMed]
- Alférez, M.J.M.; López-Aliaga, I.; Nestares, T.; Díaz-Castro, J.; Barrionuevo, M.; Ros, P.B.; Campos, M.S. Dietary Goat Milk Improves Iron Bioavailability in Rats with Induced Ferropenic Anaemia in Comparison with Cow Milk. Int. Dairy J. 2006, 16, 813–821. [Google Scholar] [CrossRef]
- Slačanac, V.; Božanić, R.; Hardi, J.; Szabó, J.R.; Lučan, M.; Krstanović, V. Nutritional and Therapeutic Value of Fermented Caprine Milk. Int. J. Dairy Technol. 2010, 63, 171–189. [Google Scholar] [CrossRef]
- Chávez-Servín, J.L.; Andrade-Montemayor, H.M.; Velázquez Vázquez, C.; Aguilera Barreyro, A.; García-Gasca, T.; Ferríz Martínez, R.A.; Olvera Ramírez, A.M.; de la Torre-Carbot, K. Effects of Feeding System, Heat Treatment and Season on Phenolic Compounds and Antioxidant Capacity in Goat Milk, Whey and Cheese. Small Rumin. Res. 2018, 160, 54–58. [Google Scholar] [CrossRef]
- Park, Y.W.; Chukwu, H.I. Trace Mineral Concentrations in Goat Milk from French-Alpine and Anglo-Nubian Breeds during the First 5 Months of Lactation. J. Food Compos. Anal. 1989, 2, 161–169. [Google Scholar] [CrossRef]
- Debski, B.; Picciano, M.F.; Milner, J.A. Selenium Content and Distribution of Human, Cow and Goat Milk. J. Nutr. 1987, 117, 1091–1097. [Google Scholar] [CrossRef]
- Komara, M.; Boutinaud, M.; Chedly, H.B.; Guinard-Flament, J.; Marnet, P.G. Once-Daily Milking Effects in High-Yielding Alpine Dairy Goats. J. Dairy Sci. 2009, 92, 5447–5455. [Google Scholar] [CrossRef]
- Tormo, H.; Ali Haimoud Lekhal, D.; Roques, C. Phenotypic and Genotypic Characterization of Lactic Acid Bacteria Isolated from Raw Goat Milk and Effect of Farming Practices on the Dominant Species of Lactic Acid Bacteria. Int. J. Food Microbiol. 2015, 210, 9–15. [Google Scholar] [CrossRef]
- Park, Y.W.; Drake, M.A. Effect of 3 Months Frozen-Storage on Organic Acid Contents and Sensory Properties, and Their Correlations in Soft Goat Milk Cheese. Small Rumin. Res. 2005, 58, 291–298. [Google Scholar] [CrossRef]
- Pandya, A.J.; Ghodke, K.M. Goat and Sheep Milk Products Other than Cheeses and Yoghurt. Small Rumin. Res. 2007, 68, 193–206. [Google Scholar] [CrossRef]
- Carrillo, E.; Prado-Gascó, V.; Fiszman, S.; Varela, P. Why Buying Functional Foods? Understanding Spending Behaviour through Structural Equation Modelling. Food Res. Int. 2013, 50, 361–368. [Google Scholar] [CrossRef]
- Annunziata, A.; Vecchio, R. Functional Foods Development in the European Market: A Consumer Perspective. J. Funct. Foods 2011, 3, 223–228. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An Evolving Term within the Functional Foods Field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Florowska, A.; Krygier, K.; Florowski, T.; Dłużewska, E. Prebiotics as Functional Food Ingredients Preventing Diet-Related Diseases. Food Funct. 2016, 7, 2147–2155. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.J.L.; Duarte, A.M.; Batista, A.S.M.; de Figueiredo, R.M.F.; de Sousa, E.P.; de Souza, E.L.; Queiroga, R.D.C.R.D.E. Physicochemical and Sensory Properties of Fermented Dairy Beverages Made with Goat’s Milk, Cow’s Milk and a Mixture of the Two Milks. LWT-Food Sci. Technol. 2013, 54, 18–24. [Google Scholar] [CrossRef]
- Gursel, A.; Gursoy, A.; Anli, E.A.K.; Budak, S.O.; Aydemir, S.; Durlu-Ozkaya, F. Role of Milk Protein–Based Products in Some Quality Attributes of Goat Milk Yogurt. J. Dairy Sci. 2016, 99, 2694–2703. [Google Scholar] [CrossRef]
- Boycheva, S.; Dimitrov, T.; Naydenova, N.; Mihaylova, G. Quality Characteristics of Yogurt from Goat’s Milk, Supplemented with Fruit Juice. Czech J. Food Sci. 2011, 29, 24–30. [Google Scholar] [CrossRef]
- Pannell, L.; Schoenfuss, T.C. Yogurt. In Handbook of Food Products Manufacturing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 647–676. ISBN 978-0-470-11355-4. [Google Scholar]
- Miocinovic, J.; Miloradovic, Z.; Josipovic, M.; Nedeljkovic, A.; Radovanovic, M.; Pudja, P. Rheological and Textural Properties of Goat and Cow Milk Set Type Yoghurts. Int. Dairy J. 2016, 58, 43–45. [Google Scholar] [CrossRef]
- Costa, M.P.; Balthazar, C.F.; Franco, R.M.; Mársico, E.T.; Cruz, A.G.; Conte, C.A. Changes on Expected Taste Perception of Probiotic and Conventional Yogurts Made from Goat Milk after Rapidly Repeated Exposure. J. Dairy Sci. 2014, 97, 2610–2618. [Google Scholar] [CrossRef]
- Wang, W.; Bao, Y.; Hendricks, G.M.; Guo, M. Consistency, Microstructure and Probiotic Survivability of Goats’ Milk Yoghurt Using Polymerized Whey Protein as a Co-Thickening Agent. Int. Dairy J. 2012, 24, 113–119. [Google Scholar] [CrossRef]
- Moschopoulou, E.; Sakkas, L.; Zoidou, E.; Theodorou, G.; Sgouridou, E.; Kalathaki, C.; Liarakou, A.; Chatzigeorgiou, A.; Politis, I.; Moatsou, G. Effect of Milk Kind and Storage on the Biochemical, Textural and Biofunctional Characteristics of Set-Type Yoghurt. Int. Dairy J. 2018, 77, 47–55. [Google Scholar] [CrossRef]
- Skeie, S.B. Quality Aspects of Goat Milk for Cheese Production in Norway: A Review. Small Rumin. Res. 2014, 122, 10–17. [Google Scholar] [CrossRef]
- Bertuzzi, A.S.; McSweeney, P.L.H.; Rea, M.C.; Kilcawley, K.N. Detection of Volatile Compounds of Cheese and Their Contribution to the Flavor Profile of Surface-Ripened Cheese. Compr. Rev. Food Sci. Food Saf. 2018, 17, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Bartkiene, E.; Laurikietyte, R.; Lele, V.; Zavistanaviciute, P.; Mozuriene, E.; Baltusnikiene, A. Agar-Immobilized Basil–Lactic Acid Bacteria Bioproducts as Goat Milk Taste-Masking Agents and Natural Preservatives for the Production of Unripened Goat Cheese. J. Dairy Sci. 2018, 101, 10866–10876. [Google Scholar] [CrossRef]
- Sandrucci, A.; Bava, L.; Tamburini, A.; Gislon, G.; Zucali, M. Management Practices and Milk Quality in Dairy Goat Farms in Northern Italy. Ital. J. Anim. Sci. 2019, 18, 1–12. [Google Scholar] [CrossRef]
- Ådnøy, T. The Dairy Goat Industry in Norway: Challenges in a Historical Perspective. Small Rumin. Res. 2014, 122, 4–9. [Google Scholar] [CrossRef]
- Jeewanthi, R.K.C.; Lee, N.-K.; Lee, K.A.; Yoon, Y.C.; Paik, H.-D. Comparative Analysis of Improved Soy-Mozzarella Cheeses Made of Ultrafiltrated and Partly Skimmed Soy Blends with Other Mozzarella Types. J. Food Sci. Technol. 2015, 52, 5172–5179. [Google Scholar] [CrossRef]
- Park, Y.W. Proteolysis and Lipolysis of Goat Milk Cheese. J. Dairy Sci. 2001, 84, E84–E92. [Google Scholar] [CrossRef]
- Loewenstein, M.; Speck, S.J.; Barnhart, H.M.; Frank, J.F. Research on Goat Milk Products: A Review. J. Dairy Sci. 1980, 63, 1631–1648. [Google Scholar] [CrossRef]
- Park, Y.W. Nutrient Profiles of Commercial Goat Milk Cheeses Manufactured in the United States. J. Dairy Sci. 1990, 73, 3059–3067. [Google Scholar] [CrossRef]
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. Microbiological Study of White-Brined Cheese Made from Raw Goat Milk. Food Microbiol. 1992, 9, 13–19. [Google Scholar] [CrossRef]
- Sosnowski, M.; Rola, J.G.; Osek, J. Alkaline Phosphatase Activity and Microbiological Quality of Heat-Treated Goat Milk and Cheeses. Small Rumin. Res. 2016, 136, 132–136. [Google Scholar] [CrossRef]
- Pappa, E.C.; Bontinis, T.G.; Samelis, J.; Sotirakoglou, K. Assessment of the Microbiological Quality and Biochemical Parameters of Traditional Hard Xinotyri Cheese Made from Raw or Pasteurized Goat Milk. Fermentation 2022, 8, 20. [Google Scholar] [CrossRef]
- Tadjine, D.; Boudalia, S.; Bousbia, A.; Khelifa, R.; Mebirouk Boudechiche, L.; Tadjine, A.; Chemmam, M. Pasteurization Effects on Yield and Physicochemical Parameters of Cheese in Cow and Goat Milk. Food Sci. Technol. 2019, 40, 580–587. [Google Scholar] [CrossRef]
- Kullisaar, T.; Songisepp, E.; Mikelsaar, M.; Zilmer, K.; Vihalemm, T.; Zilmer, M. Antioxidative Probiotic Fermented Goats’ Milk Decreases Oxidative Stress-Mediated Atherogenicity in Human Subjects. Br. J. Nutr. 2003, 90, 449–456. [Google Scholar] [CrossRef]
- Sanna, M.; Mangia, N.; Garau, G.; Murgia, M.; Massa, T.; Franco, M.; Deiana, P. Selection of Folate-Producing Lactic Acid Bacteria for Improving Fermented Goat Milk. Ital. J. Food Sci. 2005, 17, 143–154. [Google Scholar]
- Songisepp, E.; Kals, J.; Kullisaar, T.; Mändar, R.; Hütt, P.; Zilmer, M.; Mikelsaar, M. Evaluation of the Functional Efficacy of an Antioxidative Probiotic in Healthy Volunteers. Nutr. J. 2005, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Uysal-Pala, C.; Karagul-Yuceer, Y.; Pala, A.; Savas, T. Sensory Properties of Drinkable Yogurt Made from Milk of Different Goat Breeds. J. Sens. Stud. 2006, 21, 520–533. [Google Scholar] [CrossRef]
- Salamoura, C.; Kontogianni, A.; Katsipi, D.; Kandylis, P.; Varzakas, T. Probiotic Fermented Milks Made of Cow’s Milk, Goat’s Milk and Their Mixture. J. Biotechnol. 2014, 185, S77. [Google Scholar] [CrossRef]
- Salva, S.; Nuñez, M.; Villena, J.; Ramón, A.; Font, G.; Alvarez, S. Development of a Fermented Goats’ Milk Containing Lactobacillus Rhamnosus: In Vivo Study of Health Benefits. J. Sci. Food Agric. 2011, 91, 2355–2362. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.N.; Guo, M.R. Effects of Addition of Strawberry Juice Pre- or Postfermentation on Physiochemical and Sensory Properties of Fermented Goat Milk. J. Dairy Sci. 2019, 102, 4978–4988. [Google Scholar] [CrossRef]
- Oner, Z.; Karahan, A.; Cakmakci, M.L. Effects of Different Milk Types and Starter Cultures on Kefir. Gida 2010, 35, 177–182. [Google Scholar]
- Nuñez, M. Chapter 7—Existing Technologies in Non-Cow Milk Processing and Traditional Non-Cow Milk Products. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 161–185. ISBN 978-0-12-803361-6. [Google Scholar]
- Cruz, A.G.; Antunes, A.E.C.; Sousa, A.L.O.P.; Faria, J.A.F.; Saad, S.M.I. Ice-Cream as a Probiotic Food Carrier. Food Res. Int. 2009, 42, 1233–1239. [Google Scholar] [CrossRef]
- Ranadheera, R.D.C.S.; Baines, S.K.; Adams, M.C. Importance of Food in Probiotic Efficacy. Food Res. Int. 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Arshad, M.U.; Nadeem, M.T.; Saeed, M.; Tufail, T. The Effect of Encapsulation on The Stability of Probiotic Bacteria in Ice Cream and Simulated Gastrointestinal Conditions. Probiotics Antimicrob. Proteins 2019, 11, 1348–1354. [Google Scholar] [CrossRef]
- Senaka Ranadheera, C.; Evans, C.A.; Adams, M.C.; Baines, S.K. Production of Probiotic Ice Cream from Goat’s Milk and Effect of Packaging Materials on Product Quality. Small Rumin. Res. 2013, 112, 174–180. [Google Scholar] [CrossRef]
- Kruger, M.C.; Chua, W.-H.; Darragh, A.; Booth, C.L.; Prosser, C.; Lowry, D. Impact of Goat Milk Powdered Formulations on Mineral Absorption, Peak Bone Mass and Bone Loss Due to Ovariectomy in Rats. J. Sci. Food Agric. 2008, 88, 1082–1090. [Google Scholar] [CrossRef]
Constituents | Concentration (g/kg) |
---|---|
Protein | 27–35 |
Fat | 30–40 |
Total solids | 110–135 |
Lactose | 41.0 |
Casein | 25.0 |
Non-protein nitrogen | 4.0 |
Albumin, globulin | 7.0 |
Ash | 8.0 |
Cholesterol | 0.10 |
Energy | 70.0 (Kcal/dL) |
Category | Constituents | Concentration | Unit | Reference |
---|---|---|---|---|
Major protein | αs-CN | 26 | (% of total casein) | [1] |
β-CN | 64 | |||
k-CN | 10 | |||
αs-CN/β-CN | 0.41 (ratio of %) | |||
Lactoferrin | 20–200 | μg/mL | ||
Transferrin | 20–200 | |||
Folate binding protein | 12 | |||
Prolactin | 44 | ng/mL | ||
Ribonuclease | 425 | μg/dL | ||
Lysozyme | 25 | |||
Lipase | 36 | μmol/dL | ||
Malic dehydrogenase | 50 | μmol/s per mL | ||
Lactate dehydrogenase | 47 | |||
Xanthine oxidase | 19–113 | μL O2/h | ||
Alkaline phosphatase | 11–13 | mg/L | ||
Carnitine | 16.4 | |||
Orotic acid | 13 | |||
Free amino acids | 48 | |||
ATP | 19 | |||
Sialic acid protease | 13.89 | |||
Immunoglobulin | IgA | 30–80 | (μg/mL) (milk) | [9] |
0.9–2.4 | (mg/mL) (colostrum) | |||
IgM | 10–40 | (μg/mL) (milk) | ||
1.6–5.2 | (mg/mL) (colostrum) | |||
IgG | 100–400 | (μg/mL) (milk) | ||
50–60 | (mg/mL) (colostrum) |
Component | Key Components | Concentration (%) | Reference |
---|---|---|---|
Saturated fatty acid | Butyric (C4:0) | 2.18 | [83] |
Caproic (C6:0) | 2.39 | ||
Caprylic (C8:0) | 2.73 | ||
Capric (C10:0) | 9.97 | ||
Lauric (C12:0) | 4.99 | ||
Myristic (C14:0) | 9.81 | ||
Palmitic (C16:0) | 28.00 | ||
Stearic (C18:0) | 8.88 | ||
Pentadecanoic (C15:0) | 0.71 | ||
Monounsaturated fatty acid | Myristoleic (C14:1) | 0.18 | |
Palmitoleic (C16:1) | 1.59 | ||
Oleic (C18:1) | 19.3 | ||
Polyunsaturated fatty acid | Linoleic (C18:2) | 3.19 | |
Linolenic (C18:3) | 0.42 | ||
Linoleic conjugated (C18:2) | 0.70 | ||
Minor fatty acids | - | 3.19 | |
Phospholipid fraction (%) | Phosphatidyl ethanolamine | 35.4 | [50] |
Phosphatidyl choline | 28.2 | ||
Sphingomyelin | 29.2 | ||
Phosphatidyl inositol | 4.0 | ||
Phosphatidyl serine | 3.2 |
Components | Key Components | Concentration (g L−1) |
---|---|---|
Acidic oligosaccharide | 6-Sialyl-lactose | 0.05–0.07 |
3-Sialyl-lactose | 0.03–0.05 | |
Disialyl-lactose | 0.001–0.005 | |
N-glycolylneuraminyl-lactose | 0.04–0.06 | |
Sialyl-Lacto-N-hexaose | Trace | |
Sialyl-N-glycolylneuraminyl-lactose | Trace | |
Sialyl-hexosyl-lactose | Trace | |
N-glycolylneuraminyl-hexosyl-lactose | Trace | |
Sialyl-N-glycolylneuraminyl-hexosyl-lactose | Trace | |
Disialyl-hexosyl-lactose | Trace | |
Di-N-glycolylneuraminyl-lactose | Trace | |
Sialyl-dihexosyl-lactose | Trace | |
Di-N-glycolylneuraminyl-hexosyl-lactose | Trace | |
Neutral oligosaccharide | 3-Galactosyl-lactose | 0.03–0.05 |
Lacto-N-hexaose | 0.001–0.005 | |
N-acetylglucosaminyl-lactose | 0.02–0.04 | |
N-acetylglucosaminyl-Lacto-N-hexaose | Trace | |
Di-N-acetylglucosaminyl-lactose | Trace | |
N-acetylglucosaminyl-hexosyl-lactose | Trace | |
N-acetylglucosaminyl-dihexosyl-lactose | Trace |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayik, G.A.; Jagdale, Y.D.; Gaikwad, S.A.; Devkatte, A.N.; Dar, A.H.; Ansari, M.J. Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk. Dairy 2022, 3, 622-647. https://doi.org/10.3390/dairy3030044
Nayik GA, Jagdale YD, Gaikwad SA, Devkatte AN, Dar AH, Ansari MJ. Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk. Dairy. 2022; 3(3):622-647. https://doi.org/10.3390/dairy3030044
Chicago/Turabian StyleNayik, Gulzar Ahmad, Yash D. Jagdale, Sailee A. Gaikwad, Anupama N. Devkatte, Aamir Hussain Dar, and Mohammad Javed Ansari. 2022. "Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk" Dairy 3, no. 3: 622-647. https://doi.org/10.3390/dairy3030044
APA StyleNayik, G. A., Jagdale, Y. D., Gaikwad, S. A., Devkatte, A. N., Dar, A. H., & Ansari, M. J. (2022). Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk. Dairy, 3(3), 622-647. https://doi.org/10.3390/dairy3030044