Egyptian Jallab as Sugar Substitute, Antioxidant, and Colorant Agent in the Manufacturing of Functional Ice Cream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacture of Egyptian Jallab Ice Cream (EJIC)
2.3. Methods of Analysis
2.3.1. Analysis of the Chemical Composition of the Extract of EJby GC-MS
2.3.2. Physiochemical Analysis
2.3.3. Color Properties
2.4. Phytochemicals and Antioxidant Activity
2.4.1. Determination of Antioxidant Activity (DPPH Assay)
2.4.2. Determination of Total Phenolic Content (TPC)
2.4.3. Determination of Total Flavonoid Contents (TFC)
2.5. Sensory Evaluation
2.6. Microbiological Analyses
2.7. Statistical Analysis
3. Results
3.1. The Chemical Analyses of EJ
3.2. The GC-MS of EJ
3.3. The Chemical Composition of the EJIC
3.4. The Physical Properties of the EJIC
3.5. Phytochemical and Antioxidant Activity of the EJIC
3.6. Microbiological Quality of the EJIC
3.7. Sensory Attributes of the EJIC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yeboah, J.; Santoro, A.M.; Arrieta-Escobar, J.A.; Caballero, I.M.; Orjuela, A.; Novoa, C.F.; Fuenmayor, C.A.; Hamdani, F.E. Heuristic-based computer-aided design of ice creams and validation by using jaggery as refined sugar substitute. Chem. Eng. Res. Des. 2022, 184, 256–266. [Google Scholar] [CrossRef]
- Flórez Martínez, D.H. Agenda prospectiva de investigación de la cadena productiva de la panela y su agroindustria. Tecnura 2013, 17, 72–86. [Google Scholar] [CrossRef]
- Ordoñez-Díaz, M.M.; Rueda-Quiñónez, L.V. Evaluation of the social-environmental impacts associated with the production of panela in Santander (Colombia). Cienc. Tecnol. Agropecu. 2017, 18, 379–396. [Google Scholar] [CrossRef]
- Velotto, S.; Parafati, L.; Ariano, A.; Palmeri, R.; Pesce, F.; Planeta, D.; Alfeo, V.; Todaro, A. Use of stevia and chia seeds for the formulation of traditional and vegan artisanal ice cream. Int. J. Gastron. Food Sci. 2021, 26, 100441. [Google Scholar] [CrossRef]
- Flórez-Martínez, D.H.; Contreras-Pedraza, C.A.; Rodríguez, J. A systematic analysis of non-centrifugal sugar cane processing: Research and new trends. Trends Food Sci. Technol. 2021, 107, 415–428. [Google Scholar] [CrossRef]
- Sloan, A. Top 10 food trends. Food Technol. 2019, 73, 30–47. [Google Scholar]
- Zia, S.; Khan, M.R.; Zeng, X.A.; Sehrish; Shabbir, M.A.; Aadil, R.M. Combined effect of microwave and ultrasonication treatments on the quality and stability of sugarcane juice during cold storage. Int. J. Food Sci. Technol. 2019, 54, 2563–2569. [Google Scholar] [CrossRef]
- Khan, M.R.; Syed, A.; Zia, S.; Ahmed, W.; Aadil, R.M.; Manzoor, M.F.; Inam-Ur-Raheem, M.; Abid, M.; Shabbir, M.A.; Qureshi, S. Stabilization and attributive amelioration of sugarcane juice by naturally derived preservatives using aonla and moringa extract. Food Sci. Nutr. 2021, 9, 3048–3058. [Google Scholar] [CrossRef]
- Arif, S.; Batool, A.; Nazir, W.; Khan, R.S.; Khalid, N. Physiochemical characteristics nutritional properties and health benefits of sugarcane juice. In Non-Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 227–257. [Google Scholar]
- Abbas, S.R.; Sabir, S.M.; Ahmad, S.D.; Boligon, A.A.; Athayde, M.L. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chem. 2014, 147, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Del Giovine, L.; Bocca, A.P. Determination of synthetic dyes in ice-cream by capillary electrophoresis. Food Cont. 2003, 14, 131–135. [Google Scholar] [CrossRef]
- Cadena, R.; Cruz, A.; Faria, J.; Bolini, H. Reduced fat and sugar vanilla ice creams: Sensory profiling and external preference mapping. J. Dairy Sci. 2012, 95, 4842–4850. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, C.; Dagdemir, E.; Ozdemir, S.; Sagdic, O. The effects of using alternative sweeteners to sucrose on ice cream quality. J. Food Qual. 2008, 31, 415–428. [Google Scholar] [CrossRef]
- Moriano, M.E.; Alamprese, C. Honey, trehalose and erythritol as sucrose-alternative sweeteners for artisanal ice cream. A pilot study. LWT-Food Sci. Technol. 2017, 75, 329–334. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Manivannan, R.; Balasubramanian, A.; Rajkapoor, B. Antioxidant and hepatoprotective activity of ethanol extract of Indigofera trita Linn. On CCl4 induced hepatoxicity in rats. J. Pharmacol. Toxicol. 2008, 3, 344–350. [Google Scholar]
- AOAC. Official Methods of Analysis of the Aoac, 17th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Jacobs, M.B. The Chemical Analysis of Foods and Food Products; D. Van Nostr and Company Inc.: London, UK, 1951. [Google Scholar]
- IDF. Milk Protein Determination, Determination of Nitrogen Content. Kjeldahl Method and Calculation of Crude Protein Content; Standard 20B; International Dairy Federation: Brussels, Belgium, 1993. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil; AOCS: Champaign, IL, USA, 1999. [Google Scholar]
- Burke, A.D. Practical Ice Cream Making; Olsen Publishing Co.: Ithaca, NY, USA, 1947; p. 65. [Google Scholar]
- Arbuckle, W.; Arbuckle, W. Calculation of Ice Cream Mixes; Springer: Boston, MA, USA, 1986; pp. 119–165. [Google Scholar] [CrossRef]
- Marshall, R.T.; Goff, H.D.; Hartel, R.W. Ice Cream; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Karaman, S.; Toker, Ö.S.; Yüksel, F.; Çam, M.; Kayacier, A.; Dogan, M. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. J. Dairy Sci. 2014, 97, 97–110. [Google Scholar] [CrossRef]
- Cervato, G.; Carabelli, M.; Gervasio, S.; Cittera, A.; Cazzola, R.; Cestaro, B. Antioxbdant properties of oregano (Origanum vulgare) leaf extracts. J. Food Biochem. 2000, 24, 453–465. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chew, Y.L. Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chem. 2007, 102, 1214–1222. [Google Scholar] [CrossRef]
- Asha, K.; Sucheta, G.; Kavita, M.; Nirmala, D.; Jyoti, S. Quantification of phenolics and flavonoids by spectrophotometer from-Juglans regia. Int. J. Pharma Bio Sci. 2010, 1, PS4. [Google Scholar]
- Arbuckle, W.S. Ice Cream; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Standard 73A; Milk and Milk Products. Enumeration of Coliforms-Colony Counts Technique and Most Probable Number Technique at 30 °C. International Dairy Federation: Brussels, Belgium, 1985.
- Arrigoni, O.; De Tullio, M.C. Ascorbic acid: Much more than just an antioxidant. Biochim. Biophys. Acta Gen. Subj. 2002, 1569, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.-C.; Duh, P.-D.; Tsai, H.-L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- Albergoni, V.; Piccinni, E.; Coppellotti, O. Response to heavy metals in organisms—I. Excretion and accumulation of physiological and non physiological metals in Euglena gracilis. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 1980, 67, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Barrera, C.; Betoret, N.; Seguí, L. Phenolic profile of cane sugar derivatives exhibiting antioxidant and antibacterial properties. Sugar Technol. 2020, 22, 798–811. [Google Scholar] [CrossRef]
- Iqbal, M.; Qamar, M.A.; Bokhari, T.H.; Abbas, M.; Hussain, F.; Masood, N.; Keshavarzi, A.; Qureshi, N.; Nazir, A. Total phenolic, chromium contents and antioxidant activity of raw and processed sugars. Inf. Process. Agric. 2017, 4, 83–89. [Google Scholar] [CrossRef]
- Begum, S.F.M.; Priya, S.; Sundararajan, R.; Hemalatha, S. Novel anticancerous compounds from Sargassum wightii: In silico and in vitro approaches to test the antiproliferative efficacy. J. Adv. Pharm. Educ. Res. 2017, 7, 272–277. [Google Scholar]
- Chakraborty, D.; Pal, A. Quassinoids: Chemistry and Novel Detection Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3345–3366. [Google Scholar]
- Alqahtani, S.S.; Makeen, H.A.; Menachery, S.J.; Moni, S.S. Documentation of bioactive principles of the flower from Caralluma retrospiciens (Ehrenb) and in vitro antibacterial activity–Part B. Arab. J. Chem. 2020, 13, 7370–7377. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, D.; Li, F.; Li, D.; Huang, Q. Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, antimicrobial effect and advantages in storage application. Int. J. Biol. Macromol. 2020, 148, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Tammam, A.; Salman, K.; Abd-El-Rahim, A. Date syrup as a sugar substitute and natural flavour agent in ice cream manufacture. J. Food Dairy Sci. 2014, 5, 625–632. [Google Scholar] [CrossRef]
- Silva Junior, E.d.; Lannes, S.C.d.S. Effect of different sweetener blends and fat types on ice cream properties. Food Sci. Technol. 2011, 31, 217–220. [Google Scholar] [CrossRef]
- Canella, M.; Muñoz, I.d.B.; Barros, E.; Silva, C.; Ploêncio, L.; Daguer, H.; Prudêncio, E. Block freeze concentration as a technique aiming the goatmilk concentration: Fate of physical, chemical, and rheological properties. Int. J. Eng. Sci. Res. Technol. 2019, 8, 87–104. [Google Scholar]
- Schmidt, K. Effect of milk proteins and stabilizer on ice milk quality. J. Food Qual. 1994, 17, 9–19. [Google Scholar] [CrossRef]
- Walstra, P.; Jonkman, M. The role of milkfat and protein in ice cream. Int. Dairy Fed. Spec. 1998, 3, 17–24. [Google Scholar]
- Turan, S.; Kirkland, M.; Trusty, P.; Campbell, I. Interaction of fat and air in ice cream. Dairy Ind. Int. 1999, 64, 27–31. [Google Scholar]
- Hartel, R.W. Ice crystallization during the manufacture of ice cream. Trends Food Sci. Technol. 1996, 7, 315–321. [Google Scholar] [CrossRef]
- Arbuckle, W.S. Ice Cream; AVI Pub. Co., Inc.: Westport, CT, USA, 1986. [Google Scholar]
- Keeney, P.G. Confusion over heat shock. Food Eng. 1979, 51, 116–118. [Google Scholar]
- Kilara, A.; Chandan, R.C. Frozen dairy foods. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 435–457. [Google Scholar]
- Haghani, S.; Hadidi, M.; Pouramin, S.; Adinepour, F.; Hasiri, Z.; Moreno, A.; Munekata, P.E.; Lorenzo, J.M. Application of Cornelian cherry (Cornus mas L.) peel in probiotic ice cream: Functionality and viability during storage. Antioxidants 2021, 10, 1777. [Google Scholar] [CrossRef]
- Asminaya, N.S.; Kurniawan, W.; Apriansyah, A.; Kimestri, A.B. Physical Quality Test of Ice Cream Sweetened Using Honey. In Proceedings of the International Conference on Improving Tropical Animal Production for Food Security (ITAPS 2021); Advances in Biological Sciences Research; Atlantis Press, Springer Nature: Dordrecht, The Netherlands, 2022; pp. 411–415. [Google Scholar] [CrossRef]
- Muse, M.; Hartel, R.W. Ice cream structural elements that affect melting rate and hardness. J. Dairy Sci. 2004, 87, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Milani, E.; Koocheki, A. The effects of date syrup and guar gum on physical, rheological and sensory properties of low fat frozen yoghurt dessert. Int. J. Dairy Technol. 2011, 64, 121–129. [Google Scholar] [CrossRef]
- Akbari, M.; Eskandari, M.H.; Niakosari, M.; Bedeltavana, A. The effect of inulin on the physicochemical properties and sensory attributes of low-fat ice cream. Int. Dairy J. 2016, 57, 52–55. [Google Scholar] [CrossRef]
- Youssef, K.M.; El-Hady, A.; El-Sayed, A.; Moussa-Ayoub, T.E.; El-Samahy, S.K. Rheological behavior and some quality parameters of date ice cream. J. Agric. Vet. Sci. 2014, 6, 149–160. [Google Scholar] [CrossRef]
- Cruz, A.G.; Antunes, A.E.; Sousa, A.L.O.; Faria, J.A.; Saad, S.M. Ice-cream as a probiotic food carrier. Food Res. Int. 2009, 42, 1233–1239. [Google Scholar] [CrossRef]
- Camelo-Silva, C.; Barros, E.L.d.S.; Canella, M.H.M.; Verruck, S.; Prestes, A.A.; Vargas, M.O.; Maran, B.M.; Esmerino, E.A.; Silva, R.; Balthazar, C.F. Application of skimmed milk freeze concentrated in production of ice cream: Physical, chemical, structural and rheological properties. Food Sci. Technol. 2021, 42, e12221. [Google Scholar] [CrossRef]
- Rahim, N.; Sarbon, N. Acacia honey lime ice cream: Physicochemical and sensory characterization as effected by different hydrocolloids. Int. Food Res. J. 2019, 26, 883–891. [Google Scholar]
- Cornelia, M.; Tunardy, A.M.; Sinaga, W.S. The effect of cinnamon extract (Cinnamomum burmanii L.) addition towards the characteristics of soy milk ice cream. In Proceedings of the 6th International Conference of Food, Agriculture, and Natural Resource (IC-FANRES 2021), Tangerang, Indonesia, 4–5 August 2021; pp. 32–38. [Google Scholar]
- Nielsen, B. Combined Emulsifier/Stabilizers for Ice Cream; Pascal and Francis Bibliographic Databases; Inist-CNRS: Vandœuvre-lès-Nancy, France, 1978. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7810468802 (accessed on 12 November 2023).
- Schaller-Povolny, L.; Smith, D. Original papers-Viscosity and freezing point of a reduced fat ice cream mix as related to inulin content. Milchwissenschaft 2001, 56, 25–28. [Google Scholar]
- Cliff, M.A.; King, M.C.; Schlosser, J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Res. Int. 2007, 40, 92–100. [Google Scholar] [CrossRef]
- Figueiredo-González, M.; Cancho-Grande, B.; Simal-Gándara, J. Garnacha Tintorera-based sweet wines: Chromatic properties and global phenolic composition by means of UV–Vis spectrophotometry. Food Chem. 2013, 140, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Halim, N.; Shukri, W.; Lani, M.; Sarbon, N. Effect of different hydrocolloids on the physicochemical properties, microbiological quality and sensory acceptance of fermented cassava (tapai ubi) ice cream. Int. Food Res. J. 2014, 21, 1825. [Google Scholar]
- Kavaz, A.; Yüksel, M.; Dağdemir, E. Determination of certain quality characteristics, thermal and sensory properties of ice creams produced with dried Besni grape (Vitis vinifera L.). Int. J. Dairy Technol. 2016, 69, 418–424. [Google Scholar] [CrossRef]
- dos Santos Cruxen, C.E.; Hoffmann, J.F.; Zandoná, G.P.; Fiorentini, Â.M.; Rombaldi, C.V.; Chaves, F.C. Probiotic butiá (Butia odorata) ice cream: Development, characterization, stability of bioactive compounds, and viability of Bifidobacterium lactis during storage. LWT-Food Sci. Technol. 2017, 75, 379–385. [Google Scholar] [CrossRef]
- Nayaka, M.H.; Sathisha, U.V.; Manohar, M.; Chandrashekar, K.; Dharmesh, S.M. Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chem. 2009, 115, 113–118. [Google Scholar] [CrossRef]
- Jessica Elizabeth, D.L.T.; Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Spice use in food: Properties and benefits. Crit. Rev. Food Sci. Nutr. 2017, 57, 1078–1088. [Google Scholar] [CrossRef]
- Gremski, L.A.; Coelho, A.L.K.; Santos, J.S.; Daguer, H.; Molognoni, L.; do Prado-Silva, L.; Sant’Ana, A.S.; da Silva Rocha, R.; da Silva, M.C.; Cruz, A.G. Antioxidants-rich ice cream containing herbal extracts and fructooligossaccharides: Manufacture, functional and sensory properties. Food Chem. 2019, 298, 125098. [Google Scholar] [CrossRef] [PubMed]
- Kadam, U.S.; Ghosh, S.B.; De, S.; Suprasanna, P.; Devasagayam, T.; Bapat, V.A. Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chem. 2008, 106, 1154–1160. [Google Scholar] [CrossRef]
- Ullah, R.; Nadeem, M.; Ayaz, M.; Tayyab, M.; Imran, M.; Sajid, R. Antioxidant characteristics of ice cream supplemented with sugarcane (Saccharum officinarum L.) juice. Food Sci. Biotechnol. 2015, 24, 1227–1232. [Google Scholar] [CrossRef]
- Okwu, D.E.; Ighodaro, B.U. GC-MS evaluation of bioactive compounds and antibacterial activity of the oil fraction from the leaves of Alstonia boonei De Wild. Der Pharma Chem. 2010, 2, 261–272. [Google Scholar]
- Ouyang, H.; Kong, X.; He, W.; Qin, N.; He, Q.; Wang, Y.; Wang, R.; Xu, F. Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chin. Sci. Bull. 2012, 57, 3363–3370. [Google Scholar] [CrossRef]
Formula | Buffalo Milk (6% Fat) | Buffalo’s Cream (69% Fat) | Dried Skim Milk 95% SNF | Sugar | CMC | EJ | Total |
---|---|---|---|---|---|---|---|
TC | 71.45 | 8.28 | 4.97 | 15 | 0.3 | 0 | 100 |
EJIC1 | 70.69 | 8.34 | 5.03 | 11.25 | 0.3 | 4.39 | 100 |
EJIC2 | 69.89 | 8.42 | 5.1 | 7.5 | 0.3 | 8.79 | 100 |
EJIC3 | 69.11 | 8.49 | 5.17 | 3.75 | 0.3 | 13.18 | 100 |
EJIC4 | 68.33 | 8.56 | 5.24 | 0 | 0.3 | 17.57 | 100 |
Components | Ratio |
---|---|
Total solids (%) | 95.99 |
Ash (%) | 4.14 |
Protein (%) | 6.37 |
Lipid (%) | 0.11 |
Carbohydrate (%) | 85.37 |
Total antioxidant activity (%) | 95.16 |
Total phenolic content (mg GAE g−1) | 446.18 |
Total flavonoid contents (mg QE g−1) | 72.62 |
S | Compound Name | Rt (min) | Peak Area % |
---|---|---|---|
1 | trans-13-Octadecenoic acid | 34.50 | 2.70 |
2 | 10-Octadecenoic acid, methyl ester | 39.18 | 1.55 |
3 | L-(+)-Ascorbic acid 2,6-dihexadecanoate | 40.47 | 22.42 |
4 | Quassin | 43.12 | 2.77 |
5 | 9-Octadecenoic acid (Z)-, tetradecyl ester | 43.42 | 2.35 |
6 | 9-Octadecenoic acid (Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 44.48 | 0.64 |
7 | 16-Octadecenoic acid, methyl ester | 45.14 | 1.00 |
8 | Cyclopropanedodecanoic acid, 2-octyl-, methyl ester | 45.21 | 1.04 |
9 | cis-13-Octadecenoic acid | 46.34 | 31.37 |
10 | Oleic Acid | 46.77 | 5.08 |
11 | Docosanoic acid, 1,2,3-propanetriyl ester | 48.54 | 0.69 |
12 | 7,8-Epoxylanostan-11-ol, 3-acetoxy | 49.15 | 2.51 |
13 | Oleic acid, 3-(octadecyloxy)propyl ester | 49.21 | 1.33 |
14 | 8,14-Seco-3,19-epoxyandrostane-8,14-dione, 17-acetoxy-3á-methoxy-4,4-dimethyl- | 49.26 | 2.32 |
15 | 2,16-didehydro-20-hydroxy-19-oxo-, methyl ester | 49.93 | 2.20 |
16 | 5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one,3,9,9a-tris(acetyloxy) -3-[(acetyloxy)methyl]-2-chloro-1,1a,1b,2,3,4,4a,7a,7b,8,9,9a- dodecahydro-4a,7b-dihydroxy-1,1 ,6,8-tetramethyl-,[1aR-(1aà,1bá,2à,3á,4aá,7aà,7bà,8à,9á,9aà)]- | 50.43 | 0.62 |
17 | Dodecanoic acid,1a,2,5,5a,6,9,10,10a-octahydro-5a-hydroxy-4- (hydroxymethyl) -1,1,7,9-tetramethyl-6,11-dioxo-1H-2,8a-methanocyclopenta [a]cyclopropa[e]cyclodecen-5-yl ester, [1aR-(1aà,2à,5á,5aá,8aà,9à,10aà)]- | 55.79 | 1.00 |
18 | Oleic acid, 3-(octadecyloxy)propyl ester | 58.36 | 1.60 |
19 | Docosanoic acid, 1,2,3-propanetriyl ester | 60.20 | 0.20 |
20 | 3,5,9-Trioxa-5-phosphaheptacos-18-en-1-aminium,4-hydroxy -N,N,N-trimethyl-10-oxo-7-[(1-oxo-9-octadecenyl)oxy]-, hydroxide, inner salt, 4-oxide, (R)- | 70.21 | 0.29 |
Components | Treatments | p-Value | ||||
---|---|---|---|---|---|---|
TC | EJIC1 | EJIC2 | EJIC3 | EJIC4 | ||
Total solids % | 39.30 e ±0.05 | 39.86 d ±0.05 | 40.15 c ±0.09 | 40.91 b ±0.02 | 41.19 a ±0.01 | 0.001 |
Protein % | 4.85 a ±0.02 | 4.86 b ±0.08 | 5.00 bc ±0.03 | 5.18 c ±0.16 | 6.36 c ±0.01 | 0.001 |
Fat % | 9.97 a ±0.03 | 9.90 a ±0.06 | 9.70 b ±0.06 | 9.90 a ±0.06 | 9.90 a ±0.06 | 0.048 |
Ash % | 0.87 e ±0.001 | 0.96 d ±0.001 | 0.98 c ±0.002 | 1.13 b ±0.004 | 1.42 a ±0.002 | 0.001 |
TA | 0.20 e ±0.003 | 0.23 d ±0.001 | 0.28 c ±0.002 | 0.33 b ±0.002 | 0.39 a ±0.001 | 0.001 |
pH | 6.31 a ±0.003 | 6.12 ab ±0.003 | 6.10 ab ±0.009 | 5.95 b ±0.003 | 5.85 c ±0.012 | 0.001 |
Components | Treatments | p-Value | ||||
---|---|---|---|---|---|---|
TC | EJIC1 | EJIC2 | EJIC3 | EJIC4 | ||
Melting time (s) | 1851.0 e ±20.50 | 2215.0 d ±19.52 | 2411.7 c ±16.17 | 2552.7 b ±10.67 | 2738.3 a ±17.53 | 0.001 |
Specific gravity | 0.810 e ±0.0013 | 0.831 d ±0.0029 | 0.866 c ±0.0003 | 0.899 b ±0.0001 | 0.990 a ±0.0024 | 0.001 |
Weight per gallon (kg) | 3.038 e ±0.005 | 3.117 d ±0.011 | 3.252 c ±0.001 | 3.375 b ±0.001 | 3.717 a ±0.009 | 0.001 |
Over run | 33.47 a ±0.27 | 31.64 b ±0.32 | 30.60 c ±0.17 | 29.43 d ±0.27 | 29.16 d ±0.01 | 0.001 |
Relative viscosity | 1.73 c ±0.026 | 1.73 c ±0.054 | 1.82 c ±0.003 | 2.48 b ±0.064 | 3.27 a ±0.023 | 0.001 |
Components | Treatments | p-Value | ||||
---|---|---|---|---|---|---|
TC | EJIC1 | EJIC2 | EJIC3 | EJIC4 | ||
L* | 55.73 a ±3.74 | 49.99 a ±1.92 | 41.72 b ±0.40 | 38.66 bc ±0.29 | 34.32 c ±1.50 | 0.001 |
a* | 0.147 c ±0.05 | 3.48 b ±0.24 | 4.79 a ±0.57 | 5.42 a ±0.28 | 5.52 a ±0.57 | 0.001 |
b* | 11.44 d ±0.36 | 14.59 cd ±0.44 | 15.15 bc ±0.50 | 16.60 b ±0.57 | 16.90 a ±0.43 | 0.001 |
C* | 11.45 c ±0.36 | 15.56 bc ±0.51 | 15.90 bc ±0.65 | 17.25 b ±0.46 | 17.50 a ±0.72 | 0.001 |
h | 93.22 a ±2.51 | 78.38 b ±0.52 | 72.57 c ±1.37 | 71.71 c ±1.23 | 69.66 c ±0.35 | 0.001 |
Components | Treatments | p-Value | ||||
---|---|---|---|---|---|---|
TC | EJIC1 | EJIC2 | EJIC3 | EJIC4 | ||
DPPH% | 21.53 c ±0.90 | 88.82 b ±0.20 | 89.96 b ±0.07 | 91.98 a ±0.08 | 92.14 a ±0.08 | 0.001 |
TPC (mg GAE g−1) | 67.67 e ±6.38 | 140.52 d ±9.20 | 204.75 c ±6.48 | 280.00 b ±7.63 | 316.99 a ±4.76 | 0.001 |
TFC (mg QE g−1) | 5.73 e ±0.02 | 14.68 d ±0.08 | 21.54 c ±0.09 | 30.48 b ±0.11 | 34.15 a ±0.16 | 0.001 |
Components | Treatments | p-Value | ||||
---|---|---|---|---|---|---|
TC | EJIC1 | EJIC2 | EJIC3 | EJIC4 | ||
Total bacterial count | 5.34 b ±0.17 | 5.94 b ±0.05 | 6.04 b ±0.05 | 6.19 b ±0.03 | 6.22 a ±0.06 | 0.001 |
Psychrotrophic bacteria | 2.30 a ±0.22 | 2.31 a ±0.04 | 2.46 a ±0.26 | 2.53 a ±0.24 | 2.63 a ±0.21 | 0.753 |
Yeast and molds count | 1.74 a ±0.55 | 1.39 a ±0.23 | 1.21 a ±0.28 | 1.13 a ±0.12 | 1.06 a ±0.33 | 0.635 |
Coliform bacteria | ND | ND | ND | ND | ND | - |
Components | Treatments | p-Value | ||||
---|---|---|---|---|---|---|
TC | EJIC1 | EJIC2 | EJIC3 | EJIC4 | ||
Color | 9.55 a ±0.15 | 8.90 ab ±0.27 | 8.45 bc ±0.26 | 8.00 c ±0.29 | 7.80 c ±0.34 | 0.001 |
Flavor | 46.45 ab ±1.03 | 47.95 a ±0.45 | 45.55 ab ±0.74 | 45.20 b ±0.78 | 44.40 b ±1.04 | 0.039 |
Body and texture | 28.50 a ±0.42 | 28.40 a ±0.39 | 28.45 a ±0.39 | 27.15 a ±0.66 | 27.45 a ±0.58 | 0.172 |
Melting quality | 7.90 b ±0.35 | 8.55 ab ±0.25 | 8.35 ab ±0.31 | 8.90 a ±0.23 | 8.95 a ±0.22 | 0.048 |
Overall score | 92.4 a ±1.35 | 93.8 a ±1.19 | 90.8 ab ±1.24 | 89.25 b ±1.74 | 88.6 b ±1.89 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.F.Y.; Salman, K.H.; Zaki, K.G.; Hassan, N.A.; Alahaideb, H.S.S.; Abd-Alla, A.-E.A. Egyptian Jallab as Sugar Substitute, Antioxidant, and Colorant Agent in the Manufacturing of Functional Ice Cream. Dairy 2024, 5, 118-133. https://doi.org/10.3390/dairy5010010
Hassan MFY, Salman KH, Zaki KG, Hassan NA, Alahaideb HSS, Abd-Alla A-EA. Egyptian Jallab as Sugar Substitute, Antioxidant, and Colorant Agent in the Manufacturing of Functional Ice Cream. Dairy. 2024; 5(1):118-133. https://doi.org/10.3390/dairy5010010
Chicago/Turabian StyleHassan, Mohamed F. Y., Khaled H. Salman, Khaled G. Zaki, Noha A. Hassan, Hanadi Saleh S. Alahaideb, and Abd-Ellah A. Abd-Alla. 2024. "Egyptian Jallab as Sugar Substitute, Antioxidant, and Colorant Agent in the Manufacturing of Functional Ice Cream" Dairy 5, no. 1: 118-133. https://doi.org/10.3390/dairy5010010
APA StyleHassan, M. F. Y., Salman, K. H., Zaki, K. G., Hassan, N. A., Alahaideb, H. S. S., & Abd-Alla, A. -E. A. (2024). Egyptian Jallab as Sugar Substitute, Antioxidant, and Colorant Agent in the Manufacturing of Functional Ice Cream. Dairy, 5(1), 118-133. https://doi.org/10.3390/dairy5010010