Morphokinetics of In Vitro-Derived Embryos—A Lesson from Human and Bovine Studies
Abstract
:1. Introduction
2. Embryo Selection Criteria
3. Embryo Morphokinetics
3.1. Cleavage Timing
3.2. Division Patterns
3.2.1. Synchronous vs. Asynchronous Cleavage
3.2.2. Direct Cleavage
3.2.3. Unequal Cleavage
3.2.4. Reverse Cleavage
4. Algorithms, Machine Learning, and Artificial Intelligence (AI) Are Used to Predict Embryo Developmental Competence
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumaresan, A.; Srivastava, A.K. Frontier Technologies in Bovine Reproduction; Springer: Singapore, 2022. [Google Scholar]
- Royal, M.D.; Darwash, A.O.; Flint, A.P.; Webb, R.; Woolliams, J.A.; Lamming, G.E. Declining fertility in dairy cattle: Changes in traditional and endocrine parameters of fertility. Anim. Sci. 2000, 70, 487–501. [Google Scholar] [CrossRef]
- Hansen, P.J.; Block, J. Towards an embryocentric world: The current and potential uses of embryo technologies in dairy production. Reprod. Fertil. Dev. 2003, 16, 1–14. [Google Scholar] [CrossRef]
- Wells, C.; Wiik, A.; Hanks, J.; Zavareh, A.; Killingsworth, R. Embryo morphokinetic activity evident in short videos of in vitro bovine embryos. Dairy 2022, 3, 849–861. [Google Scholar] [CrossRef]
- Osterman, M.J.; Hamilton, B.E.; Martin, J.A.; Driscoll, A.K.; Valenzuela, C.P. Births: Final data for 2020. Natl. Vital Stat. Rep. 2021, 70, 1–50. [Google Scholar] [PubMed]
- Comolli, C.; Neyer, G.; Andersson, G.; Dommermuth, L.; Fallesen, P.; Jalovaara, M.; Jónsson, A.; Kolk, M.; Lappegard, T. Correction to: Beyond the Economic Gaze: Childbearing during and after Recessions in the Nordic Countries. Eur. J. Popul. 2021, 37, 473–520. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). 2021. Available online: https://www.cdc.gov/art/artdata/index.html (accessed on 13 June 2024).
- Rabel, R.C.; Marchioretto, P.V.; Bangert, E.A.; Wilson, K.; Milner, D.J.; Wheeler, M.B. Pre-Implantation Bovine Embryo Evaluation—From Optics to Omics and Beyond. Animals 2023, 13, 2102. [Google Scholar] [CrossRef]
- Hansen, P.J. Some challenges and unrealized opportunities toward widespread use of the in vitro-produced embryo in cattle production. Animal 2023, 17, 100745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Li, X.L.; Peng, Y.; Guo, X.; Heng, B.C.; Tong, G.Q. Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod. BioMed Online 2010, 20, 510–515. [Google Scholar] [CrossRef]
- Gardner, D.K.; Meseguer, M.; Rubio, C.; Treff, N.R. Diagnosis of human preimplantation embryo viability. Hum. Reprod. Update 2015, 21, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Arav, A.; Aroyo, A.; Yavin, S.; Roth, Z. Prediction of embryonic developmental competence by time-lapse observation and ‘shortest-half’ analysis. Reprod. Biomed. Online 2008, 17, 669–675. [Google Scholar] [CrossRef]
- Sugimura, S.; Akai, T.; Somfai, T.; Hirayama, M.; Aikawa, Y.; Ohtake, M.; Hattori, H.; Kobayashi, S.; Hashiyada, Y.; Konishi, K.; et al. Time-lapse cinematography-compatible polystyrene-based microwell culture system: A novel tool for tracking the development of individual bovine embryos. Biol. Reprod. 2010, 83, 97–978. [Google Scholar] [CrossRef] [PubMed]
- Sugimura, S.; Akai, T.; Hashiyada, Y.; Somfai, T.; Inaba, Y.; Hirayama, M.; Yamanouchi, T.; Matsuda, H.; Kobayashi, S.; Aikawa, Y.; et al. Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS ONE 2012, 7, e36627. [Google Scholar] [CrossRef] [PubMed]
- Meseguer, M.; Herrero, J.; Tejera, A.; Hilligsøe, K.M.; Ramsing, N.B.; Remoh, J. The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 2011, 26, 2658–2671. [Google Scholar] [CrossRef] [PubMed]
- Yaacobi-Artzi, S.; Kalo, D.; Roth, Z. Association between the morphokinetics of in-vitro-derived bovine embryos and the transcriptomic profile of the derived blastocysts. PLoS ONE 2022, 17, e0276642. [Google Scholar] [CrossRef] [PubMed]
- Giménez, C.; Conversa, L.; Murria, L.; Meseguer, M. Time-Lapse Imaging. Morphokinetic analysis of In Vitro Fertilization outcomes. Fertil. Steril. 2023, 120, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Magata, F. Time-lapse monitoring technologies for the selection of bovine in vitro fertilized embryos with high implantation potential. Reprod. Dev. 2023, 69, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, K.; Berkkanoglu, M.; Bulut, H.; Donmez, L.; Isikli, A.; Coetzee, K. Blastocyst age, expansion, trophectoderm morphology, and number cryopreserved are variables predicting clinical implantation in single blastocyst frozen embryo transfers in freeze-only-IVF. J. Assist. Reprod. Genet. 2021, 38, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Bakkensen, J.B.; Brady, P.; Carusi, D.; Romanski, P.; Thomas, A.M.; Racowsky, C. Association between blastocyst morphology and pregnancy and perinatal outcomes following fresh and cryopreserved embryo transfer. J. Assist. Reprod. Genet. 2019, 36, 2315–2324. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.; Jin, L.; Zheng, Y.; Yang, P.; Huang, B.; Dong, X. The morphology of inner cell mass is the strongest predictor of live birth after a frozen-thawed single embryo transfer. Front. Endocrinol. 2021, 12, 621221. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, S.; Gu, Y.; Ma, S.; Peng, Y.; Gong, F.; Tan, H.; Lin, G. The impact of blastocyst freezing and biopsy on the association of blastocyst morphological parameters with live birth and singleton birthweight. Fertil. Steril. 2023, 119, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Montag, M.; van der Ven, H. Evaluation of pronuclear morphology as the only selection criterion for further embryo culture and transfer: Results of a prospective multicentre study. Hum. Reprod. 2001, 16, 2384–2389. [Google Scholar] [CrossRef] [PubMed]
- Scott, L. Pronuclear scoring as a predictor of embryo development. Reprod. Biomed. Online 2003, 6, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Hardarson, T.; Hanson, C.; Sjögren, A.; Lundin, K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: Indications for aneuploidy and multinucleation. Hum. Reprod. 2001, 16, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Van Royen, E.V.; Mangelschots, K.; Vercruyssen, M.; Neubourg, D.D.; Valkenburg, M.; Ryckaert, G.; Gerris, J. Multinucleation in cleavage stage embryos. Hum. Reprod. 2003, 18, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.K. Blastocyst culture: Toward single embryo transfers. Hum. Fertil. 2000, 3, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Stringfellow, D.A.; Seide, S.M. Manual of the International Embryo Transfer Society: A Procedural Guide and General Information for the Use of Embryo Transfer Technology Emphasizing Sanitary Procedures, 3rd ed.; International Embryo Transfer Society: Savory, IL, USA, 1998. [Google Scholar]
- Gardner, D.K.; Sakkas, D. Assessment of embryo viability: The ability to select a single embryo for transfer—A review. Placenta 2003, 24, S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Farin, P.W.; Slenning, B.D.; Britt, J.H. Estimates of pregnancy outcomes based on selection of bovine embryos produced in vivo or in vitro. Theriogenology 1999, 52, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Guerif, F.; Le Gouge, A.; Giraudeau, B.; Poindron, J.; Bidault, R.; Gasnier, O.; Royere, D. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: A prospective study based on 4042 embryos. Hum. Reprod. 2007, 22, 1973–1981. [Google Scholar] [CrossRef] [PubMed]
- Lemmen, J.G.; Agerholm, I.; Ziebe, S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod. Biomed. Online 2008, 17, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.C.; Loewke, K.E.; Bossert, N.L.; Behr, B.; De Jonge, C.J.; Baer, T.M.; Pera, R.A. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 2010, 28, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Mizobe, Y.; Akiyoshi, T.; Minami, S.; Matsuo, K.; Fukushima, R.; Yamaguchi, A.; Okamoto, S. Effect of a time-lapse incubator (EmbryoScope®) on in vitro culture of human embryos. J. Mamm. Ova Res. 2014, 31, 40–44. [Google Scholar] [CrossRef]
- Goodman, L.R.; Goldberg, J.; Falcone, T.; Austin, C.; Desai, N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil. Steril. 2016, 105, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Motato, Y.; de los Santos, M.J.; Escriba, M.J.; Ruiz, B.A.; Remohí, J.; Meseguer, M. Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil. Steril. 2016, 105, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.F.; Chinn, K.; Kosasa, T.; Ahn, H.J.; Kessel, B. Morphokinetics of human blastocyst expansion in vitro. Reprod. Biomed. Online 2016, 33, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Payne, D.; Flaherty, S.P.; Barry, M.F.; Matthews, C.D. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum. Reprod. 1997, 12, 532–541. [Google Scholar] [CrossRef]
- Shoukir, Y.; Campana, A.; Farley, T.; Sakkas, D. Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: A novel indicator of embryo quality and viability. Hum. Reprod. 1997, 12, 1531–1536. [Google Scholar] [CrossRef]
- Van Soom, A.; Ysebaert, M.T.; de Kruif, A. Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 1997, 47, 47–56. [Google Scholar] [CrossRef]
- Dinnyés, A.; Lonergan, P.; Fair, T.; Boland, M.P. Timing of the first cleavage post-insemination affects cryosurvival of in vitro-produced bovine blastocysts. Mol. Reprod. Dev. 1999, 53, 318–324. [Google Scholar] [CrossRef]
- Lundin, K.; Bergh, C.; Hardarson, T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum. Reprod. 2001, 16, 2652–2657. [Google Scholar] [CrossRef]
- Fenwick, J.; Platteau, P.; Murdoch, A.P.; Herbert, M. Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum. Reprod. 2002, 17, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Somfai, T.; Inaba, Y.; Aikawa, Y.; Ohtake, M.; Kobayashi, S.; Konishi, K.; Imai, K. Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis. J. Reprod. Dev. 2010, 56, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Gendelman, M.; Aroyo, A.; Yavin, S.; Roth, Z. Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction 2010, 140, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, P.; Kahtir, H.; Piumi, F.; Rieger, D.; Humblot, P.; Boland, M.P. Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. Reproduction 1999, 117, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Holm, P.; Shukri, N.N.; Vajta, G.; Booth, P.; Bendixen, C.; Callesen, H. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology 1998, 50, 1285–1299. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Chung, M.T.; Sung, Y.H.; Tsai, T.F.; Tsai, Y.T.; Lin, L.Y. Clinical value of early cleavage embryo. Int. J. Gynecol. Obstet. 2002, 76, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Salumets, A.; Hydén-Granskog, C.; MaÈkinen, S.; Suikkari, A.M.; Tiitinen, A.; Tuuri, T. Early cleavage predicts the viability of human embryos in elective single embryo transfer procedures. Hum. Reprod. 2003, 18, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Van Montfoort, A.P.; Dumoulin, J.C.; Kester, A.D.; Evers, J.L. Early cleavage is a valuable addition to existing embryo selection parameters: A study using single embryo transfers. Hum. Reprod. 2004, 19, 2103–2108. [Google Scholar] [CrossRef] [PubMed]
- Çiray, H.N.; Karagenç, L.; Uluǧ, U.; Bener, F.; Bahçeci, M. Early cleavage morphology affects the quality and implantation potential of day 3 embryos. Fertil. Steril. 2006, 85, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, D.; Shoukir, Y.; Chardonnens, D.; Bianchi, P.G.; Campana, A. Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum. Reprod. 1998, 13, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, D.; Percival, G.; D’Arcy, Y.; Sharif, K.; Afnan, M. Assessment of early cleaving in vitro fertilized human embryos at the 2-cell stage before transfer improves embryo selection. Fertil. Steril. 2001, 76, 1150–1156. [Google Scholar] [CrossRef]
- Salumets, A.; Hydén-Granskog, C.; Suikkari, A.M.; Tiitinen, A.; Tuuri, T. The predictive value of pronuclear morphology of zygotes in the assessment of human embryo quality. Hum. Reprod. 2001, 16, 2177–2181. [Google Scholar] [CrossRef]
- Milazzotto, M.P.; Goissis, M.D.; Chitwood, J.L.; Annes, K.; Soares, C.A.; Ispada, J.; Assumpção, M.E.; Ross, P.J. Early cleavages influence the molecular and the metabolic pattern of individually cultured bovine blastocysts. Mol. Reprod. Dev. 2016, 83, 324–336. [Google Scholar] [CrossRef]
- Silva, T.; Santos, E.C.; Annes, K.; Soares, C.A.; Leite, R.F.; Lima, C.B.; Milazzotto, M.P. Morphokinetic-related response to stress in individually cultured bovine embryos. Theriogenology 2016, 86, 1308–1317. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Hoelker, M.; Rings, F.; Salilew, D.; Jennen, D.; Tholen, E.; Sirard, M.A.; Schellander, K.; Tesfaye, D. Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genom. 2006, 28, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-ad’n, A.; Rizos, D.; Fair, T.; Moreira, P.N.; Pintado, B.; Fuente, J.D.; Boland, M.P.; Lonergan, P. Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol. Reprod. Dev. 2004, 68, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xiang, G.; Xu, K.; Che, J.; Xu, C.; Li, K.; Wang, B.; Mu, Y. Transcriptome analyses reveal differential transcriptional profiles in early-and late-dividing porcine somatic cell nuclear transfer embryos. Genes 2020, 11, 1499. [Google Scholar] [CrossRef]
- Brevini, T.A.L.; Lonergan, P.; Cillo, F.; Francisci, C.; Favetta, L.A.; Fair, T.; Gandolfi, F. Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence. Mol. Reprod. Dev. 2002, 63, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Lucero, E.; Dufort, I.; Robert, C.; Sirard, M.A. Rapidly cleaving bovine two-cell embryos have better developmental potential and a distinctive mRNA pattern. Mol. Reprod. Dev. 2014, 81, 31–41. [Google Scholar] [CrossRef]
- Song, X.; Li, T.; Xiong, X.; Shan, H.; Feng, T.; Cui, K.; Shi, D.; Liu, Q.; Li, Z. RNA-Seq Reveals the underlying molecular mechanism of first cleavage time affecting porcine embryo development. Genes 2022, 13, 1251. [Google Scholar] [CrossRef] [PubMed]
- Ispada, J.; De Lima, C.B.; Sirard, M.A.; Fontes, P.K.; Nogueira, M.F.G.; Annes, K.; Milazzotto, M.P. Genome-wide screening of DNA methylation in bovine blastocysts with different kinetics of development. Epigenetics Chromatin 2018, 11, 1. [Google Scholar] [CrossRef]
- Basile, N.; Vime, P.; Florensa, M.; Aparicio Ruiz, B.; Garcia Velasco, J.A.; Remohí, J.; Meseguer, M. The use of morphokinetics as a predictor of implantation: A multicentric study to define and validate an algorithm for embryo selection. Hum. Reprod. 2015, 30, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chapple, V.; Feenan, K.; Roberts, P.; Matson, P. Time-lapse deselection model for human day 3 in vitro fertilization embryos: The combination of qualitative and quantitative measures of embryo growth. Fertil. Steril. 2016, 105, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Grisart, B.; Massip, A.; Dessy, F. Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium. Reproduction 1994, 34, 399–405. [Google Scholar] [CrossRef]
- Holm, P.; Booth, P.J.; Callesen, H. Kinetics of early in vitro development of bovine in vivo-and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media. Reproduction 2002, 123, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Ye, Z.; Clarke, R.; Rosenwaks, Z.; Zaninovic, N. Direct unequal cleavages: Embryo developmental competence, genetic constitution and clinical outcome. PLoS ONE 2016, 11, e0166398. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Okada, M.; Nagai, Y.; Sakuraba, Y.; Okae, H.; Suzuki, R.; Sugimura, S. Abnormal cleavage is involved in the self-correction of bovine preimplantation embryos. Biochem. Biophys. Res. Commun. 2021, 562, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Athayde Wirka, K.; Chen, A.A.; Conaghan, J.; Ivani, K.; Gvakharia, M.; Behr, B.; Suraj, V.; Tan, L.; Shen, S. Atypical embryo phenotypes identified by time-lapse microscopy: High prevalence and association with embryo development. Fertil. Steril. 2014, 101, 1637–1648. [Google Scholar] [CrossRef] [PubMed]
- Lechniak, D.; Sell-Kubiak, E.; Warzych, E. The metabolic profile of bovine blastocysts is affected by in vitro culture system and the pattern of first zygotic cleavage. Theriogenology 2022, 188, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chapple, V.; Roberts, P.; Matson, P. Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil. Steril. 2014, 102, 1295–1300.e2. [Google Scholar] [CrossRef]
- Yang, S.T.; Shi, J.X.; Gong, F.; Zhang, S.P.; Lu, C.F.; Tan, K.; Leng, L.Z.; Hao, M.; He, H.; Gu, Y.F.; et al. Cleavage pattern predicts developmental potential of day 3 human embryos produced by IVF. Reprod. Biomed. Online 2015, 30, 625–634. [Google Scholar] [CrossRef]
- Rubio, I.; Kuhlmann, R.; Agerholm, I.; Kirk, J.; Herrero, J.; Escribá, M.J.; Bellver, J.; Meseguer, M. Limited implantation success of direct-cleaved human zygotes: A time-lapse study. Fertil. Steril. 2012, 98, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Barrie, A.; Homburg, R.; McDowell, G.; Brown, J.; Kingsland, C.; Troup, S. Preliminary investigation of the prevalence and implantation potential of abnormal embryonic phenotypes assessed using time-lapse imaging. Reprod. Biomed. Online 2017, 34, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, P.; Dean, J. Maternal control of early mouse development. Development 2010, 137, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Yakovenko, S.A.; Apryshko, V.P.; Seregina, E.A.; Yutkin, E.V. Blastomere cleavage synchronicity evaluation as a tool in non-invasive selection of euploid embryos with high development competence. Fertil. Steril. 2011, 96, S86. [Google Scholar] [CrossRef]
- Wiener-Megnazi, Z.; Fridman, M.; Koifman, M.; Lahav-Baratz, S.; Stein, N.; Auslender, R.; Dirnfeld, M. Synchronous and asynchronous blastomere cleavage at cryopreservation: Effect on subsequent embryo survival, pregnancy and live birth rates. J. Biomed. Sci. Eng. 2014, 7, 243. [Google Scholar] [CrossRef]
- Balaban, B.; Brison, D.; Calderon, G.; Catt, J.; Conaghan, J.; Cowan, L.; Ebner, T.; Gardner, D.; Hardarson, T.; Lundin, K.; et al. Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Reprod. Biomed. Online 2011, 22, 632–646. [Google Scholar]
- Magata, F.; Ideta, A.; Okubo, H.; Matsuda, F.; Urakawa, M.; Oono, Y. Growth potential of bovine embryos presenting abnormal cleavage observed through time lapse cinematography. Theriogenology 2019, 133, 119–124. [Google Scholar] [CrossRef]
- McCollin, A.; Swann, R.L.; Summers, M.C.; Handyside, A.H.; Ottolini, C.S. Abnormal cleavage and developmental arrest of human preimplantation embryos in vitro. Eur. J. Med. Genet. 2020, 63, 103651. [Google Scholar] [CrossRef] [PubMed]
- Lagalla, C.; Tarozzi, N.; Sciajno, R.; Wells, D.; Di Santo, M.; Nadalini, M.; Distratis, V.; Borini, A. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod. Biomed. Online 2017, 34, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Shavit, M.; Gonen, D.; Atzmon, Y.; Aslih, N.; Bilgory, A.; Shibli Abu-Raya, Y.; Sharqawi, M.; Estrada Garcia, D.; Michaeli, M.; Polotov, D.; et al. Cleavage patterns of 9600 embryos: The importance of irregular cleavage. J. Clin. Med. 2023, 12, 5656. [Google Scholar] [CrossRef]
- Daughtry, B.L.; Rosenkrantz, J.L.; Lazar, N.H.; Fei, S.S.; Redmayne, N.; Torkenczy, K.A.; Adey, A.; Yan, M.; Gao, L.; Park, B.; et al. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res. 2019, 29, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.; Finn, A.; O’leary, T.; McLellan, S.; Hill, J. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: Prospective and applied data for increased pregnancy rates. Hum. Reprod. 2007, 22, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Madeja, Z.E.; Pawlak, P.; Piliszek, A. Beyond the mouse: Non-rodent animal models for study of early mammalian development and biomedical research. Int. J. Dev. Biol. 2019, 63, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Lu, X.; Jiang, Y.; Wang, D.; Pan, L.; Jia, C.; Zhang, L.; Xie, Y.; Zhao, M.; Liu, H.; et al. Proteomics reveals the underlying mechanism by which the first uneven division affects embryonic development in pig. Theriogenology 2023, 210, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Tesarik, J.; Kopecny, V.; Plachot, M.; Mandelbaum, J. Ultrastructural and autoradiographic observations on multinucleated blastomeres of human cleaving embryos obtained by in-vitro fertilization. Hum. Reprod. 1987, 2, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Winston, N.J.; Johnson, M.H.; Braude, P.R. Assessment of the cellular DNA content of whole mounted mouse and human oocytes and of blastomeres containing single or multiple nuclei. Zygote 1993, 1, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Bi, J.; Zhu, F.; Wang, X.; Jia, C.; Xu, H.; He, X.; Li, J. Division behaviors and their effects on pre-implantation development of pig embryos. Reprod. Domest. Anim. 2022, 57, 1016–1028. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yuan, X.; Xue, Q.; Sun, L.; Xu, T.; Chen, Y.; Shi, D.; Li, X. Comparison of symmetrical and asymmetrical cleavage 2-cell embryos of porcine by Smart-seq2. Theriogenology 2023, 210, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Ploskonka, S.; Goodman, L.R.; Austin, C.; Goldberg, J.; Falcone, T. Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reprod. Biol. Endocrinol. 2014, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Dong, X.; Tan, W.; Huang, B. Incidence, dynamics and recurrences of reverse cleavage in aneuploid, mosaic and euploid blastocysts, and its relationship with embryo quality. J. Ovarian Res. 2022, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Petersen, B.M.; Boel, M.; Montag, M.; Gardner, D.K. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Hum. Reprod. 2016, 31, 2231–2244. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Wu, C.H.; Chen, Y.C.; Yang, C.K.; Wu, T.H.; Chen, P.C.; Tsai, H.D. Effect of morphokinetics and morphological dynamics of cleavage stage on embryo developmental potential: A time-lapse study. Taiwan J. Obstet. Gynecol. 2018, 57, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Huayhua, C.; Rodríguez, M.; Vega, J.; Briones, M.; Rodriguez-Alvarez, L.; Mellisho, E. Blastulation time measured with time-lapse system can predict in vitro viability of bovine blastocysts. PLoS ONE 2023, 18, e0289751. [Google Scholar] [CrossRef] [PubMed]
- Theilgaard Lassen, J.; Fly Kragh, M.; Rimestad, J.; Nygård Johansen, M.; Berntsen, J. Development and validation of deep learning-based embryo selection across multiple days of transfer. Sci. Rep. 2023, 13, 4235. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.K.; Sakkas, D. Making and selecting the best embryo in the laboratory. Fertil. Steril. 2023, 120, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Ueno, S.; Berntsen, J.; Ito, M.; Uchiyama, K.; Okimura, T.; Yabuuchi, A.; Kato, K. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: A single-center large cohort retrospective study. Fertil. Steril. 2021, 116, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Glatstein, I.; Chavez-Badiola, A.; Curchoe, C.L. New frontiers in embryo selection. J. Assist. Reprod. Genet. 2023, 40, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Ueno, S.; Berntsen, J.; Kragh, M.F.; Okimura, T.; Kuroda, T. Does embryo categorization by existing artificial intelligence, morphokinetic or morphological embryo selection models correlate with blastocyst euploidy rates? Reprod. Biomed. Online 2023, 46, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Badiola, A.; Farías, A.F.; Mendizabal-Ruiz, G.; Silvestri, G.; Griffin, D.K.; Valencia-Murillo, R.; Drakeley, A.J.; Cohen, J. Use of artificial intelligence embryo selection based on static images to predict first trimester pregnancy loss. Reprod. Biomed. Online 2024, 49, 103934. [Google Scholar] [CrossRef] [PubMed]
- VerMilyea, M.; Hall, J.M.; Diakiw, S.M.; Johnston, A.; Nguyen, T.; Perugini, D.; Miller, A.; Picou, A.; Murphy, A.P.; Perugini, M. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 2020, 35, 770–784. [Google Scholar] [CrossRef]
- Jiang, V.S.; Bormann, C.L. Noninvasive genetic screening: Current advances in artificial intelligence for embryo ploidy prediction. Fertil. Steril. 2023, 120, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.C.; Passalia, F.J.; Matos, F.D.; Takahashi, M.B.; Maserati, M.P., Jr.; Alves, M.F.; De Almeida, T.G.; Cardoso, B.L.; Basso, A.C.; Nogueira, M.F. Data descriptor: Automatized image processing of bovine blastocysts produced in vitro for quantitative variable determination. Sci. Data 2017, 4, 170192. [Google Scholar] [CrossRef] [PubMed]
- De Souza Ciniciato, D.; Takahashi, M.B.; Nogueira, M.F.G.; Rocha, J.C. Potential use of smartphone as a tool to capture embryo digital images from stereomicroscope and to evaluate them by an artificial neural network. In Proceedings of the International Conference on Computer-Human Interaction Research and Applications (CHIRA 2017), Funchal, Portugal, 31 October 31–2 November 2017; pp. 185–189. [Google Scholar]
- Turki, T.; Wei, Z. Improved deep convolutional neural networks via boosting for predicting the quality of in vitro bovine embryos. Electronics 2022, 11, 1363. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaacobi-Artzi, S.; Kalo, D.; Roth, Z. Morphokinetics of In Vitro-Derived Embryos—A Lesson from Human and Bovine Studies. Dairy 2024, 5, 419-435. https://doi.org/10.3390/dairy5030033
Yaacobi-Artzi S, Kalo D, Roth Z. Morphokinetics of In Vitro-Derived Embryos—A Lesson from Human and Bovine Studies. Dairy. 2024; 5(3):419-435. https://doi.org/10.3390/dairy5030033
Chicago/Turabian StyleYaacobi-Artzi, Shira, Dorit Kalo, and Zvi Roth. 2024. "Morphokinetics of In Vitro-Derived Embryos—A Lesson from Human and Bovine Studies" Dairy 5, no. 3: 419-435. https://doi.org/10.3390/dairy5030033
APA StyleYaacobi-Artzi, S., Kalo, D., & Roth, Z. (2024). Morphokinetics of In Vitro-Derived Embryos—A Lesson from Human and Bovine Studies. Dairy, 5(3), 419-435. https://doi.org/10.3390/dairy5030033