Update on Fatty Liver in Dairy Cattle with Major Emphasis on Epidemiological Patterns, Pathophysiology in Relationship to Abdominal Adiposity, and Early Diagnosis
Abstract
:1. Introduction
2. Basic Concepts
Categories of Adipose Tissue
3. Epidemiology
4. Diagnosis
5. Control and Prevention
6. Proposed Pathophysiological Hypothesis in Modern Dairy Cows
7. Integrating the Pathophysiology of Fatty Liver and Management
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melendez, P.; Risco, C.A. Reproduction, Events and Management Pregnancy: Periparturient Disorders. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1. [Google Scholar]
- Goff, J.P. Major advances in our understanding of nutritional influences on bovine health. J. Dairy Sci. 2006, 89, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shao, Q.; Liu, M.; Wang, X.; Loor, J.J.; Jiang, Q.; Cuan, S.; Li, X.; Wang, J.; Li, Y.; et al. Liver fibrosis is a common pathological change in the liver of dairy cows with fatty liver. J. Dairy Sci. 2023, 106, 2700–2715. [Google Scholar] [CrossRef] [PubMed]
- Drackley, J.K.; Donkin, S.S.; Reynolds, C.K. Major advances in fundamental dairy cattle nutrition. J. Dairy Sci. 2006, 89, 1324–1336. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 7th ed.; W.H. Freeman: New York, NY, USA, 2017; p. 1308. [Google Scholar]
- De Koster, J.; Van den Broeck, W.; Hulpio, L.; Claeys, E.; Van Eetvelde, M.; Hermans, K.; Hostens, M.; Fievez, V.; Opsomer, G. Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. J. Dairy Sci. 2016, 99, 2319–2328. [Google Scholar] [CrossRef]
- Contreras, G.A.; Strieder-Barboza, C.; De Koster, J. Symposium review: Modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows. J. Dairy Sci. 2018, 101, 2737–2752. [Google Scholar] [CrossRef]
- White, H.M. ADSA Foundation Scholar Award: Influencing hepatic metabolism: Can nutrient partitioning be modulated to optimize metabolic health in the transition dairy cow? J. Dairy Sci. 2020, 103, 6741–6750. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, M.; Meng, M.; Li, Z.; Chang, G. Subclinical ketosis leads to lipid metabolism disorder by downregulating the expression of acetyl-coenzyme A acetyl-transferase 2 in dairy cows. J. Dairy Sci. 2023, 106, 9892–9909. [Google Scholar] [CrossRef]
- Gross, J.J. Hepatic Lipidosis in Ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 371–383. [Google Scholar] [CrossRef]
- Bobe, G.; Young, J.W.; Beitz, D.C. Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci. 2004, 87, 3105–3124. [Google Scholar] [CrossRef]
- Opsomer, G. Interaction between metabolic challenges and productivity in high yielding dairy cows. Jpn. J. Vet. Res. 2015, 63 (Suppl. S1), S1–S14. [Google Scholar]
- De Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Ebbert, J.O.; Jensen, M.D. Fat depots, free fatty acids and dyslipidemia. Nutrients 2013, 5, 498–508. [Google Scholar] [CrossRef]
- Locher, L.; Haussler, S.; Laubenthal, L.; Singh, S.P.; Winkler, J.; Kinoshita, A.; Kenéz, Á.; Rehage, J.; Huber, K.; Sauerwein, H.; et al. Effect of increasing body condition on key regulators of fat metabolism in subcutaneous adipose tissue depot and circulation of nonlactating dairy cows. J. Dairy Sci. 2015, 98, 1057–1068. [Google Scholar] [CrossRef]
- Hostens, M.; Fievez, V.; Leroy, J.L.M.R.; Van Ranst, J.; Vlaeminck, B.; Opsomer, G. The fatty acid profile of subcutaneous and abdominal fat in dairy cows with left displacement of the abomasum. J. Dairy Sci. 2012, 95, 3756–3765. [Google Scholar] [CrossRef] [PubMed]
- Tchkonia, T.; Thomou, T.; Zhu, Y.; Karagiannides, I.; Pothoulakis, C.; Jensen, M.D.; Kirkland, J.L. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013, 17, 644–656. [Google Scholar] [CrossRef]
- Melendez, P.; Poock, S.E.; Pithua, P.; Pinedo, P.; Manriquez, D.; Moore, S.G.; Neal, J.D.; Taylor, J.F. Genome-wide study to detect single nucleotide polymorphisms associated with visceral and subcutaneous fat deposition in Holstein dairy cows. Animal 2019, 13, 487–494. [Google Scholar] [CrossRef]
- Duffaut, C.; Zakaroff-Girard, A.; Bourlier, V.; Decaunes, P.; Maumus, M.; Chiotasso, P.; Sengenès, C.; Lafontan, M.; Galitzky, J.; Bouloumié, A. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Faty, A.; Ferre, P.; Commans, S. The acute phase protein Serum Amyloid A induces lipolysis and inflammation in human adipocytes through distinct pathways. PLoS ONE 2012, 7, e34031. [Google Scholar] [CrossRef]
- Ji, P.; Drackley, J.K.; Khan, M.J.; Loor, J.J. Inflammation- and lipid metabolism-related gene network expression in visceral and subcutaneous adipose depots of Holstein cows. J. Dairy Sci. 2014, 97, 3441–3448. [Google Scholar] [CrossRef]
- Ampem, G.; Azegrouz, H.; Bacsadi, A.; Balogh, L.; Schmidt, S.; Thuroczy, J.; Roszer, T. Adipose tissue macrophages in non-rodent mammals: A comparative study. Cell Tissue Res. 2016, 363, 461–478. [Google Scholar] [CrossRef]
- Contreras, G.A.; Kabara, E.; Brester, J.; Neuder, L.; Kiupel, M. Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum. J. Dairy Sci. 2015, 98, 6176–6187. [Google Scholar] [CrossRef] [PubMed]
- Zachut, M. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status. J. Proteome Res. 2015, 14, 2863–2871. [Google Scholar] [CrossRef]
- Kabara, E.; Sordillo, L.M.; Holcombe, S.; Contreras, G.A. Adiponectin links adipose tissue function and monocyte inflammatory responses during bovine metabolic stress. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Häussler, S.; Heinz, J.F.; Saremi, B.; Mielenz, B.; Rehage, J.; Dänicke, S.; Mielenz, M.; Sauerwein, H. Supplementation with conjugated linoleic acids extends the adiponectin deficit during early lactation in dairy cows. Gen. Comp. Endocrinol. 2014, 198, 13–21. [Google Scholar] [CrossRef]
- Saremi, B.; Sauerwein, H.; Danicke, S.; Mielenz, M. Technical note: Identification of reference genes for gene expression studies in different bovine tissues focusing on different fat depots. J. Dairy Sci. 2012, 95, 3131–3138. [Google Scholar] [CrossRef]
- Heid, I.M.; Jackson, A.U.; Randall, J.C.; Winkler, T.W.; Qi, L.; Steinthorsdottir, V.; Thorleifsson, G.; Zillikens, M.C.; Speliotes, E.K.; Mägi, R.; et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 2010, 42, 949–960. [Google Scholar] [CrossRef]
- Meier, S.; Verkerk, G.A.; Kay, J.K.; Macdonald, K.A.; Roche, J.R. Genetic ancestry modifies fatty acid concentrations in different adipose tissue depots and milk fat. J. Dairy Res. 2013, 80, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Giesy, S.L.; Yoon, B.; Currie, W.B.; Kim, J.W.; Boisclair, Y.R. Adiponectin deficit during the precarious glucose economy of early lactation in dairy cows. Endocrinology 2012, 153, 5834–5844. [Google Scholar] [CrossRef]
- Momke, S.; Sickinger, M.; Lichtner, P.; Doll, K.; Rehage, J.; Distl, O. Genome-wide association analysis identifies loci for left-sided displacement of the abomasum in German Holstein cattle. J. Dairy Sci. 2013, 96, 3959–3964. [Google Scholar] [CrossRef]
- McNeel, A.K.; Reiter, B.C.; Weigel, D.; Osterstock, J.; Di Croce, F.A. Validation of genomic predictions for wellness traits in US Holstein cows. J. Dairy Sci. 2017, 100, 9115–9124. [Google Scholar] [CrossRef]
- Novo, L.C.; Cavani, L.; Pinedo, P.; Melendez, P.; Penagaricano, F. Genomic Analysis of Visceral Fat Accumulation in Holstein Cows. Front. Genet. 2022, 12, 803216. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.P.; Lopes, P.A.; Costa, A.S.; Martins, S.V.; Santos, N.C.; Prates, J.A.; Moura, T.F.; Soveral, G. Differential mesenteric fat deposition in bovines fed on silage or concentrate is independent of glycerol membrane permeability. Animal 2011, 5, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Angeli, E.; Barcarolo, D.; Durante, L.; Santiago, G.; Matiller, V.; Rey, F.; Ortega, H.; Hein, G.J. Effect of precalving body condition score on insulin signaling and hepatic inflammatory state in grazing dairy cattle. Domest. Anim. Endocrinol. 2021, 76, 106621. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Leal Yepes, F.A.; Wakshlag, J.J.; Behling-Kelly, E.; McArt, J.A.A. The effect of different treatments for early-lactation hyperketonemia on liver triglycerides, glycogen, and expression of key metabolic enzymes in dairy cattle. J. Dairy Sci. 2018, 101, 1626–1637. [Google Scholar] [CrossRef] [PubMed]
- Fry, M.M.; Yao, B.; Rios, C.; Wong, C.; Mann, S.; McArt, J.; Nydam, D.; Yepes, F.L.; Viesselmann, L.; Geick, A.; et al. Diagnostic performance of cytology for assessment of hepatic lipid content in dairy cattle. J. Dairy Sci. 2018, 101, 1379–1387. [Google Scholar] [CrossRef]
- Angeli, E.; Trionfini, V.; Gareis, N.C.; Matiller, V.; Huber, E.; Rey, F.; Salvetti, N.; Ortega, H.; Hein, G.; Angeli, E.; et al. Protein and gene expression of relevant enzymes and nuclear receptor of hepatic lipid metabolism in grazing dairy cattle during the transition period. Res. Vet. Sci. 2019, 123, 223–231. [Google Scholar] [CrossRef]
- McCarthy, M.M.; Piepenbrink, M.S.; Overton, T.R. Associations between hepatic metabolism of propionate and palmitate in liver slices from transition dairy cows. J. Dairy Sci. 2015, 98, 7015–7024. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, L.; Yang, W.; Wang, Z. Exploration of serum sensitive biomarkers of fatty liver in dairy cows. Sci. Rep. 2018, 8, 13574. [Google Scholar] [CrossRef]
- Caixeta, L.S.; Giesy, S.L.; Krumm, C.S.; Perfield, J.W., 2nd; Butterfield, A.; Boisclair, Y.R. Fibroblast growth factor-21 (FGF21) administration to early-lactating dairy cows. II. Pharmacokinetics, whole-animal performance, and lipid metabolism. J. Dairy Sci. 2019, 102, 11597–11608. [Google Scholar] [CrossRef]
- Caputo Oliveira, R.; Erb, S.J.; Pralle, R.S.; Holdorf, H.T.; Seely, C.R.; White, H.M. Postpartum supplementation with fermented ammoniated condensed whey altered nutrient partitioning to support hepatic metabolism. J. Dairy Sci. 2020, 103, 7055–7067. [Google Scholar] [CrossRef]
- Vogel, L.; Gnott, M.; Kröger-Koch, C.; Dannenberger, D.; Tuchscherer, A.; Tröscher, A.; Kienberger, H.; Rychlik, M.; Starke, A.; Bachmann, L.; et al. Effects of abomasal infusion of essential fatty acids together with conjugated linoleic acid in late and early lactation on performance, milk and body composition, and plasma metabolites in dairy cows. J. Dairy Sci. 2020, 103, 7431–7450. [Google Scholar] [CrossRef]
- Bollatti, J.M.; Zenobi, M.G.; Barton, B.A.; Staples, C.R.; Santos, J.E.P. Responses to rumen-protected choline in transition cows do not depend on prepartum body condition. J. Dairy Sci. 2020, 103, 2272–2286. [Google Scholar] [CrossRef]
- Leal Yepes, F.A.; Mann, S.; Overton, T.R.; Behling-Kelly, E.; Nydam, D.V.; Wakshlag, J.J. Hepatic effects of rumen-protected branched-chain amino acids with or without propylene glycol supplementation in dairy cows during early lactation. J. Dairy Sci. 2021, 104, 10324–10337. [Google Scholar] [CrossRef]
- Garcia-Roche, M.; Talmon, D.; Canibe, G.; Astessiano, A.L.; Mendoza, A.; Cassina, A.; Quijano, C.; Carriquiry, M. Hepatic metabolism of grazing cows of two Holstein strains under two feeding strategies with different levels of pasture inclusion. PLoS ONE 2023, 18, e0290551. [Google Scholar] [CrossRef]
- Zhu, Y.; Lei, L.; Wang, X.; Jiang, Q.; Loor, J.J.; Kong, F.; Chen, L.; Li, J.; Zhao, C.; Liu, M.; et al. Low abundance of insulin-induced gene 1 contributes to SREBP-1c processing and hepatic steatosis in dairy cows with severe fatty liver. J. Dairy Sci. 2023, 106, 5626–5635. [Google Scholar] [CrossRef]
- Kalaitzakis, E.; Panousis, N.; Roubies, N.; Giadinis, N.; Kaldrymidou, E.; Georgiadis, M.; Karatzias, H. Clinicopathological evaluation of downer dairy cows with fatty liver. Can. Vet. J. 2010, 51, 615–622. [Google Scholar]
- Melendez, P.; Whitney, M.; Williams, F.; Pinedo, P.; Manriquez, D.; Moore, S.G.; Lucy, M.; Pithua, P.; Poock, S. Technical note: Evaluation of fine needle aspiration cytology for the diagnosis of fatty liver in dairy cattle. J. Dairy Sci. 2018, 101, 4483–4490. [Google Scholar] [CrossRef]
- Swecker, W.S., Jr. Trace mineral feeding and assessment. Vet. Clin. N. Am. Food Anim. Pract. 2014, 30, 671–688. [Google Scholar] [CrossRef]
- Haudum, A.; Starke, A.; Beyerbach, M.; Wohlsein, P.; Rehage, J. Ultrasonographic assessment of liver dimensions in dairy cows with different hepatic triacylglycerol content. J. Anim. Sci. 2011, 89, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Rafia, S.; Taghipour-Bazargani, T.; Asadi, F.; Vajhi, A.; Bokaie, S. Periparturition alterations to liver ultrasonographic echo-texture and fat mobilization parameters in clinically healthy Holstein cows. Vet. Res. Commun. 2011, 35, 531–540. [Google Scholar] [CrossRef]
- Starke, A.; Schmidt, S.; Haudum, A.; Scholbach, T.; Wohlsein, P.; Beyerbach, M.; Rehage, J. Evaluation of portal blood flow using transcutaneous and intraoperative Doppler ultrasonography in dairy cows with fatty liver. J. Dairy Sci. 2011, 94, 2964–2971. [Google Scholar] [CrossRef]
- Weijers, G.; Starke, A.; Thijssen, J.M.; Haudum, A.; Wohlsein, P.; Rehage, J.; de Korte, C.L. Transcutaneous vs. intraoperative quantitative ultrasound for staging bovine hepatic steatosis. Ultrasound Med. Biol. 2012, 38, 1404–1413. [Google Scholar] [CrossRef]
- Grzybowska, D.; Sobiech, P.; Tobolski, D. Ultrasonographic image of fatty infiltration of the liver correlates with selected biochemical parameters and back fat thickness of periparturient Holstein-Friesian cows. Pol. J. Vet. Sci. 2023, 26, 723–732. [Google Scholar] [CrossRef]
- Hoff, B.; Cote, J.; Steen, A. Fine needle aspiration and liver cytology—A simple method for diagnosis and prognosis of fatty liver in cattle. Bov. Pract. 1996, 30, 53–55. [Google Scholar] [CrossRef]
- Weiss, D.J.; Moritz, A. Liver cytology. Vet. Clin. N. Am. Small Anim. Pract. 2002, 32, 1267–1291. [Google Scholar] [CrossRef]
- Komemushi, A.; Kanno, S.; Suzuki, S.; Sano, A.; Kariya, S.; Nakatani, M.; Tanigawa, N. Evaluation of an aspiration-type semiautomatic cutting biopsy needle. Minim. Invasive Ther. Allied Technol. 2015, 24, 250–252. [Google Scholar] [CrossRef]
- Gross, J.J.; Schwarz, F.J.; Eder, K.; van Dorland, H.A.; Bruckmaier, R.M. Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction. J. Dairy Sci. 2013, 96, 5008–5017. [Google Scholar] [CrossRef]
- Crookenden, M.A.; Walker, C.G.; Peiris, H.; Koh, Y.; Heiser, A.; Loor, J.J.; Moyes, K.; Murray, A.; Dukkipati, V.; Kay, J.; et al. Short communication: Proteins from circulating exosomes represent metabolic state in transition dairy cows. J. Dairy Sci. 2016, 99, 7661–7668. [Google Scholar] [CrossRef]
- Tobaruela-Resola, A.L.; Riezu-Boj, J.I.; Milagro, F.I.; Mogna-Pelaez, P.; Herrero, J.I.; Elorz, M.; Benito-Boillos, A.; Tur, J.A.; Martínez, J.A.; Abete, I.; et al. Multipanel Approach including miRNAs, Inflammatory Markers, and Depressive Symptoms for Metabolic Dysfunction-Associated Steatotic Liver Disease Diagnosis during 2-Year Nutritional Intervention. Nutrients 2024, 16, 1547. [Google Scholar] [CrossRef]
- Matsumoto, K.; Ohsugi, Y.; Tayama, C.; Hayashi, M.; Kato, Y.; Ohashi, M.; Chiba, M. Serum miR-29 is increased in mice with early liver fibrosis. Exp. Ther. Med. 2024, 28, 285. [Google Scholar] [CrossRef]
- Winter, E.; Cisilotto, J.; Goetten, A.L.F.; Veiga, A.; Ramos, A.T.; Zimermann, F.C.; Reck, C.; Creczynski-Pasa, T.B. MicroRNAs as serum biomarker for Senecio brasiliensis poisoning in cattle. Environ. Toxicol. Pharmacol. 2022, 94, 103906. [Google Scholar] [CrossRef]
- Kornfeld, J.W.; Baitzel, C.; Konner, A.C.; Nicholls, H.T.; Vogt, M.C.; Herrmanns, K.; Scheja, L.; Haumaitre, C.; Wolf, A.M.; Knippschild, U.; et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013, 494, 111–115. [Google Scholar] [CrossRef]
- Ioannidis, J.; Donadeu, F.X. Comprehensive analysis of blood cells and plasma identifies tissue-specific miRNAs as potential novel circulating biomarkers in cattle. BMC Genom. 2018, 19, 243. [Google Scholar] [CrossRef]
- Pralle, R.S.; Erb, S.J.; Holdorf, H.T.; White, H.M. Greater liver PNPLA3 protein abundance in vivo and in vitro supports lower triglyceride accumulation in dairy cows. Sci. Rep. 2021, 11, 2839. [Google Scholar] [CrossRef]
- Ghaffari, M.H.; Sanz-Fernandez, M.V.; Sadri, H.; Sauerwein, H.; Schuchardt, S.; Martín-Tereso, J.; Doelman, J.; Daniel, J.-B.; Ghaffari, M.; Sanz-Fernandez, M.; et al. Longitudinal characterization of the metabolome of dairy cows transitioning from one lactation to the next: Investigations in the liver. J. Dairy Sci. 2024, 107, 4000–4016. [Google Scholar] [CrossRef]
- Zhang, K.X.; Li, K.; Li, Z.H.; Liu, X.C.; Li, M.M.; Jiang, S.; Fan, R.-F.; Yan, Z.G. Serum macroelements and microelements levels in periparturient dairy cows in relation to fatty liver diseases. BMC Vet. Res. 2024, 20, 295. [Google Scholar] [CrossRef]
- Pinedo, P.; Melendez, P. Liver Disorders Associated with Metabolic Imbalances in Dairy Cows. Vet. Clin. N. Am. Food Anim. Pract. 2022, 38, 433–446. [Google Scholar] [CrossRef]
- Chen, Y.; Hostens, M.; Nielen, M.; Ehrlich, J.; Steeneveld, W. Herd level economic comparison between the shape of the lactation curve and 305 d milk production. Front. Vet. Sci. 2022, 9, 997962. [Google Scholar] [CrossRef]
- Pollott, G.E. A biological approach to lactation curve analysis for milk yield. J. Dairy Sci. 2000, 83, 2448–2458. [Google Scholar] [CrossRef]
- Krattenmacher, N.; Thaller, G.; Tetens, J. Analysis of the genetic architecture of energy balance and its major determinants dry matter intake and energy-corrected milk yield in primiparous Holstein cows. J. Dairy Sci. 2019, 102, 3241–3253. [Google Scholar] [CrossRef]
- Lucy, M.C.; Verkerk, G.A.; Whyte, B.E.; Macdonald, K.A.; Burton, L.; Cursons, R.T.; Roche, J.; Holmes, C.W. Somatotropic axis components and nutrient partitioning in genetically diverse dairy cows managed under different feed allowances in a pasture system. J. Dairy Sci. 2009, 92, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; McArt, J.A.A. Hyperketonemia: A Marker of Disease, a Sign of a High-Producing Dairy Cow, or Both? Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 307–324. [Google Scholar] [CrossRef] [PubMed]
- Karacaören, B.; Jaffrézic, F.; Kadarmideen, H. Genetic parameters for functional traits in dairy cattle from random regression models. J. Dairy Sci. 2006, 89, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Liinamo, A.; Mäntysaari, P.; Mäntysaari, E. Short communication: Genetic parameters for feed intake, production, and extent of negative energy balance in Nordic Red dairy cattle. J. Dairy Sci. 2012, 95, 6788–6794. [Google Scholar] [CrossRef]
- Friggens, N.; Berg, P.; Theilgaard, P.; Korsgaard, I.; Ingvartsen, K.; Løvendahl, P.; Jensen, P. Breed and parity effects on energy balance profiles through lactation: Evidence of genetically driven body energy change. J. Dairy Sci. 2007, 90, 5291–5305. [Google Scholar] [CrossRef]
- Buttchereit, N.; Stamer, E.; Junge, W.; Thaller, G. Short communication: Genetic relationship among daily energy balance, feed intake, body condition score, and fat to protein ratio of milk in dairy cows. J. Dairy Sci. 2011, 94, 1586–1591. [Google Scholar] [CrossRef]
- Bauman, D.; Currie, E. Partitioning of nutrients during pregnancy and lactation. J. Dairy Sci. 1980, 63, 1514–1529. [Google Scholar] [CrossRef]
- Van Saun, R.J. Ruminant metabolic diseases: Perturbed Homeorhesis. Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 185–201. [Google Scholar] [CrossRef]
- Baird, G. Aspects of ruminant intermediary metabolism in relation to ketosis. Biochem. Soc. Trans. 1977, 5, 819–827. [Google Scholar] [CrossRef]
- Baird, G. Lactation, pregnancy and metabolic disorders in the ruminant. Proc. Nutr. Soc. 1981, 40, 115–120. [Google Scholar] [CrossRef]
- Lucy, M. Mechanisms linking the somatotropic axis with insulin: Lessons from the postpartum dairy cow. N. Z. Soc. Anim. Prod. 2004, 64, 19–23. [Google Scholar]
- Lucy, M.; Jiang, H.; Kobayashi, Y. Changes in the somatotropic axis associated with the initiation of lactation. J. Dairy Sci. 2001, 84 (Suppl.), E113–E119. [Google Scholar] [CrossRef]
- Barclay, J.L.; Nelson, C.N.; Ishikawa, M.; Murray, L.A.; Kerr, L.M.; McPhee, T.R.; Powell, E.E.; Waters, M.J. GH-dependent STAT5 signaling plays an important role in hepatic lipid metabolism. Endocrinology 2011, 152, 181–192. [Google Scholar] [CrossRef]
- Martens, H. The lipidosis of the liver of dairy cows: Part 1-Role of insulin and the Growth Hormone-IGF-1 axis. Tieraerztl. Prax. Grosstiere/Nutztiere 2023, 51, 97–108. [Google Scholar] [CrossRef]
- Martens, H. Invited review: Increasing milk yield and negative energy balance: A gordian knot for dairy cows? Animals 2023, 13, 3097. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Shen, T.; Wang, H.; Qin, X.; Xing, D.; Ye, Q.; Shi, Z.; Fang, Z.; Zhu, Y.; Yang, Y.; et al. Adaptations of hepatic lipid metabolism and mitochondria in dairy cows with mild fatty liver. J. Dairy Sci. 2018, 101, 9544–9558. [Google Scholar] [CrossRef]
- Zhang, J.; Gaowa, N.; Wang, Y.; Li, H.; Cao, Z.; Yang, H.; Zhang, X.; Li, S. Complementary hepatic metabolomics and proteomics reveal the adaptive mechanisms of dairy cows to the transition period. J. Dairy Sci. 2023, 106, 2071–2088. [Google Scholar] [CrossRef]
Reference | Animals | Mean TG 1 Concentration Wet Basis, (g/100 g) | DIM 2 |
---|---|---|---|
Mann et al. [36] | Control Holstein cows | 10.6 | <9 |
Treatment Holstein cows | 11.9 | ||
Shen et al. [40] | Control Holstein Cows | 2.6 | 22 |
Fatty Liver Holstein cows | 10.5 | ||
Fry et al. [37] Holstein cows | 26% of cows | <5 | <10 |
34% of cows | 5–10 | ||
8% of cows | 10–15 | ||
10% of cows | 15–20 | ||
22% of cows | >20 | ||
Caixeta et al. [41] | Control Holstein cows | 7 | 23 |
Treatment Holstein cows | 3.1 | ||
Angeli et al. [38] Holstein cows | Prepartum | 4.5 | −30 |
Postpartum | 17.5 | 4 | |
Postpartum | 11.5 | 14 | |
Caputo Oliveira et al. [42] | Control Holstein cows | 12 | 14 |
Treatment Holstein cows | 8 | ||
Vogel et al. [43] Holstein cows | Prepartum cows | 0.5 | −21 |
Control cows | 6.8 | +28 | |
Treatment cows | 4.5 | +28 | |
Bollatti et al. [44] | Control Holstein cows | 3.41 | <21 |
Treatment Holstein cows | 4.05 | ||
Leal-Yepes et al. [45] Holstein cows | Control | 8.4 | 5 |
Control | 9.2 | 21 | |
Treatment | 5.1 | 5 | |
Treatment | 5.8 | 21 | |
Angeli et al. [35] Holstein cows | LBCS 3 | 5.4 | −14 |
HBCS 4 | 6.5 | −14 | |
LBCS | 17.3 | 4 | |
HBCS | 16.5 | 4 | |
LBCS | 15.5 | 21 | |
HBCS | 18.0 | 21 | |
Garcia-Roche et al. [46] | Maximum pasture (M) vs. Fixed pasture (F) | 4.3 vs. 4.0 prepartum NZ vs US | −45 |
4.5 vs. 4.0 prepartum M vs F | |||
New Zealand (NZ) vs. US Holstein (US) | 8.2 vs. 8.0 postpartum NZ vs US | ||
11.1 vs. 5.2 postpartum M vs F | 21 | ||
Zhu et al. [47] Holstein cows | Normal cows BCS:3.6 | 0.85 ± 0.03 | 4–12 |
Severe fatty liver BCS:3.8 | 11.9 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melendez, P.; Pinedo, P. Update on Fatty Liver in Dairy Cattle with Major Emphasis on Epidemiological Patterns, Pathophysiology in Relationship to Abdominal Adiposity, and Early Diagnosis. Dairy 2024, 5, 672-687. https://doi.org/10.3390/dairy5040050
Melendez P, Pinedo P. Update on Fatty Liver in Dairy Cattle with Major Emphasis on Epidemiological Patterns, Pathophysiology in Relationship to Abdominal Adiposity, and Early Diagnosis. Dairy. 2024; 5(4):672-687. https://doi.org/10.3390/dairy5040050
Chicago/Turabian StyleMelendez, Pedro, and Pablo Pinedo. 2024. "Update on Fatty Liver in Dairy Cattle with Major Emphasis on Epidemiological Patterns, Pathophysiology in Relationship to Abdominal Adiposity, and Early Diagnosis" Dairy 5, no. 4: 672-687. https://doi.org/10.3390/dairy5040050
APA StyleMelendez, P., & Pinedo, P. (2024). Update on Fatty Liver in Dairy Cattle with Major Emphasis on Epidemiological Patterns, Pathophysiology in Relationship to Abdominal Adiposity, and Early Diagnosis. Dairy, 5(4), 672-687. https://doi.org/10.3390/dairy5040050