Chlorine Disinfection Byproducts: A Public Health Concern Associated with Dairy Food Contamination
Abstract
:1. Introduction
2. Chlorine Disinfectant Byproducts in Water Supplies
Category | Disinfectant Byproduct | Toxicity | Exposure Risk |
---|---|---|---|
Oxyhalides | Chlorite (ClO2−), chlorate (ClO3−) | Erythrocyte toxicity, headache, dizziness, and methemoglobinemia. Ingestion may produce gastrointestinal distress, and kidney toxicity [24], reproductive, neurodevelopmental, and endocrine disruptors [20]. | Ingestion and inhalation exposure. |
Trihalomethanes (THMs) | Chloroform, Bromoform, Dibromochloromethane (DBCM), Bromodichloromethane (BDCM) | Probable carcinogens, acute exposure can lead to adverse health effects, reproductive and developmental issues, headaches, dizziness, central nervous system (CNS) toxicity [25], birth defects, low birth weight, miscarriages, stomach and colorectal cancers [26], neurotoxicity, hepatotoxicity, nephrotoxicity, and reproductive toxicity | Volatile, can evaporate from water, exposure through ingestion, inhalation, skin, risk associated with drinking, cooking, domestic exposure, and swimming pools [25]; MCL of 100 μg/L applies [19]. |
Haloacetic acids (HAAs) | Monochloro-, dichloro-, and trichloro-acetic acid, and mono- and dibromo-acetic acid | Carcinogenicity, spontaneous abortions, and birth defects [27]. | Non-volatile, ingestion is the main route of exposure; MCL of 60 μg/L applies [19]. |
Nitrogenous DBPs | Haloacetonitrile (HANs), haloacetamides (HAcAms) and dimethylnitrosamine (NDMA) | Cytotoxicity, genotoxicity in vitro, kidney toxicity, renal tubular swelling, and glomerulus hemorrhage in animal models [7]. | Not regulated in drinking water. |
2.1. Chlorine Disinfection in Dairy Food Production
2.2. Disinfection Byproducts Detected in Dairy Food
2.3. Toxicology Risks of DBPs
Outcome | Factor/Variable | Comment |
---|---|---|
DBP formation | Ph | Formation of DBPs is pH-dependent; pH impacts the type and amount of DBPs, THMs concentration decreases, and HAAs increase as pH decreases. More acidic pHs produce less chloroform [52], and increasing pH leads to the formation of THMs (pH 9.5). |
Temperature | Increasing temperature increases DBP formation, e.g., an increase from 10 to 30 °C produces a 15–25% increase. | |
Presence of organic material and industrial contaminants | THMs and HAAs are produced from reactions of humic and fulvic substances with chlorine [52]. Humic acids are more reactive than fulvic acids. | |
UV in the presence of bromide and chlorine | Concentrations of THMs, HAAs, and brominated DBPs increase in the presence of TOC and UV at 254 nm [61,62]. | |
Chlorine concentration | Production of THMs and HAAs increased with the increase of chlorine dosage, e.g., 20 µg/L THMs produced with 3 mg/L chlorine vs. 10 µg/L at 0.5 mg/L chlorine [63]. | |
Contact time | Rapid formation in <5 h, 90% formed within 24 h. | |
Location | Impacted by geographical location, urban industrial activity, and rural farming activity. | |
DBP mammalian toxicity | Lipid solubility | THMs are lipid soluble, brominated, and have increased lipophilicity [8]; chloroform is lipid soluble, and HAAs are water soluble. THMs bioaccumulate in fatty tissue. |
Presence of nitrogen | Nitrogen-containing DBPs, i.e., N-nitrosamines, are more genotoxic and cytotoxic [36]. | |
Pharmacokinetics—ADME | Cytochrome P450 (CYP2E1), glutathione S-transferase (GSTZ1 and GSTT1) metabolize THMs, reducing toxicity. Polymorphisms in these genes impact toxicity [41]. | |
Half-life | Half-life of TCAA is 2.1 to 6.3 days, BDCM half-life of 0.45–0.63 min, THMs have half-lives of minutes to hours [42]. | |
Volatility | HAAs are the main non-volatile DBPs [37], while THMs are volatile. | |
Endocrine-disrupting action | HAAs have weak oestrogenic and androgenic activity. | |
Exposure route | Bathing and swimming showed a considerably increased risk in a bladder cancer study [46]. |
3. Chlorine-Associated Antimicrobial Resistance
Pathogen | Antibiotic | Mechanism of Resistance |
---|---|---|
Twenty-two genera of bacteria, including E. coli *, Pseudomonas, Burkholderia, | Tetracycline, sulfamethoxazole, ciprofloxacin, and amoxicillin [89]. | Chemical stress, resistance genes, intrinsic traits, e.g., spore forming [89]. |
Salmonella Enteritidis, and S. Typhimurium **. | Ceftiofur, tetracycline, ciprofloxacin, and florfenicol. | Eflux pump over-expression [90]. |
Acinetobacter baumannii *, Pseudomonas aeruginosa ** [66]. | Chloramphenicol, sulfonamides, and β-lactam antibiotics. | Expression of efflux pumps and activation of ARGs [66], biofilms in P. aeruginosa [86]. |
P. aeruginosa **. | Ceftazidime, chloramphenicol, and ampicillin. | Chlorine tolerance and overexpression of the MexEF-OprN efflux pump [82]. |
E. coli, S. Aberdeen, P. aeruginosa and Enterococcus faecalis [72]. | Ampicillin, kanamycin, and tetracycline. | Transfer of RP4 plasmid from chlorine-treated cells to chlorine-injured or tolerant bacteria [72]. |
P. aeruginosa | Aminoglycosides carbapenems resistance | intI1 gene, chlorine tolerance [78] blaOXA−58 and blaOXA−78 [78]. |
K. pneumoniae | carbapenems resistance | disinfectant resistance genes qacEΔ1 and cepA present in MDR species [70]. |
A. baumannii, P. aeruginosa and K. pneumoniae | Cephalosporins | CepA gene biocidal resistance [68]. |
A. baumannii | Chloramphenicol, sulfonamides, and β-lactam antibiotics. | Chlorine increases the expression of efflux pumps and activates ARGs [66]. |
E. coli | Amoxicillin and ciprofloxacin | DBP induced gene mutations in proS (prolyl-tRNA synthetase) and gyrA (DNA gyrase) [87]. |
Alternative Disinfection Modalities for the Dairy Industry
4. Conclusions
Funding
Conflicts of Interest
References
- Adefisoye, M.A.; Olaniran, A.O. Does Chlorination Promote Antimicrobial Resistance in Waterborne Pathogens? Mechanistic Insight into Co-Resistance and Its Implication for Public Health. Antibiotics 2022, 11, 564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malka, S.K.; Park, M.H. Fresh Produce Safety and Quality: Chlorine Dioxide’s Role. Front. Plant Sci. 2022, 12, 775629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Fang, Z.; Zhou, X. Health risk assessment via ingestion of disinfection by-products in drinking water. Sci. Rep. 2025, 15, 1793. [Google Scholar] [CrossRef]
- Shao, B.; Shen, L.; Liu, Z.; Tang, L.; Tan, X.; Wang, D.; Zeng, W.; Pan, Y.; Zhang, X.; Ge, L.; et al. Disinfection byproducts formation from emerging organic micropollutants during chlorine-based disinfection processes. Chem. Eng. J. 2023, 455, 140476. [Google Scholar] [CrossRef]
- Nzereogu, S.K.; Ekunke, O.V.; Orjiewulu, V.C.; Dike, J.O.; Bello, A.R.; Akindele, F.D.; Muraina, K.M. A Critical Review on Emerging Organic Micro Pollutants: Fate and Treatment Methods. Int. J. Adv. Eng. Manag. 2024, 6, 239–258, ISSN: 2395-5252. [Google Scholar]
- Tak, S.; Vellanki, B.P. Natural organic matter as precursor to disinfection byproducts and its removal using conventional and advanced processes: State of the art review. J. Water Health 2018, 16, 681–703. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Lu, Y.; Zhu, X.; Wu, Q.; Jin, L.; Jin, Z.; Wei, X.; Ma, G.; Yu, H. Cytotoxicity of nitrogenous disinfection byproducts: A combined experimental and computational study. Sci. Total Environ. 2023, 856, 159273. [Google Scholar] [CrossRef]
- De Castro Medeiros, L.; de Alencar, F.L.S.; Navoni, J.A.; de Araujo, A.L.C.; do Amaral, V.S. Toxicological aspects of trihalomethanes: A systematic review. Environ. Sci. Pollut. Res. 2019, 26, 5316–5332. [Google Scholar] [CrossRef]
- Wang, T.; Deng, L.; Tan, C.; Hu, J.; Singh, R.P. Comparative analysis of chlorinated disinfection byproducts formation from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination. Sci. Total Environ. 2024, 927, 172200. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Evlampidou, I.; Ibrahim, F.; Donat-Vargas, C.; Valentin, A.; Tugulea, A.M. Global assessment of chemical quality of drinking water: The case of trihalomethanes. Water Res. 2023, 230, 119568. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, K.; Xiao, T.; Yang, J.; Sun, Y.; Yang, C.; Dai, H.; Wang, X. Exposure to disinfection by-products and risk of cancer: A systematic review and dose-response meta-analysis. Ecotoxicol. Environ. Saf. 2024, 270, 115925. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.J.; DellaValle, C.T.; Weyer, P.J.; Cantor, K.P.; Freeman, L.E.B. Ingested nitrate, disinfection by-products, and risk of colon and rectal cancers in the Iowa Women’s Health Study cohort. Environ. Int. 2019, 126, 242–251. [Google Scholar] [CrossRef]
- Ding, W.; Jin, W.; Cao, S.; Zhou, X.; Wang, C.; Jiang, Q.; Hua, H.; Tu, R.; Han, S.F.; Wang, Q. Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Res. 2019, 160, 339–349. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Antimicrobial Resistance Profile of Zoonotic Clinically Relevant WHO Priority Pathogens. Pathogens 2024, 13, 1006. [Google Scholar] [CrossRef] [PubMed]
- Rezoka, S.; Melegy, G.; Elgammal, M. Removal of natural organic matter and Trihalomethanes from drinking water plants using modified polymer. Research Square 2024. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Wang, G.J.; Zang, S.; Qiao, Y.; Tao, H.F.; Li, Q.; Zhang, H.; Wang, X.S.; Ma, J. Halogenated aliphatic and phenolic disinfection byproducts in chlorinated and chloraminated dairy wastewater: Occurrence and ecological risk evaluation. J. Hazard. Mater. 2024, 465, 132985. [Google Scholar] [CrossRef]
- Masoud, M.S.; Ismail, A.M.; El-Hoshy, M.M. Kinetics and thermodynamics of the formation of trihalomethanes. Appl. Water Sci. 2019, 9, 99. [Google Scholar] [CrossRef]
- Sharma, N.; Mohapatra, S.; Padhye, L.P.; Mukherji, S. Role of precursors in the formation of trihalomethanes during chlorination of drinking water and wastewater effluents from a metropolitan region in western India. J. Water Process Eng. 2021, 40, 101928. [Google Scholar] [CrossRef]
- The Council of The European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast); The Council of The European Union: Brussels, Belgium, 2020. [Google Scholar]
- Al-Otoum, F.; Al-Ghouti, M.A.; Ahmed, T.A.; Abu-Dieyeh, M.; Ali, M. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar. Chemosphere 2016, 164, 649–656. [Google Scholar] [CrossRef]
- Twomey, L.; Furey, A.; O’Brien, B.; Beresford, T.P.; Reid, P.; Danaher, M.; Moloney, M.; Madende, M.; Gleeson, D. Chlorate Levels in Dairy Products Produced and Consumed in Ireland. Foods 2023, 12, 2566. [Google Scholar] [CrossRef]
- WHO. 2024. Available online: https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/monitoring-and-evidence/wash-monitoring (accessed on 4 March 2025).
- SDG. 2024. Available online: https://sdgs.un.org/topics/water-and-sanitation (accessed on 6 March 2025).
- OEHHA. 2014. Available online: https://oehha.ca.gov/water/proposed-action-level-chlorate (accessed on 6 March 2025).
- Jafari, N.; Behnami, A.; Ghayurdoost, F.; Solimani, A.; Mohammad, M.; Pourakbar, M.; Abdolahnejad, A. Analysis of THM formation potential in drinking water networks: Effects of network age, health risks, and seasonal variations in northwest of Iran. Heliyon 2024, 10, 34563. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Hao, Y.; Chen, L.; Zhu, J.; Huang, C.; Zhang, X. Occurrence and multi-pathway health risk assessment of trihalomethanes in drinking water of wuxi, China. Chemosphere 2023, 335, 139085. [Google Scholar] [CrossRef]
- Cardador, M.J.; Gallego, M.; Cabezas, L.; Fernandez-Salguero, J. Detection of regulated disinfection by-products in cheeses. Food Chem. 2016, 204, 306–313. [Google Scholar] [CrossRef]
- Pant, K.J.; Cotter, P.D.; Wilkinson, M.G.; Sheehan, J.J. Towards sustainable Cleaning-in-Place (CIP) in dairy processing: Exploring enzyme-based approaches to cleaning in the Cheese industry. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3602–3619. [Google Scholar] [CrossRef]
- Biagnin, D.; Lazzaroni, C. Eutrophication risk arising from intensive dairy cattle rearing systems and assessment of the potential effect of mitigation strategies. Agric. Ecosyst. Environ. 2018, 266, 76–83. [Google Scholar] [CrossRef]
- Goddard, R. An Investigation of the Impacts of a Dairy Industry Waste on River Water Quality and the Appropriateness of Current Monitoring Approaches and Regulation. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2022. Available online: https://pearl.plymouth.ac.uk/gees-theses/175 (accessed on 5 March 2025).
- McCarthy, W.P.; O’Callaghan, T.F.; Danahar, M.; Gleeson, D.; O’Connor, C.; Fenelon, M.A.; Tobin, J.T. Chlorate and other oxychlorine contaminants within the dairy supply chain. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1561–1575. [Google Scholar] [CrossRef]
- Twomey, L.; Furey, A.; O’Brien, B.; Beresford, T.; Reid, P.; Danaher, M.; Gleeson, D. Chlorate and Trichloromethane Residues in Bulk Tank Milk Produced in the Republic of Ireland before and after Chlorine was Prohibited as a Cleaning Agent on Farms. Dairy 2024, 5, 287–294. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Biocidal Resistance in Clinically Relevant Microbial Species: A Major Public Health Risk. Pathogens 2021, 10, 598. [Google Scholar] [CrossRef]
- Nobile, M.; Danesi, L.; Pavlovic, R.; Mosconi, G.; Di Cesare, F.; Arioli, F.; Villa, R.; Chiesa, L.M.; Panseri, S. Presence of Chlorate and Perchlorate Residues in Raw Bovine Milk from Italian Farms. Foods 2022, 11, 2741. [Google Scholar] [CrossRef]
- Ryan, S.; Gleeson, D.; Jordan, K.; Furey, A.; O’Sullivan, K.; O’Brien, B. Strategy for the reduction of Trichloromethane residue levels in farm bulk milk. J. Dairy Res. 2013, 80, 184–189. [Google Scholar] [CrossRef]
- Xue, R. Drinking Water Disinfection By-Products Detection, Formation and the Precursors Removal Study. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2017; p. 2752. Available online: https://scholarsmine.mst.edu/doctoral_dissertations/2752 (accessed on 7 March 2025).
- Cardador, M.J.; Gallego, M. Origin of haloacetic acids in milk and dairy products. Food Chem. 2016, 196, 750–756. [Google Scholar] [CrossRef]
- Li, L.; Gao, C.; Chu, X. Contamination Status and Sources of Chlorate and Perchlorate in Infant Formula Milk Powder. J. Dairy Sci. Technol. 2023, 46, 28–34. [Google Scholar]
- Wu, T.; Karimi-Maleh, H.; Dragoi, E.N.; Puri, P.; Zhang, D.; Zhang, Z. Traditional methods and biosensors for detecting disinfection by-products in water: A review. Environ. Res. 2023, 237, 116935. [Google Scholar] [CrossRef] [PubMed]
- Padhi, R.K.; Subramanian, S.; Mohanty, A.K.; Satpathy, K.K. Comparative assessment of chlorine reactivity and trihalomethanes formation potential of three different water sources. J. Water Process Eng. 2019, 29, 100769. [Google Scholar] [CrossRef]
- Yang, P.; Zeng, Q.; Cao, W.C.; Wang, Y.X.; Huang, Z.; Li, J.; Liu, C.; Lu, W.Q. Interactions between CYP2E1, GSTZ1 and GSTT1 polymorphisms and exposure to drinking water trihalomethanes and their association with semen quality. Environ. Res. 2016, 147, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, Y.X.; Liu, C.; Chen, Y.J.; Lu, W.Q.; Messerlian, C. Trimester-Specific Blood Trihalomethane and Urinary Haloacetic Acid Concentrations and Adverse Birth Outcomes: Identifying Windows of Vulnerability during Pregnancy. Environ. Health Perspect. 2020, 128, 107001. [Google Scholar] [CrossRef]
- Xie, B.; Chen, J.; Kai, J. Association between drinking water disinfection byproducts exposure and human bladder cancer: A time-updated meta-analysis of trihalomethanes. J. Hazard. Mater. 2025, 490, 137833. [Google Scholar] [CrossRef]
- Manasfi, T.; Coulomb, B.; Boudenne, J.L. Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: An overview. Int. J. Hyg. Environ. Health 2017, 220, 591–603. [Google Scholar] [CrossRef]
- Righi, E.; Fantuzzi, G.; Predieri, G.; Aggazzotti, G. Bromate, chlorite, chlorate, haloacetic acids, and trihalomethanes in indoor swimming pool waters in Italy. Microchem. J. 2014, 113, 23–29. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Smith, R.; Golfinopoulos, S.; Best, N.; Bennett, J.; Aggazzotti, G.; Righi, E.; Fantuzzi, G.; Bucchini, L.; Cordier, S.; et al. Health impacts of long-term exposure to disinfection by-products in drinking water in Europe: HIWATE. J. Water Health 2009, 7, 185–207. [Google Scholar] [CrossRef]
- Chen, Y.J.; Messerlian, C.; Lu, Q.; Mustieles, V.; Zhang, Y.; Sun, Y.; Wang, L.; Lu, W.Q.; Liu, C.; Wang, Y.X. Urinary haloacetic acid concentrations in relation to sex and thyroid hormones among reproductive-aged men. Environ. Int. 2024, 189, 108785. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.; Ashby, J.L.; Kimura, S.Y.; Richardson, S.D. Exposure Characterization of Haloacetic Acids in Humans for Exposure and Risk Assessment Applications: An Exploratory Study. Int. J. Environ. Res. Public Health 2019, 16, 471. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, T.; Ray, S.D. Chlorination byproducts. In Encylopedia of Toxicology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 2, pp. 865–872. [Google Scholar] [CrossRef]
- Richardson, S.D.; DeMarini, D.M.; Kogevinas, M.; Fernandez, P.; Marco, E.; Lourencetti, C. What’s in the pool? a comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ. Health Perspect. 2010, 118, 1523–1530. [Google Scholar] [CrossRef]
- Landi, S.; Naccarati, A.; Ross, M.K.; Hanley, N.M.; Dailey, L.; Devhon, R.B.; Vasquez, M.; Pegram, R.A.; DeMarini, D.M. Induction of DNA strand breaks by trihalomethanes in primary human lung epithelial cells. Mutat. Res. 2003, 538, 41–50. [Google Scholar] [CrossRef]
- Hung, Y.C.; Waters, B.W.; Yemmireddy, V.K.; Huang, C.H. pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing. J. Integr. Agric. 2017, 16, 2914–2923. [Google Scholar] [CrossRef]
- Guillen, V.M.; Irizarry, L.; Connolly, M.K. Chloroform Toxicity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK604204/ (accessed on 7 March 2025).
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Risks for public health related to the presence of chlorate in food. EFSA J. 2015, 13, 4135. [Google Scholar]
- Zhang, M.; Liu, X.Y.; Deng, L.; Liu, C.; Zeng, J.Y.; Miao, Y.; Wu, Y.; Li, C.R.; Li, Y.J.; Liu, A.X.; et al. Associations between urinary biomarkers of exposure to disinfection byproducts and semen parameters: A repeated measures analysis. J. Hazard. Mater. 2024, 461, 132638. [Google Scholar] [CrossRef]
- Tian, M.; Li, H.; Wu, S.; Xi, H.; Wang, Y.X.; Lu, Y.Y.; Wei, L.; Huang, Q. Exposure to haloacetic acid disinfection by-products and male steroid hormones: An epidemiological and in vitro study. J. Hazard. Mater. 2024, 468, 133796. [Google Scholar] [CrossRef] [PubMed]
- Ates, N.; Civelekoglu, G.; Kaplan-Bekaroglu, S.S. Management Strategies for Minimising DBPs Formation in Drinking Water Systems. In Water and Wastewater Management; Bahadir, M., Haarstrick, A., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Golfinopoulos, S.K.; Nikolaou, A.D.; Alexakis, D.E. Innovative Approaches for Minimizing Disinfection Byproducts (DBPs) in Water Treatment: Challenges and Trends. Appl. Sci. 2024, 14, 8153. [Google Scholar] [CrossRef]
- Chen, Y.; Jafari, I.; Zhong, Y.; Chee, M.J.; Hu, J. Degradation of organics and formation of DBPs in the combined LED-UV and chlorine processes: Effects of water matrix and fluorescence analysis. Sci. Total Environ. 2022, 846, 157454. [Google Scholar] [CrossRef]
- Gao, Z.C.; Lin, Y.L.; Xu, B.; Xia, Y.; Hu, C.Y.; Zhang, T.Y.; Qian, H.; Cao, T.C.; Gao, N.Y. Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes. Water Res. 2020, 182, 116035. [Google Scholar] [CrossRef]
- Gupta, V.; Shekhawat, S.S.; Kulshreshtha, N.M.; Gupta, A.B. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. Water Sci. Technol. 2022, 86, 261–291. [Google Scholar] [CrossRef] [PubMed]
- Destiani, R.; Templeton, M.R. Chlorination and ultraviolet disinfection of antibiotic-resistant bacteria and antibiotic resistance genes in drinking water. AIMS Environ. Sci. 2019, 6, 222–241. [Google Scholar] [CrossRef]
- Zhang, K.; Qiu, C.; Cai, A.; Deng, J.; Li, X. Factors affecting the formation of DBPs by chlorine disinfection in water distribution system. Desalin. Water Treat. 2020, 205, 91–102. [Google Scholar] [CrossRef]
- Sievers, T.; Blumenberg, J.A.; Holzel, C.S. Antimicrobial Resistance Genes in Milk: A 10-year-systematic review and critical comment. J. Dairy Sci. 2024. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Garvey, M. Antimicrobial Use in Animal Food Production. In Biodiversity, Functional Ecosystems and Sustainable Food Production; Galanakis, C.M., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Zhong, D.; Zhou, Z.; Ma, W.; Ma, J.; Feng, W.; Li, J.; Du, X. Antibiotic enhances the spread of antibiotic resistance among chlorine-resistant bacteria in drinking water distribution system. Environ. Res. 2022, 211, 113045. [Google Scholar] [CrossRef]
- Hassani, S.; Moosavy, M.H.; Gharajalar, S.N. High prevalence of antibiotic resistance in pathogenic foodborne bacteria isolated from bovine milk. Sci. Rep. 2022, 12, 3878. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Sandle, T.; Al-Aboody, M.S.; AlFonaisan, K.; Alturaiki, W.; Mickymaray, S.; Premanathan, M.; Alsagaby, S.A. Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii—A first report from the Kingdom of Saudi Arabia. J. Infect. Public Health 2018, 11, 812–816. [Google Scholar] [CrossRef]
- Zhao, W.; Hou, Y.; Wei, L.; Wei, W.; Zhang, K.; Duan, H.; Ni, B.J. Chlorination-induced spread of antibiotic resistance genes in drinking water systems. Water Res. 2025, 274, 123092. [Google Scholar] [CrossRef]
- Liu, X.; Gong, L.; Liu, E.; Li, C.; Wang, Y.; Liang, J. Characterization of the Disinfectant Resistance Genes qacEΔ1 and cepA in Carbapenem-Resistant Klebsiella pneumoniae Isolates. Am. J. Trop. Med. Hyg. 2023, 110, 136–141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garvey, M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is. This the Way? Antibiotics 2020, 9, 414. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Liu, L.; Wang, D.N.; Yang, D.; Liu, W.-L.; Yin, J.; Yang, Z.-W.; Wang, H.-R.; Qiu, Z.-G.; Shen, Z.-Q.; et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME J. 2020, 14, 1847–1856. [Google Scholar] [CrossRef] [PubMed]
- Kalu, M.C.; Mudau, L.; Masindi, V.; Ijoma, G.N.; Tekere, M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024, 10, e26380. [Google Scholar] [CrossRef]
- Meade, E.; Savage, M.; Garvey, M. Effective Antimicrobial Solutions for Eradicating Multi-Resistant and β-Lactamase-Producing Nosocomial Gram-Negative Pathogens. Antibiotics 2021, 10, 1283. [Google Scholar] [CrossRef]
- Ozma, M.A.; Abbasi, A.; Asgharzadeh, M.; Pagliano, P.; Guarino, A.; Köse, Ş.; Samadi Kafil, H. Antibiotic therapy for pan-drug-resistant infections. Infez. Med. 2022, 30, 525–531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Makuwa, S.; Green, E.; Tlou, M. Molecular Classification and Antimicrobial Profiles of Chlorination-Resistant Escherichia coli at Wastewater Treatment Plant in the North West Province of South Africa. Water Air Soil. Pollut. 2023, 234, 490. [Google Scholar] [CrossRef]
- WHO. Priority Pathogen List. 2024. Available online: https://www.who.int/publications/i/item/9789240093461 (accessed on 11 March 2025).
- Gholipour, S.; Nikaeen, M.; Mehdipour, M. Occurrence of chlorine-resistant Pseudomonas aeruginosa in hospital water systems: Threat of waterborne infections for patients. Antimicrob. Resist. Infect. Control 2024, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Papa, M.; Wasit, A.; Pecora, J.; Bergholz, T.M. Detection of Viable but Nonculturable E. coli Induced by Low-Level Antimicrobials Using AI-Enabled Hyperspectral Microscopy. J. Food Prot. 2025, 88, 100430. [Google Scholar] [CrossRef]
- Qi, Y.; Li, S.; Zhang, Y.; You, C. Recent advances in viability detection of foodborne pathogens in milk and dairy products. Food Control 2024, 160, 110314. [Google Scholar] [CrossRef]
- Zhu, L.; Shuai, X.; Xu, L.; Sun, Y.; Lin, Z.; Zhou, Z.; Meng, L.; Chen, H. Mechanisms underlying the effect of chlorination and UV disinfection on VBNC state Escherichia coli isolated from hospital wastewater. J. Hazard. Mater. 2022, 423, 127228. [Google Scholar] [CrossRef]
- Hou, A.M.; Yang, D.; Miao, J.; Shi, D.Y.; Yin, J.; Yang, Z.W.; Shen, Z.Q.; Wang, H.R.; Qiu, Z.G.; Liu, W.L.; et al. Chlorine injury enhances antibiotic resistance in Pseudomonas aeruginosa through over expression of drug efflux pumps. Water Res. 2019, 156, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Fu, J.; Zhao, K.; Yang, S.; Li, C.; Penttine, P.; Ao, X.; Liu, A.; Hu, K.; Li, J.; et al. Class 1 integron carrying qacEΔ1 gene confers resistance to disinfectant and antibiotics in Salmonella. Int. J. Food Microbiol. 2023, 404, 110319. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Al-Berfkani, M.; Zubair, A.I.; Bayazed, H. Assessment of chlorine resistant bacteria and their susceptibility to antibiotic from water distribution system in Duhok province. J. Appl. Biol. Biotechnol. 2014, 2, 010–013. [Google Scholar] [CrossRef]
- Ruotong, X.; Jiay, X.; Ruisi, C.; Yulin, T.; Yong, Z. Effect of antibiotics and antibiotic by-products on the chlorine resistance of biofilms in drinking water distribution systems. J. Water Process Eng. 2024, 66, 105987. [Google Scholar] [CrossRef]
- Li, D.; Zeng, S.; He, M.; Gu, A.Z. Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena. Environ. Sci. Technol. 2016, 50, 3193–3201. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Jiang, T.; Zhang, S.; Yu, X. Exposure to Mutagenic Disinfection Byproducts Leads to Increase of Antibiotic Resistance in Pseudomonas aeruginosa. Environ. Sci. Technol. 2014, 48, 8188–8195. [Google Scholar] [CrossRef]
- Khan, S.; Beattie, T.K.; Knapp, C.W. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere 2016, 152, 132–141. [Google Scholar] [CrossRef]
- Xiao, X.; Bai, L.; Wang, S.; Liu, L.; Qu, X.; Zhang, J.; Xiao, Y.; Tang, B.; Li, Y.; Yang, H.; et al. Chlorine Tolerance and Cross-Resistance to Antibiotics in Poultry-Associated Salmonella Isolates in China. Front. Microbiol. 2022, 12, 833743. [Google Scholar] [CrossRef]
- Phattarapattamawong, S.; Chareewan, N.; Polprasert, C. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. Sci. Total Environ. 2021, 755 Pt 2, 142696. [Google Scholar] [CrossRef] [PubMed]
- Manasfi, T. Ozonation in drinking water treatment: An overview of general and practical aspects, mechanisms, kinetics, and byproduct formation. Compr. Anal. Chem. 2021, 92, 85–116. [Google Scholar] [CrossRef]
- Kitis, M. Disinfection of wastewater with peracetic acid: A review. Environ. Int. 2004, 30, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.J.S.; Sabogal-Paz, P.L. A 10-year critical review on hydrogen peroxide as a disinfectant: Could it be an alternative for household water treatment? Water Supply 2022, 22, 8527–8539. [Google Scholar] [CrossRef]
- Gleeson, D.; Paludetti, L.; O’Brien, B.; Beresford, T. Effect of ‘chlorine-free’ cleaning of milking equipment on the microbiological quality and chlorine-related residues in bulk tank milk. Int. J. Dairy Technol. 2022, 75, 262–269. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, X.; Du, P.; Zhang, T.; Cai, M.; Sun, P.; Huang, C.H. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation. Water Res. 2017, 123, 153–161. [Google Scholar] [CrossRef]
- Goetz, C.; Larouche, J.; Velez Aristizabal, M.; Niboucha, N.; Jean, J. Efficacy of Organic Peroxyacids for Eliminating Biofilm Preformed by Microorganisms Isolated from Dairy Processing Plants. Appl. Environ. Microbiol. 2022, 88, e0188921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Research Council (US) Committee on Acute Exposure Guideline Levels. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 8; National Academies Press (US): Washington, DC, USA, 2010. [Google Scholar]
- Twomey, L.; Furey, A.; O’Brien, T.; Beresford, T.; O’Brien, B.; Gleeson, D. An evaluation of dairy product quality where chlorine-free cleaning is employed across the dairy processing chain from bacterial and chemical residue perspectives. Int. Dairy J. 2023, 146, 105739. [Google Scholar] [CrossRef]
- Bogner, D.; Bogner, M.; Schmacht, F.; Bill, N.; Halfer, N.; Halfer, J.; Slater, M.J. Hydrogen peroxide oxygenation and disinfection capacity in recirculating aquaculture systems. Aquac. Eng. 2021, 92, 102140. [Google Scholar] [CrossRef]
- Chawla, A.; Lobacz, A.; Tarapata, J.; Zulewska, J. UV Light Application as a Mean for Disinfection Applied in the Dairy Industry. Appl. Sci. 2021, 11, 7285. [Google Scholar] [CrossRef]
Alternative Method | Mode of Action | Advantages | Disadvantages |
---|---|---|---|
Ultraviolet light | Causes damage to microbial genetic material, e.g., mutations, thymine-thymine dimers. | No disinfection byproducts identified, cost-effective, eco-friendly, EPA approved, no organoleptic changes to the water, can be used in combination approaches [62], inactivates AMR species. | No residual disinfectant remains; DNA repair mechanisms present in microbes are inhibited by OM, including milk components. Promotes MDR to sulfadiazine, vancomycin, rifampicin, tetracycline, and chloramphenicol [62], relies on electricity, limited penetration properties [61], UV rays are harmful to humans [101] |
Ozone (O3) treatment | Ozone oxidizes organic material in the microbial membranes, leading to cell lysis. | Broad spectrum activity, effective over a wide range of pH, rapid disinfection needing shorter contact time, no quenching requirement. | Expensive, O3 has a short half-life, no residual disinfection activity, toxic gas, DBPs formed, including bromate, ketone, aldehydes, nitrosamines [92]. |
Peracetic acid (CH3CO3H) | Direct oxidation/destruction of the cell wall with leakage of cellular constituents due to free radicals’ hydrogen peroxyl (HO2) and hydroxyl (OH). | Potent bactericidal action, active over pH range < 7, temperatures, and inactivates MDR species, eco-friendly [74], no persistent toxic or mutagenic residuals or byproducts, no quenching requirement [93], inhalation exposure limits degradation of pollutants [96]. | No residual disinfection action, microbial re-growth, high cost and production limits, affected by total suspended solids [93], lower efficacy against waterborne viruses and parasites Cryptosporidium [93], causes respiratory tract irritation [98]. |
Hydrogen peroxide (H2O2) | Oxidizing action via the generation of reactive oxygen species (ROS). | Broad-spectrum activity, eco-friendly, non-carcinogenic, inactivates AMR species [94]. | Not stable, affected by light and heat exposure, limited efficacy against microbial spores, expensive, and impacted by OM [94]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slattery, M.; Garvey, M. Chlorine Disinfection Byproducts: A Public Health Concern Associated with Dairy Food Contamination. Dairy 2025, 6, 18. https://doi.org/10.3390/dairy6020018
Slattery M, Garvey M. Chlorine Disinfection Byproducts: A Public Health Concern Associated with Dairy Food Contamination. Dairy. 2025; 6(2):18. https://doi.org/10.3390/dairy6020018
Chicago/Turabian StyleSlattery, Mark, and Mary Garvey. 2025. "Chlorine Disinfection Byproducts: A Public Health Concern Associated with Dairy Food Contamination" Dairy 6, no. 2: 18. https://doi.org/10.3390/dairy6020018
APA StyleSlattery, M., & Garvey, M. (2025). Chlorine Disinfection Byproducts: A Public Health Concern Associated with Dairy Food Contamination. Dairy, 6(2), 18. https://doi.org/10.3390/dairy6020018