On the Prospects of Multiport Devices for Photon-Number-Resolving Detection
Abstract
:1. Introduction
2. General Physics of Multiport Devices
3. Informational Completeness of Photon-Number Distribution Measurements
4. General Framework for the Reconstruction Accuracy of Multiport Devices
4.1. Mean Squared-Error and Its Cramér–Rao Bound
4.2. A Measure of Tomographic Performance
5. Multiport Device of Equal Port Efficiencies and Output Ports
5.1. Perfect Multiport Devices Without Losses
5.2. Imperfect Multiport Devices with Losses
5.3. Noisy Photon-Number Resolution of Multiport Devices with and
6. Multiport Device of Equal Port Efficiencies and Output Ports
6.1. Perfect Multiport Devices without Losses
6.2. Imperfect Multiport Devices with Losses
6.3. Noisy Photon-Number Resolution of Multiport Devices with and
7. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A. Optimality of the Fock-State Measurement for Noiseless Multiport Devices
Appendix B. Averages over the Probability Simplex
References
- Wildfeuer, C.F.; Pearlman, A.J.; Chen, J.; Fan, J.; Migdall, A.; Dowling, J.P. Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector. Quantum Limits in Optical Interferometry. Phys. Rev. A 2009, 80, 043822. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzański, R.; Jarzyna, M.; Kołodyński, J. Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector. Prog. Opt. 2015, 60, 345. [Google Scholar]
- Von Helversen, M.; Böhm, J.; Schmidt, M.; Gschrey, M.; Schulze, J.-H.; Strittmatter, A.; Rodt, S.; Beyer, J.; Heindel, T.; Reitzenstein, S. Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors. New J. Phys. 2019, 21, 035007. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-Y.; Toda, N.; Hofmann, H.F. Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A 2009, 100, 013814. [Google Scholar]
- Cattaneo, M.; Paris, M.G.A.; Olivares, S. Hybrid quantum key distribution using coherent states and photon-number-resolving detectors. Phys. Rev. A 2018, 98, 012333. [Google Scholar] [CrossRef] [Green Version]
- Stucki, D.; Ribordy, G.; Stefanov, A.; Zbinden, H.; Rarity, J.G.; Wall, T. Photon counting for quantum key distribution with peltier cooled ingaas/inp apds. J. Mod. Opt. 2001, 48, 1967. [Google Scholar] [CrossRef]
- Kilmer, T.; Guha, S. Boosting linear-optical Bell measurement success probability with predetection squeezing and imperfect photon-number-resolving detectors. Phys. Rev. A 2019, 99, 032302. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.; Wu, E.; Liang, Y.; Jian, Y.; Wu, G.; Zeng, H. Quantum random-number generator based on a photon-number-resolving detector. Phys. Rev. A 2011, 83, 023820. [Google Scholar] [CrossRef] [Green Version]
- Applegate, M.J. Efficient and robust quantum random number generation by photon number detection. Appl. Phys. Lett. 2015, 107, 071106. [Google Scholar] [CrossRef]
- Eisaman, M.D.; Fan, J.; Migdall, A.; Polyakov, S.V. Single-photon sources and detectors. Rev. Sci. Instrum. 2011, 82, 071101. [Google Scholar] [CrossRef]
- Jönsson, M.; Björk, G. Evaluating the performance of photon-number-resolving detectors. Phys. Rev. A 2019, 99, 043822. [Google Scholar] [CrossRef] [Green Version]
- Mirin, R.P.; Nam, S.W.; Itzler, M.A. Single-Photon and Photon-Number-Resolving Detectors. IEEE Photonics J. 2011, 4, 629. [Google Scholar] [CrossRef]
- Marsili, F.; Bitauld, D.; Gaggero, A.; Jahanmirinejad, S.; Leoni, R.; Mattioli, F.; Fiore, A. Physics and application of photon number resolving detectors based on superconducting parallel nanowires. New J. Phys. 2009, 11, 045022. [Google Scholar] [CrossRef]
- Marsili, F.; Najafi, F.; Dauler, E.; Bellei, F.; Hu, X.; Csete, M.; Molnar, R.J.; Berggren, K.K. Single-Photon Detectors Based on Ultranarrow Superconducting Nanowires. Nano Lett. 2011, 11, 2048. [Google Scholar] [CrossRef] [PubMed]
- Jahanmirinejad, S.; Frucci, G.; Mattioli, F.; Sahin, D.; Gaggero, A.; Leoni, R.; Fiore, A. Photon-number resolving detector based on a series array of superconducting nanowires. Appl. Phys. Lett. 2012, 101, 072602. [Google Scholar] [CrossRef] [Green Version]
- Matekole, E.S.; Vaidyanathan, D.; Arai, K.W.; Glasser, R.T.; Lee, H.; Dowling, J.P. Room-temperature photon-number-resolved detection using a two-mode squeezer. Phys. Rev. A 2017, 96, 053815. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Masoodian, S.; Starkey, D.A.; Fossum, E.R. Photon-number-resolving megapixel image sensor at room temperature without avalanche gain. Optica 2017, 4, 1474. [Google Scholar] [CrossRef]
- Zolotov, P.; Divochiy, A.; Vakhtomin, Y.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K. Photon-number-resolving SSPDs with system detection efficiency over 50 at telecom range. AIP Conf. Proc. 2018, 1936, 020019. [Google Scholar]
- Cai, Y.; Chen, Y.; Chen, X.; Ma, J.; Xu, G.; Wu, Y.; Xu, A.; Wu, E. Metamodelling for Design of Mechatronic and Cyber-Physical Systems. Appl. Sci. 2019, 9, 2638. [Google Scholar] [CrossRef]
- Paul, H.; Törma, P.; Kiss, T.; Jex, I. Photon Chopping: New Way to Measure the Quantum State of Light. Phys. Rev. Lett. 1996, 76, 2464. [Google Scholar] [CrossRef]
- Kok, P.; Braunstein, S.L. Detection devices in entanglement-based optical state preparation. Phys. Rev. A 2001, 63, 033812. [Google Scholar] [CrossRef] [Green Version]
- Rohde, P.P.; Webb, J.G.; Huntington, E.H.; Ralph, T.C. Photon number projection using non-number-resolving detectors. New J. Phys. 2007, 9, 233. [Google Scholar] [CrossRef]
- Řeháček, J.; Hradil, Z.; Haderka, O.; Peřina, J., Jr.; Hamar, M. Multiple-photon resolving fiber-loop detector. Phys. Rev. A 2003, 67, 061801(R). [Google Scholar] [CrossRef]
- Banaszek, K.; Walmsley, I.A. Fiber-assisted detection with photon number resolution. Opt. Lett. 2003, 28, 52. [Google Scholar] [CrossRef] [PubMed]
- Fitch, M.J.; Jacobs, B.C.; Pittman, T.B.; Franson, J.D. Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A 2003, 68, 043814. [Google Scholar] [CrossRef] [Green Version]
- Achilles, D.; Silberhorn, C.; Sliwa, C.; Banaszek, K.; Walmsley, I.A.; Fitch, M.J.; Jacobs, B.C.; Pittman, T.B.; Franson, J.D. Photon-number-resolving detection using time-multiplexing. J. Mod. Opt. 2004, 51, 1499. [Google Scholar] [CrossRef]
- Avenhaus, M.; Laiho, K.; Chekhova, M.V.; Silberhorn, C. Accessing Higher Order Correlations in Quantum Optical States by Time Multiplexing. Phys. Rev. Lett. 2010, 104, 063602. [Google Scholar] [CrossRef]
- Kruse, R.; Tiedau, J.; Bartley, T.J.; Barkhofen, S.; Silberhorn, C. Limits of the time-multiplexed photon-counting method. Phys. Rev. A 2017, 95, 023815. [Google Scholar] [CrossRef] [Green Version]
- Teo, Y.S. Introduction to Quantum-State Estimation; World Scientific Publishing Co.: Singapore, 2015. [Google Scholar]
- Řeháček, J.; Teo, Y.S.; Hradil, Z. Determining which quantum measurement performs better for state estimation. Phys. Rev. A 2015, 92, 012108. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teo, Y.S.; Jeong, H.; Řeháček, J.; Hradil, Z.; Sánchez-Soto, L.L.; Silberhorn, C. On the Prospects of Multiport Devices for Photon-Number-Resolving Detection. Quantum Rep. 2019, 1, 162-180. https://doi.org/10.3390/quantum1020015
Teo YS, Jeong H, Řeháček J, Hradil Z, Sánchez-Soto LL, Silberhorn C. On the Prospects of Multiport Devices for Photon-Number-Resolving Detection. Quantum Reports. 2019; 1(2):162-180. https://doi.org/10.3390/quantum1020015
Chicago/Turabian StyleTeo, Yong Siah, Hyunseok Jeong, Jaroslav Řeháček, Zdeněk Hradil, Luis L. Sánchez-Soto, and Christine Silberhorn. 2019. "On the Prospects of Multiport Devices for Photon-Number-Resolving Detection" Quantum Reports 1, no. 2: 162-180. https://doi.org/10.3390/quantum1020015