On Bell’s Inequality in -Symmetric Quantum Systems
Abstract
:1. Introduction
2. -Symmetric Qubits
3. Proof of Bell’s Inequality in -Symmetric Quantum Theory
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S.; Aspect, A. Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bell, J.S. On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 1966, 38, 447–452. [Google Scholar] [CrossRef]
- Blaylock, G. The EPR paradox, Bell’s inequality, and the question of locality. Am. J. Phys. 2010, 78, 111–120. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Cirel’Son, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93–100. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 1982, 49, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Aspect, A. Bell’s inequality test: More ideal than ever. Nature 1999, 398, 189–190. [Google Scholar] [CrossRef]
- Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett. 1982, 49, 1804–1807. [Google Scholar] [CrossRef] [Green Version]
- Gröblacher, S.; Paterek, T.; Kaltenbaek, R.; Brukner, Č.; Żukowski, M.; Aspelmeyer, M.; Zeilinger, A. An experimental test of non-local realism. Nature 2007, 446, 871–875. [Google Scholar] [CrossRef] [Green Version]
- Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.A.; Abellán, C.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef] [PubMed]
- Rauch, D.; Handsteiner, J.; Hochrainer, A.; Gallicchio, J.; Friedman, A.S.; Leung, C.; Liu, B.; Bulla, L.; Ecker, S.; Steinlechner, F.; et al. Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars. Phys. Rev. Lett. 2018, 121, 080403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boole, G. XII. On the theory of probabilities. Philos. Trans. R. Soc. Lond. 1862, 152, 225–252. [Google Scholar]
- Boole, G. An Investigation of the Laws of Thought: On Which Are Founded the Mathematical Theories of Logic and Probabilities; Cambridge Library Collection—Mathematics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Maccone, L. A simple proof of Bell’s inequality. Am. J. Phys. 2013, 81, 854–859. [Google Scholar] [CrossRef] [Green Version]
- Preskill, J. Lecture Notes for ph219/cs219: Quantum Information and Computation. Available online: http://theory.caltech.edu/~preskill/ph219/ph219_2020-21.html (accessed on 30 July 2021).
- Mermin, N. Bringing Home the Atomic World: Quantum Mysteries for Anybody. Am. J. Phys. 1981, 49, 940–943. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Bohm, D. Quantum Theory; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
- Walleczek, J.; Grössing, G. The Non-Signalling theorem in generalizations of Bell’s theorem. J. Phys. Conf. Ser. 2014, 504, 012001. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Erratum: Complex Extension of Quantum Mechanics [Phys. Rev. Lett. 89, 270401 (2002)]. Phys. Rev. Lett. 2004, 92, 119902. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having Symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef] [Green Version]
- Miri, M.A.; Alù, A. Exceptional points in optics and photonics. Science 2019, 363, 7709. [Google Scholar] [CrossRef] [Green Version]
- Schindler, J.; Li, A.; Zheng, M.C.; Ellis, F.M.; Kottos, T. Experimental study of active LRC circuits with symmetries. Phys. Rev. A 2011, 84, 040101. [Google Scholar] [CrossRef] [Green Version]
- Rüter, C.E.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of parity-time symmetry in optics. Nat. Phys. 2010, 6, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Hang, C.; Huang, G.; Konotop, V.V. Symmetry with a System of Three-Level Atoms. Phys. Rev. Lett. 2013, 110, 083604. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.; Salamo, G.J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G.A.; Christodoulides, D.N. Observation of -Symmetry Breaking in Complex Optical Potentials. Phys. Rev. Lett. 2009, 103, 093902. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Berntson, B.K.; Parker, D.; Samuel, E. Observation of PT phase transition in a simple mechanical system. Am. J. Phys. 2013, 81, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.L.; Chen, G.Y.; Chen, Y.N. Increase of entanglement by local PT-symmetric operations. Phys. Rev. A 2014, 90, 054301. [Google Scholar] [CrossRef] [Green Version]
- Pati, A.K. Violation of Invariance of Entanglement Under Local PT Symmetric Unitary. arXiv 2014, arXiv:1404.6166. [Google Scholar]
- Pati, A.K. Entanglement in non-Hermitian quantum theory. Pramana 2009, 73, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.C.; Hsieh, M.H.; Flammia, S.T.; Lee, R.K. Local Symmetry Violates the No-Signaling Principle. Phys. Rev. Lett. 2014, 112, 130404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogra, S.; Melnikov, A.A.; Paraoanu, G.S. Quantum simulation of parity-time symmetry breaking with a superconducting quantum processor. Commun. Phys. 2021, 4, 26. [Google Scholar] [CrossRef]
- Japaridze, G.; Pokhrel, D.; Wang, X.Q. No-signaling principle and Bell inequality in-symmetric quantum mechanics. J. Phys. A 2017, 50, 185301. [Google Scholar] [CrossRef] [Green Version]
- Sachs, R.G. The Physics of Time Reversal; University of Chicago Press: Chicago, IL, USA, 1987. [Google Scholar]
- Zhu, X.Y.; Tao, Y.H. Conventional Bell Basis in PT-symmetric Quantum Theory. Int. J. Theor. Phys. 2018, 57, 3839–3849. [Google Scholar] [CrossRef]
- Bender, C.M.; Hassanpour, N.; Hook, D.W.; Klevansky, S.P.; Sünderhauf, C.; Wen, Z. Behavior of eigenvalues in a region of broken symmetry. Phys. Rev. A 2017, 95, 052113. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhosale, S.S.; Rath, B.; Panigrahi, P.K.
On Bell’s Inequality in
Bhosale SS, Rath B, Panigrahi PK.
On Bell’s Inequality in
Bhosale, Sarang S., Biswanath Rath, and Prasanta K. Panigrahi.
2021. "On Bell’s Inequality in
Bhosale, S. S., Rath, B., & Panigrahi, P. K.
(2021). On Bell’s Inequality in