Cramér–Rao, Fisher–Shannon and LMC–Rényi Complexity-like Measures of Multidimensional Hydrogenic Systems with Application to Rydberg States
Abstract
:1. Introduction
2. Complexity-like Measures of a Multidimensional Density
3. The Multidimensional Hydrogenic System: The Probability Density
4. Hydrogenic Cramér–Rao Complexity
5. Hydrogenic Fisher-Shannon Complexity
5.1. Application to Quasi-Spherical and Ground States
5.2. Application to Highly Excited Rydberg States
6. Hydrogenic LMC-Rényi Complexity
6.1. Application to Quasi-Spherical and Ground States
6.2. Application to Highly Excited Rydberg States
7. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Gadre, S.R. Information theoretical approaches to quantum chemistry. In Reviews of Modern Quantum Chemistry: A Celebration of the Contributions of Robert G. Parr; Sen, K.D., Ed.; World Scientific: Hackensack, NJ, USA, 2002; Volume 1, p. 108. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Dehesa, J.S.; López-Rosa, S.; Martínez-Finkelshtein, A.; Yáñez, R.J. Information theory of D-dimensional hydrogenic systems: Application to circular and Rydberg states. Int. J. Quantum Chem. 2010, 110, 1529–1548. [Google Scholar] [CrossRef]
- Vidal, G. Entanglement monotones. J. Mod. Opt. 2000, 47, 355–376. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [PubMed]
- Rudnicki, L.; Toranzo, I.V.; Sánchez-Moreno, P.; Dehesa, J.S. Monotones of statistical complexity measures. Phys. Lett. A 2016, 380, 377–380. [Google Scholar] [CrossRef]
- Antolín, J.; Angulo, J.C. Complexity analysis of ionization processes and isoelectronic series. Int. J. Quant. Chem. 2009, 109, 586. [Google Scholar] [CrossRef]
- Angulo, J.C.; Antolín, J. Atomic complexity measures in position and momentum spaces. J. Chem. Phys. 2008, 128, 164109. [Google Scholar] [CrossRef]
- Vignat, C.; Bercher, J.F. Analysis of signals in the Fisher-Shannon information plane. Phys. Lett. A 2003, 312, 27. [Google Scholar] [CrossRef]
- Angulo, J.C.; Antolín, J.; Sen, K.D. Fisher-Shannon plane and statistical complexity of atoms. Phys. Lett. A 2000, 372, 670. [Google Scholar] [CrossRef]
- Romera, E.; Dehesa, J.S. The Fisher–Shannon information plane, an electron correlation tool. J. Chem. Phys. 2004, 120, 8906. [Google Scholar] [CrossRef]
- López-Ruiz, R.; Nagy, Á.; Romera, E.; Sañudo, J. A generalized statistical complexity measure: Applications to quantum systems. J. Math. Phys. 2009, 50, 123528. [Google Scholar] [CrossRef] [Green Version]
- Antolin, J.; Lopez-Rosa, S.; Angulo, J.C. Renyi complexities and information planes: Atomic structure in conjugated spaces. Chem. Phys. Lett. 2009, 474, 233–237. [Google Scholar] [CrossRef]
- Catalan, R.G.; Garay, J.; Lopez-Ruiz, R. Features of the extension of a statistical measure of complexity to continuous systems. Phys. Rev. E 2002, 66, 011102. [Google Scholar] [CrossRef] [PubMed]
- López-Ruiz, R. Shannon information, LMC complexity and Rényi entropies: A straightforward approach. Biophys. Chem. 2005, 115, 215. [Google Scholar] [CrossRef] [PubMed]
- Sobrino-Coll, N.; Puertas-Centeno, D.; Toranzo, V.; Dehesa, J.S. Complexity measures and uncertainty relations of the high-dimensional harmonic and hydrogenic systems. J. Stat. Mech. Theory Exp. 2017, 2017, 083102. [Google Scholar] [CrossRef]
- Romera, E.; López-Ruiz, R.; Sañudo, J.; Nagy, A. Generalized Statistical Complexity and Fisher–Rényi Entropy Product in the H-Atom. Int. Rev. Phys. 2009, 3, 207–211. [Google Scholar]
- Romera, E.; Nagy, A. Fisher-Rényi entropy product and information plane. Phys. Lett. A 2008, 372, 6823. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; Angulo, J.C.; Dehesa, J.S. A generalized complexity measure based on Rényi entropy. Eur. Phys. J. D 2014, 68, 212. [Google Scholar] [CrossRef]
- Toranzo, I.V.; Sánchez-Moreno, P.; Rudnicki, Ł.; Dehesa, J.S. One-parameter Fisher–Rényi complexity: Notion and hydrogenic applications. Entropy 2017, 19, 16. [Google Scholar] [CrossRef]
- Zozor, S.; Puertas-Centeno, D.; Dehesa, J.S. On generalized Stam inequalities and Fisher–Rényi complexity measures. Entropy 2017, 19, 493. [Google Scholar] [CrossRef]
- Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. The biparametric Fisher-Rényi complexity measure and its application to the multidimensional blackbody radiation. J. Stat. Mech. Theory Exp. 2017, 2017, 043408. [Google Scholar] [CrossRef]
- Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Biparametric complexities and generalized Planck radiation law. J. Phys. A Math. Theor. 2017, 50, 505001. [Google Scholar] [CrossRef] [Green Version]
- Shiner, J.S.; Davison, M.; Landsberg, P.T. Simple measure for complexity. Phys. Rev. E 1999, 59, 1459. [Google Scholar] [CrossRef]
- Dehesa, J.S.; López-Rosa, S.; Manzano, D. Entropy and complexity analyses of D-dimensional quantum systems. In Statistical Complexities: Application to Electronic Structure; Sen, K.D., Ed.; Springer: Berlin, Germany, 2012. [Google Scholar]
- López-Rosa, S.; Angulo, J.C.; Antolin, J. Rigorous properties and uncertainty-like relationships on product-complexity measures: Applications to atomic systems. Phys. A 2009, 388, 2081. [Google Scholar] [CrossRef]
- Angulo, J.C.; Antolin, J.; Esquivel, R.O. Atomic and molecular complexities: Their physical and chemical Interpretations. In Statistical Complexities: Application to Electronic Structure; Sen, K.D., Ed.; Springer: Berlin, Germany, 2012. [Google Scholar]
- López-Rosa, S.; Manzano, D.; Dehesa, J.S. Complexity of D-dimensional hydrogenic systems in position and momentum spaces. Phys. A 2009, 388, 3273–3281. [Google Scholar] [CrossRef]
- Dehesa, J.S.; López-Rosa, S.; Sánchez-Moreno, P.; Yáñez, R.J. Complexity of multidimensional hydrogenic systems. Ind. J. Appl. Math. Stat. 2012, 26, 150–162. [Google Scholar]
- Herschbach, D.R.; Avery, J.; Goscinski, O. Dimensional Scaling in Chemical Physics; Kluwer: Dordrecht, The Netherlands, 1993; Chapter 5. [Google Scholar]
- Harrison, P. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2005. [Google Scholar]
- Aquilanti, V.; Cavalli, S.; Coletti, C.; di Domenico, D.; Grossi, G. Hyperspherical harmonics as Sturmian orbitals in momentum space: A systematic approach to the few-body Coulomb problem. Int. Rev. Phys. Chem. 2001, 20, 673. [Google Scholar] [CrossRef]
- Li, S.S.; Xia, J.B. Electronic states of a hydrogenic donor impurity in semiconductor nano-structures. Phys. Lett. A 2007, 366, 120. [Google Scholar] [CrossRef]
- Burgbacher, F.; Lammerzahl, C.; Macias, A. Is there a stable hydrogen atom in higher dimensions? J. Math. Phys. 1999, 40, 625. [Google Scholar] [CrossRef]
- Kruckenhauser, A.; van Bijnen, R.; Zache, T.V.; Di Liberto, M.; Zoller, P. High-dimensional SO(4)-symmetric Rydberg manifolds for quantum simulation. arXiv 2022, arXiv:2206.01108v1. [Google Scholar] [CrossRef]
- Zhang, C.; Tarbutt, M.R. Quantum computation in a hybrid array of molecules and Rydberg atoms. arXiv 2022, arXiv:2204.04276v1. [Google Scholar] [CrossRef]
- Yang, T.H.; Wang, B.Z.; Zhou, X.C.; Liu, X.J. Quantum Hall states for Rydberg atoms with laser-assisted dipole-dipole interactions. arXiv 2022, arXiv:2204.07086v1. [Google Scholar]
- López-Ruiz, R.; Mancini, H.L.; Calbet, X. A statistical measure of complexity. Phys. Lett. A 1995, 209, 321. [Google Scholar] [CrossRef]
- Anteneodo, C.; Plastino, A.R. Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity. Phys. Lett. A 1996, 223, 348. [Google Scholar] [CrossRef]
- López-Rosa, S.; Toranzo, I.V.; Sánchez-Moreno, P.; Dehesa, J.S. Entropy and complexity analysis of hydrogenic Rydberg atoms. J. Math. Phys. 2013, 54, 052109. [Google Scholar] [CrossRef]
- Majumdar, S.; Mukherjee, N.; Roy, A.K. Various complexity measures in confined hydrogen atom. Chem. Phys. Lett. 2017, 687, 322–329. [Google Scholar] [CrossRef]
- Mukherjee, N.; Roy, A.K. Quantum mechanical virial-like theorem for confined quantum systems. J. Math. Chem. 2019, 57, 1806–1821. [Google Scholar] [CrossRef]
- Majumdar, S.; Mukherjee, N.; Roy, A.K. Information entropy and complexity measure in generalized Kratzer potential. Chem. Phys. Lett. 2019, 716, 257–264. [Google Scholar] [CrossRef]
- Estañón, C.R.; Aquino, N.; Puertas-Centeno, D.; Dehesa, J.S. Two-dimensional confined hydrogen: An entropy and complexity approach. Int. J. Quantum Chem. 2020, 120, e26192. [Google Scholar] [CrossRef]
- Estañón, C.R.; Aquino, N.; Puertas-Centeno, D.; Dehesa, J.S. Cramér-Rao complexity of the confined two-dimensional hydrogen. Int. J. Quantum Chem. 2021, 121, e26424. [Google Scholar] [CrossRef]
- Nath, D. An introduction to analysis of Rényi complexity ratio of quantum states for central potential. Int. J. Quantum Chem. 2022, 122, e26816. [Google Scholar] [CrossRef]
- Sen, K.D. Statistical Complexity: Applications in Electronic Structure; Springer: New York, NY, USA, 2011. [Google Scholar]
- Bouvrie, P.A.; Angulo, J.C.; Dehesa, J.S. Entropy and complexity analysis of Dirac-delta-like quantum potentials. Phys. A Stat. Mech. its Appl. 2011, 390, 2215–2228. [Google Scholar] [CrossRef]
- González-Férez, R.; Dehesa, J.S.; Patil, S.H.; Sen, K.D. Scaling properties of composite information measures and shape complexity for hydrogenic atoms in parallel magnetic and electric fields. Phys. A Stat. Mech. Appl. 2009, 388, 4919–4925. [Google Scholar] [CrossRef]
- Esquivel, R.O.; Angulo, J.C.; Antolin, J.; Dehesa, J.S.; López-Rosa, S.; Flores-Gallegos, N. Analysis of complexity measures and information planes of selected molecules in position and momentum spaces. Phys. Chem. Chem. Phys. 2010, 12, 7108–7116. [Google Scholar] [CrossRef]
- Esquivel, R.O.; Molina-Espiritu, M.; Dehesa, J.S.; Angulo, J.C.; Antolin, J. Concurrent phenomena at the transition region of selected elementary chemical reactions: An information-theoretical complexity analysis. Int. J. Quant. Chem. 2012, 112, 3578–3586. [Google Scholar] [CrossRef]
- Molina-Espíritu, M.; Esquivel, R.O.; Angulo, J.C.; Dehesa, J.S. Concurrent phenomena at the reaction path of the SN2 Reaction CH3Cl+F-. Information planes and statistical complexity analysis. Entropy 2013, 15, 4084–4104. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, J.; Artés, P.L.; Martínez-Finkelshtein, A.; Dehesa, J.S. General linearization formulas for products of continuous hypergeometric-type polynomials. J. Phys. A 1999, 32, 7345–7366. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; Dehesa, J.S.; Zarzo, A.; Guerrero, A. Rényi entropies, Lq norms and linearization of powers of hypergeometric orthogonal polynomials by means of multivariate special function. Appl. Math. Comput. 2013, 223, 25–33. [Google Scholar] [CrossRef]
- Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Rényi entropies for multidimensional hydrogenic systems in position and momentum spaces. J. Stat. Mech. 2018, 2018, 073203. [Google Scholar] [CrossRef]
- Dehesa, J.-S.; Moreno-Balcázar, J.J.; Yáñez, R.J. Linearization and Krein-like functionals of hypergeometric orthogonal polynomials. J. Math. Phys. 2018, 59, 123504. [Google Scholar] [CrossRef]
- Srivastava, H.M. A unified theory of polynomial expansions and their applications involving Clebsch-Gordan type linearization relations and Neumann series. Astrophys. Space Sci. 1988, 150, 251–266. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Dehesa, J.S.; Martínez-Finkelshtein, A.; Sánchez-Ruiz, J. Quantum information entropies and orthogonal polynomials. J. Comput. Appl. Math. 2001, 133, 23–46. [Google Scholar] [CrossRef]
- Aptekarev, A.I.; Dehesa, J.S.; Martínez-Finkelshtein, A. Asymptotics of orthogonal polynomials’ entropy. J. Comp. Appl. Math. 2010, 233, 1355–1365. [Google Scholar]
- Dehesa, J.S. Entropy-like properties and Lq-norms of hypergeometric orthogonal polynomials: Degree asymptotics. Symmetry 2021, 13, 1416. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Sobrino, S. Complexity-like properties and parameter asymptotics of Lq-norms of Laguerre and Gegenbauer polynomials. J. Phys. A Math. Theor. 2021, 54, 495001. [Google Scholar] [CrossRef]
- Sobrino, S.; Dehesa, J.S. Algebraic Lq-norms and complexity-like properties of Jacobi polynomials: Degree and parameter asymptotics. Int. J. Quantum Chem. 2022, 122, e26858. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Sánchez-Moreno, P.; Yáñez, R.J. Cramér-Rao information plane of orthogonal hypergeometric polynomials. J. Comput. Appl. Math. 2006, 186, 523. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of statistical estimation. Proc. Camb. Philos. Soc. 1925, 22, 700. [Google Scholar] [CrossRef]
- Frieden, B.R. Science from Fisher Information; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Romera, E.; Sánchez-Moreno, P.; Dehesa, J.S. The Fisher information of single-particle systems with a central potential. Chem. Phys. Lett. 2005, 414, 468. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Shannon, C.E. Claude Elwood Shannon: Collected Papers; IEEE Press: Piscataway, NJ, USA, 1993. [Google Scholar]
- Rényi, A. On measures of information and entropy. In Proceedings Fourth Berkeley Symposium on Mathematical Statistics and Probability; Neyman, J., Ed.; University of California Press: Oakland, CA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Rényi, A. Probability Theory; North Holland: Amsterdam, NL, USA, 1970. [Google Scholar]
- Jiao, L.G.; Zan, L.R. Comment on Entropy and complexity analysis of hydrogenic Rydberg atoms. J. Math. Phys. 2017, 58, 104101. [Google Scholar] [CrossRef]
- López-Rosa, S.; Toranzo, I.V.; Sánchez-Moreno, P.; Dehesa, J.S. Response to Comment on Entropy and complexity analysis of hydrogenic Rydberg atoms. J. Math. Phys. 2017, 58, 104102. [Google Scholar] [CrossRef]
- Hall, M.J.W. Universal geometric approach to uncertainty, entropy, and information. Phys. Rev. A 1999, 59, 2602. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Plastino, A.R.; Sánchez-Moreno, P.; Vignat, C. Generalized Cramér-Rao relations for non-relativistic quantum systems. Appl. Math. Lett. 2012, 25, 1689. [Google Scholar] [CrossRef]
- Aczel, J.; Daroczy, Z. On Measures of Information and Their Characterizations; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Leonenko, N.; Pronzato, L.; Savani, V. A class of Rényi information estimators for multidimensional densities. Ann. Stat. 2008, 36, 2153. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Rudnicki, L. Entropic uncertainty relations in quantum physics. In Statistical Complexities: Application to Electronic Structure; Sen, K.D., Ed.; Springer: Berlin, Germany, 2012. [Google Scholar]
- Jizba, P.; Arimitsu, T. The world according to Rényi: Thermodynamics of multifractal systems. Ann. Phys. 2004, 312, 17. [Google Scholar] [CrossRef]
- Jizba, P.; Dunningham, J.A.; Joo, J. Role of information theoretic uncertainty relations in quantum theory. Ann. Phys. 2015, 355, 87. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 2006, 74, 052101. [Google Scholar] [CrossRef]
- Zozor, S.; Portesi, M.; Vignat, C. Some extensions of the uncertainty principle. Phys. A 2008, 387, 4800. [Google Scholar] [CrossRef]
- Zozor, S.; Portesi, M.; Sanchez-Moreno, P.; Dehesa, J.S. Position-momentum uncertainty relations based on moments of arbitrary order. Phys. Rev. A 2011, 83, 052107. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; Plastino, A.R.; Dehesa, J.S. A quantum uncertainty relation based on Fisher’s information. J. Phys. A Math. Theor. 2011, 44, 065301. [Google Scholar] [CrossRef]
- Yamano, T. A statistical complexity measure with nonextensive entropy and quasi-multiplicativity. J. Math. Phys. 2004, 45, 1974. [Google Scholar] [CrossRef]
- Yamano, T. A statistical measure of complexity with nonextensive entropy. Phys. A 2004, 340, 131. [Google Scholar] [CrossRef]
- Dembo, A.; Cover, T.M.; Thomas, J.A. Information theoretic inequalities. IEEE Trans. Inform. Theor. 1991, 37, 1501. [Google Scholar] [CrossRef]
- Guerrero, A.; Sánchez-Moreno, P.; Dehesa, J.S. Upper bounds on quantum uncertainty products and complexity measures. Phys. Rev. A 2011, 84, 042105. [Google Scholar] [CrossRef]
- Yáñez, R.J.; Van Assche, W.; Dehesa, J.S. Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 1994, 50, 4. [Google Scholar] [CrossRef] [PubMed]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Avery, J.; Avery, J. Generalized Sturmians and Atomic Spectra; World Sci. Publ.: New York, NY, USA, 2006. [Google Scholar]
- Coletti, C.; Calderini, D.; Aquilanti, V. D-dimensional Kepler-Coulomb Sturmians and hyperspherical harmonics as complete orthonormal atomic and molecular orbitals. Adv. Quantum Chem. 2013, 67, 73. [Google Scholar]
- Ray, A.; Mahata, K.; Ray, P.P. Moments of probability distribution, wavefunctions and their derivatives at the origin of N-dimensional central potentials. Am. J. Phys. 1988, 56, 462. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Puertas-Centeno, D. Multidimensional hydrogenic states: Position and momentum expectation values. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 065006. [Google Scholar] [CrossRef]
- Romera, E.; Sánchez-Moreno, P.; Dehesa, J.S. Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials. J. Math. Phys. 2006, 47, 103504. [Google Scholar] [CrossRef]
- Dehesa, J.S.; López-Rosa, S.; Olmos, B.; Yáñez, R.J. Fisher information of D-dimensional hydrogenic systems in position and momentum spaces. J. Math. Phys. 2006, 47, 052104. [Google Scholar] [CrossRef]
- van Assche, W.; Yáñez, R.J.; González-Férez, R.; Dehesa, J.S. Functionals of Gegenbauer polynomials and D-dimensional hydrogenic momentum expectation values. J. Math. Phys. 2000, 41, 6600. [Google Scholar] [CrossRef]
- Adkins, G.S.; Alam, M.F.; Larison, C.; Sun, R. Coulomb expectation values in D = 3 and D = 3 − 2e dimensions. Phys. Rev. A 2020, 101, 042511. [Google Scholar] [CrossRef]
- Delbourgo, R.; Elliott, D. Inverse momentum expectation values for hydrogenic systems. J. Math. Phys. 2009, 50, 062107. [Google Scholar] [CrossRef]
- Sen, K.D.; Katriel, J. Information entropies for eigendensities of homogeneous potentials. J. Chem. Phys. 2006, 125, 07411. [Google Scholar] [CrossRef] [PubMed]
- Dehesa, J.S.; González-Férez, R.; Sánchez-Moreno, P. Fisher-information-based uncertainty relation, Cramer-Rao inequality and kinetic energy for the D-dimensional central problem. J. Phys. A: Math. Theor. 2007, 40, 1845. [Google Scholar] [CrossRef]
- Toranzo, I.V.; Puertas-Centeno, D.; Sobrino, N.; Dehesa, J.S. Analytical Shannon information entropies for all discrete multidimensional hydrogenic states. Int. J. Quantum Chem. 2020, 120, e26077. [Google Scholar] [CrossRef]
- Buyarov, V.; Dehesa, J.S.; Martínez-Finkelshtein, A.; Sánchez-Lara, J. Computation of the entropy of polynomials orthogonal on an interval. SIAM J. Sci. Comput. 2004, 26, 488–509. [Google Scholar] [CrossRef]
- Dehesa, J.S.; López-Rosa, S.; Yáñez, R.J. Information-theoretic measures of hyperspherical harmonics. J. Math. Phys. 2007, 48, 043503. [Google Scholar] [CrossRef]
- Yáñez, R.J.; Van Assche, W.; González-Férez, R.; Dehesa, J.S. Entropic integrals of hyperspherical harmonics and spatial entropy of D-dimensional central potentials. J. Math. Phys. 1999, 40, 5675. [Google Scholar] [CrossRef]
- Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Exact Rényi entropies of D-dimensional harmonic systems. Eur. Phys. J.-Sp. Topic 2018, 227, 345. [Google Scholar] [CrossRef]
- Koepf, W. Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities; Springer: London, UK, 2014. [Google Scholar]
- Gerdt, V.P.; Koepf, W.; Seiler, W.M.; Vorozhtsov, E.V. Computer Algebra in Scientific Computing. In Proceedings of the 20th International Workshop, CASC 2018, Lille, France. Lecture Notes in Computer Science 11077; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Dehesa, J.S.; López-Rosa, S.; Manzano, D. Configuration complexities of hydrogenic atoms. Eur. Phys. J. D 2009, 55, 539–548. [Google Scholar] [CrossRef]
- Toranzo, I.V.; Dehesa, J.S. Rényi, Shannon and Tsallis entropies of Rydberg hydrogenic systems. EPL 2016, 113, 48003. [Google Scholar] [CrossRef]
- Toranzo, I.V.; Puertas-Centeno, D.; Dehesa, J.S. Entropic properties of D-dimensional Rydberg systems. Phys. A 2016, 462, 1197–1206. [Google Scholar] [CrossRef]
- Aptekarev, A.I.; Belega, E.D.; Dehesa, J.S. Rydberg multidimensional states: Rényi and Shannon entropies in momentum space. J. Phys. A Math. Theor. 2021, 54, 035305. [Google Scholar] [CrossRef]
- Aptekarev, A.I.; Dehesa, J.S.; Yáñez, R.J. Spatial entropy of central potentials and strong asymptotics of orthogonal polynomials. J. Math. Phys. 1994, 35, 4423. [Google Scholar] [CrossRef]
- Aptekarev, A.I.; Buyarov, V.; Dehesa, J.S. Asymptotic behavior of the Lp-norms and the entropy for general orthogonal polynomials. Russ. Acad. Sci. Sbornik Math. 1995, 82, 373–395. [Google Scholar] [CrossRef]
- Aptekarev, A.I.; Buyarov, V.S.; van Asche, W.; Dehesa, J.S. Asymptotics of entropy integrals for orthogonal polynomials. Dokl. Math. 1996, 53, 47–49. [Google Scholar]
- Dehesa, J.S.; Yáñez, R.J.; Aptekarev, A.I.; Buyarov, V. Strong asymptotics of Laguerre polynomials and information entropies of 2D harmonic oscillator and 1D Coulomb potentials. J. Math. Phys. 1998, 39, 3050–3060. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Comm. Math. Phys. 1975, 44, 129. [Google Scholar] [CrossRef]
- Rudnicki, L.; Sánchez-Moreno, P.; Dehesa, J.S. The Shannon-entropy-based uncertainty relation for D-dimensional central potentials. J. Phys. A Math. Theor. 2012, 45, 225303. [Google Scholar] [CrossRef]
- Buyarov, V.S.; Dehesa, J.S. Martinez-Finklshtein and E. B. Saff, Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights. J. Approx. Theory 1999, 99, 153. [Google Scholar] [CrossRef]
- Dehesa, J.S. Rényi entropies of multidimensional oscillator and hydrogenic systems with applications to highly excited Rydberg states. Entropy 2022, 24, 1590. [Google Scholar] [CrossRef] [PubMed]
- Puertas-Centeno, D.; Temme, N.M.; Toranzo, I.V.; Dehesa, J.S. Entropic uncertainty measures for large dimensional hydrogenic systems. J. Math. Phys. 2017, 58, 103302. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; Rudnicki, L.; Sánchez-Moreno, P.S. The Rényi-entropy-based uncertainty relation for D-dimensional central potentials. Unpublished preprint.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehesa, J.S. Cramér–Rao, Fisher–Shannon and LMC–Rényi Complexity-like Measures of Multidimensional Hydrogenic Systems with Application to Rydberg States. Quantum Rep. 2023, 5, 116-137. https://doi.org/10.3390/quantum5010009
Dehesa JS. Cramér–Rao, Fisher–Shannon and LMC–Rényi Complexity-like Measures of Multidimensional Hydrogenic Systems with Application to Rydberg States. Quantum Reports. 2023; 5(1):116-137. https://doi.org/10.3390/quantum5010009
Chicago/Turabian StyleDehesa, Jesús S. 2023. "Cramér–Rao, Fisher–Shannon and LMC–Rényi Complexity-like Measures of Multidimensional Hydrogenic Systems with Application to Rydberg States" Quantum Reports 5, no. 1: 116-137. https://doi.org/10.3390/quantum5010009
APA StyleDehesa, J. S. (2023). Cramér–Rao, Fisher–Shannon and LMC–Rényi Complexity-like Measures of Multidimensional Hydrogenic Systems with Application to Rydberg States. Quantum Reports, 5(1), 116-137. https://doi.org/10.3390/quantum5010009