Co-Creation Facilitates Translational Research on Upper Limb Prosthetics
Abstract
:1. Introduction
2. Background
3. Application to Upper Limb Prosthetic Research
4. Challenges and Opportunities
5. Suggestions for the Field
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Dedication
References
- Nazarpour, K. Control of Prosthetic Hands: Challenges and Emerging Avenues, 1st ed.; IET Press: London, UK, 2020. [Google Scholar]
- Jones, H.; Dupan, S.S.G.; Nazarpour, K. The Future of Prosthetics: A User Perspective. In Proceedings of the Trent International Prosthetics Symposium, Manchester, UK, 20–21 March 2019. [Google Scholar]
- Engdahl, S.M.; Christie, B.P.; Kelly, B.M.; Davis, A.; Chestek, C.A.; Gates, D.H. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. J. Neuroeng. Rehabil. 2015, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Østlie, K.; Lesjø, I.M.; Franklin, R.J.; Garfelt, B.; Skjeldal, O.H.; Magnus, P. Prosthesis rejection in acquired major upper-limb amputees: A population-based survey. Disabil. Rehabil. Assist. Technol. 2011, 7, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature Review on Needs of Upper Limb Prosthesis Users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.K.; Jelfs, B.; Sui, X.; Arjunan, S.P. Prosthetic hand control: A multidisciplinary review to identify strengths, shortcomings, and the future. Biomed. Signal Process. Control. 2019, 53, 101588. [Google Scholar] [CrossRef]
- Jang, C.H.; Yang, H.S.; Yang, H.E.; Lee, S.Y.; Kwon, J.W.; Yun, B.D.; Choi, J.Y.; Kim, S.N.; Jeong, H.W. A Survey on Activities of Daily Living and Occupations of Upper Extremity Amputees. Ann. Rehabil. Med. 2011, 35, 907–921. [Google Scholar] [CrossRef]
- Kyberd, P.J.; Wartenberg, C.; Sandsjö, L.; Jönsson, S.; Gow, D.; Frid, J.; Almström, C.; Sperling, L. Survey of upper limb prosthesis users in Sweden and the United Kingdom. J. Prosthet. Orthot. 2007, 19, 55–62. [Google Scholar] [CrossRef]
- Luchetti, M.; Cutti, A.G.; Verni, G.; Sacchetti, R.; Rossi, N. Impact of Michelangelo prosthetic hand: Findings from a crossover longitudinal study. J. Rehabil. Res. Dev. 2015, 52, 605–618. [Google Scholar] [CrossRef]
- Engdahl, S.M.; Chestek, C.A.; Kelly, B.; Davis, A.; Gates, D.H. Factors associated with interest in novel interfaces for upper limb prosthesis control. PLoS ONE 2017, 12, e0182482. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, A.T.; Ramos, V.D.; Alfieri, F.M.; Battistella, L.R. Abandonment of assistive products: Assessing abandonment levels and factors that impact on it. Disabil. Rehabil. Assist. Technol. 2018, 13, 716–723. [Google Scholar] [CrossRef]
- Biddiss, E.; Chau, T. Upper-Limb Prosthetics. Am. J. Phys. Med. Rehabil. 2007, 86, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Biddiss, E.A.; Chau, T.T. Upper limb prosthesis use and abandonment. Prosthet. Orthot. Int. 2007, 31, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Postema, K.; Van Der Donk, V.; Van Limbeek, J.; Rijken, R.A.; Poelma, M.J. Prosthesis rejection in children with a unilateral congenital arm defect. Clin. Rehabil. 1999, 13, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Postema, S.G.; Bongers, R.M.; Brouwers, M.A.; Burger, H.; Hermansson, L.M.N.-; Reneman, M.F.; Dijkstra, P.U.; Van Der Sluis, C.K. Upper Limb Absence: Predictors of Work Participation and Work Productivity. Arch. Phys. Med. Rehabil. 2016, 97, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J. A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. J. Hand Ther. 2002, 15, 62–70. [Google Scholar] [CrossRef]
- Chadwell, A.; Kenney, L.; Granat, M.H.; Thies, S.; Head, J.; Galpin, A.; Baker, R.; Kulkarni, J. Upper limb activity in myoelectric prosthesis users is biased towards the intact limb and appears unrelated to goal-directed task performance. Sci. Rep. 2018, 8, 11084. [Google Scholar] [CrossRef]
- Biddiss, E.; Beaton, D.; Chau, T. Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2007, 2, 346–357. [Google Scholar] [CrossRef]
- Salminger, S.; Stino, H.; Pichler, L.H.; Gstoettner, C.; Sturma, A.; Mayer, J.A.; Szivak, M.; Aszmann, O.C. Current rates of prosthetic usage in upper-limb amputees—Have innovations had an impact on device acceptance? Disabil. Rehabil. 2020, 1–12. [Google Scholar] [CrossRef]
- Vujaklija, I.; Roche, A.D.; Hasenoehrl, T.; Sturma, A.; Amsuess, S.; Farina, D.; Aszmann, O.C. Translating Research on Myoelectric Control into Clinics—Are the Performance Assessment Methods Adequate? Front. Neurorobotics 2017, 11, 7. [Google Scholar] [CrossRef]
- Simon, A.M.; Turner, K.L.; Miller, L.A.; Hargrove, L.J.; Kuiken, T.A. Pattern recognition and direct control home use of a multi-articulating hand prosthesis. In Proceedings of the IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 386–391. [Google Scholar] [CrossRef]
- Chadwell, A.; Diment, L.; Micó-Amigo, M.; Ramírez, D.Z.M.; Dickinson, A.; Granat, M.; Kenney, L.; Kheng, S.; Sobuh, M.; Ssekitoleko, R.; et al. Technology for monitoring everyday prosthesis use: A systematic review. J. Neuroeng. Rehabil. 2020, 17, 1–26. [Google Scholar] [CrossRef]
- Wu, H.; Dyson, M.; Nazarpour, K. Arduino-Based Myoelectric Control: Towards Longitudinal Study of Prosthesis Use. Sensors 2021, 21, 763. [Google Scholar] [CrossRef]
- Van Der Sluis, C.K.; Bongers, R.M. TIPS for Scaling up Research in Upper Limb Prosthetics. Prosthesis 2020, 2, 340–351. [Google Scholar] [CrossRef]
- Woolf, S.H. The Meaning of Translational Research and Why It Matters. JAMA 2008, 299, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.A. Lost in translation: The valley of death across preclinical and clinical divide—Identification of problems and overcoming obstacles. Transl. Med. Commun. 2019, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Moure, J.S. Lost in Translation: The Gap in Scientific Advancements and Clinical Application. Front. Bioeng. Biotechnol. 2016, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Chesbrough, H. The Future of Open Innovation. Res. Manag. 2017, 60, 35–38. [Google Scholar] [CrossRef]
- Austin, J.; Drossaert, S.C.H.C.; van Dijk, J.; Mirkovic, J.; Børøsund, E.; Sanderman, R.; Schroevers, M.J.; Bohlmeijer, E.T. Co-creation phases in integrating top-down and bottom-up requirements: Developing a self-compassion app with cancer patients. In Supporting Health by Technology; University of Twente: Enschede, Netherlands, 2020; pp. 13–14. [Google Scholar]
- Webster, A.; Poyade, M.; Rea, P.; Paul, L. The Co-design of Hand Rehabilitation Exercises for Multiple Sclerosis Using Hand Tracking System; Springer: Cham, Switzerland, 2019; Volume 1120, pp. 83–96. [Google Scholar]
- Van den Kieboom, R.C.; Bongers, I.M.; Mark, R.E.; Snaphaan, L.J.; Mulvenna, M.; Kenning, G.; Nomali, M. User-Driven Living Lab for Assistive Technology to Support People With Dementia Living at Home: Protocol for Developing Co-Creation–Based Innovations. JMIR Res. Protoc. 2019, 8, e10952. [Google Scholar] [CrossRef]
- Favela, J.; Kaye, J.; Skubic, M.; Rantz, M.; Tentori, M. Living Labs for Pervasive Healthcare Research. IEEE Pervasive Comput. 2015, 14, 86–89. [Google Scholar] [CrossRef]
- Sanders, E.B.-N.; Stappers, P.J. Co-creation and the new landscapes of design. CoDesign 2008, 4, 5–18. [Google Scholar] [CrossRef] [Green Version]
- De Koning, J.I.J.C.; Crul, M.R.M.; Wever, R. Models of co-creation. In Proceedings of the ServDes 2016, Copenhagen, Denmark, 24–26 May 2016; pp. 266–278. [Google Scholar]
- Pearce, T.; Maple, M.; Shakeshaft, A.; Wayland, S.; McKay, K. What is the Co-Creation of New Knowledge? A Content Analysis and Proposed Definition for Health Interventions. Int. J. Environ. Res. Public Health 2020, 17, 2229. [Google Scholar] [CrossRef] [Green Version]
- Monnard, K.; Benjamins, M.R.; Hirschtick, J.L.; Castro, M.; Roesch, P.T. Co-Creation of Knowledge: A Community-Based Approach to Multilevel Dissemination of Health Information. Health Promot. Pract. 2021, 22, 215–223. [Google Scholar] [CrossRef]
- Van Der Scheer, L.; Garcia, E.; Van Der Laan, A.L.; Van Der Burg, S.; Boenink, M. The Benefits of Patient Involvement for Translational Research. Health Care Anal. 2014, 25, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.; Kothari, A.; Mays, N. The dark side of coproduction: Do the costs outweigh the benefits for health research? Health Res. Policy Syst. 2019, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.L.; Harnett, J. Are Real-World Data and Evidence Good Enough to Inform Health Care and Health Policy Decision-Making? In Decision Making in a World of Comparative Effectiveness Research; Birnbaum, H., Greenberg, P., Eds.; ADIS: Singapore, 2017; pp. 97–103. [Google Scholar] [CrossRef]
- Langley, J.; Wheeler, G.; Mills, N.; Heron, N. Starworks: Politics, power and expertise in co-producing a research, patient, practice and industry partnership for child prosthetics. In Proceedings of the Design4Health Conference, Amsterdam, The Netherlands, 1–3 July 2020; Volume 2, pp. 108–115. [Google Scholar]
- Hargrove, L.J.; Miller, L.A.; Turner, K.; Kuiken, T.A. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brinton, M.R.; Barcikowski, E.; Davis, T.; Paskett, M.; George, J.A.; Clark, G.A. Portable Take-Home System Enables Proportional Control and High-Resolution Data Logging With a Multi-Degree-of-Freedom Bionic Arm. Front. Robot. AI 2020, 7, 559034. [Google Scholar] [CrossRef]
- Garske, C.A.; Dyson, M.; Dupan, S.; Nazarpour, K. Perception of Game-Based Rehabilitation in Upper Limb Prosthetic Training: Survey of Users and Researchers. JMIR Serious Games 2021, 9, e23710. [Google Scholar] [CrossRef]
- Grant, A.D.; Wolf, G.I.; Nebeker, C. Approaches to governance of participant-led research: A qualitative case study. BMJ Open 2019, 9, e025633. [Google Scholar] [CrossRef]
- Hickey, G.; Brearley, S.; Coldham, T.; Denegri, S.; Green, G.; Staniszewska, S.; Tembo, D.; Torok, K.; Turner, K. Guidance on Co-producing a Research Project; NIHR INVOLVE: Southampton, UK, 2018. [Google Scholar]
- The Ethical Roadmap. Available online: https://ethicalroadmap.org/en/ (accessed on 25 February 2021).
- Langley, J.; Wolstenholme, D.; Cooke, J. ’Collective making’ as knowledge mobilisation: The contribution of participatory design in the co-creation of knowledge in healthcare. BMC Health Serv. Res. 2018, 18, 585. [Google Scholar] [CrossRef]
- National Institute for Health Research. What is Public Involvement in Research? Available online: https://www.invo.org.uk/find-out-more/what-is-public-involvement-in-research-2/ (accessed on 3 February 2021).
- Jones, H.; Nazarpour, K. Gaining NHS ethical approval from the perspective of a biomedical engineering team. Br. J. Healthc. Manag. 2018, 24, 71–76. [Google Scholar] [CrossRef]
- The Royal Society, Pairing Scheme. Available online: https://royalsociety.org/grants-schemes-awards/pairing-scheme/ (accessed on 3 February 2021).
- Williams, O.; Sarre, S.; Papoulias, S.C.; Knowles, S.; Robert, G.; Beresford, P.; Rose, D.; Carr, S.; Kaur, M.; Palmer, V.J. Lost in the shadows: Reflections on the dark side of co-production. Health Res. Policy Syst. 2020, 18, 1–10. [Google Scholar] [CrossRef]
- Burns, J.A.; Korzec, K.; Dorris, E.R. From intent to implementation: Factors affecting public involvement in life science research. BioRxiv 2019, 748889. [Google Scholar] [CrossRef] [Green Version]
- Gradim, L.C.; Jose, M.A.; Da Cruz, D.M.C.; Lopes, R.D.D. IoT services and applications in rehabilitation: An interdisciplinary and meta-analysis review. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1. [Google Scholar] [CrossRef]
- Seah, K.M. COVID-19: Exposing digital poverty in a pandemic. Int. J. Surg. 2020, 79, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, L.; Tabeau, K.; D’Onofrio, G.; Coviello, L.; De Mul, M.; Sancarlo, D.; Fabbricotti, I.; Cavallo, F. Co-creation of an assistive robot for independent living: Lessons learned on robot design. Int. J. Interact. Des. Manuf. 2019, 14, 491–502. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, H.; Dupan, S.; Coutinho, M.; Day, S.; Desmond, D.; Donovan-Hall, M.; Dyson, M.; Ekins-Coward, T.; Kenney, L.; Krasoulis, A.; et al. Co-Creation Facilitates Translational Research on Upper Limb Prosthetics. Prosthesis 2021, 3, 110-118. https://doi.org/10.3390/prosthesis3020012
Jones H, Dupan S, Coutinho M, Day S, Desmond D, Donovan-Hall M, Dyson M, Ekins-Coward T, Kenney L, Krasoulis A, et al. Co-Creation Facilitates Translational Research on Upper Limb Prosthetics. Prosthesis. 2021; 3(2):110-118. https://doi.org/10.3390/prosthesis3020012
Chicago/Turabian StyleJones, Hannah, Sigrid Dupan, Maxford Coutinho, Sarah Day, Deirdre Desmond, Margaret Donovan-Hall, Matthew Dyson, Thea Ekins-Coward, Laurence Kenney, Agamemnon Krasoulis, and et al. 2021. "Co-Creation Facilitates Translational Research on Upper Limb Prosthetics" Prosthesis 3, no. 2: 110-118. https://doi.org/10.3390/prosthesis3020012
APA StyleJones, H., Dupan, S., Coutinho, M., Day, S., Desmond, D., Donovan-Hall, M., Dyson, M., Ekins-Coward, T., Kenney, L., Krasoulis, A., McIntosh, D., Memarzadeh, K., Small, E., Wheeler, G., Wu, H., & Nazarpour, K. (2021). Co-Creation Facilitates Translational Research on Upper Limb Prosthetics. Prosthesis, 3(2), 110-118. https://doi.org/10.3390/prosthesis3020012