Marketing with ChatGPT: Navigating the Ethical Terrain of GPT-Based Chatbot Technology
Abstract
:1. Introduction to ChatGPT
Can you tell the difference between human-written and AI-generated content? Put your skills to the test in our upcoming webinar “ChatGPT vs. Content Marketing” on 15 Feb at 2 p.m. EST. Register now! #AI #conTentmarketing #webinar.
The future of marketing is here and it’s all about AI. Don’t miss our webinar “Chat GPT vs. Content Marketing” on Wed. 15 Feb at 2 p.m. EST to learn how to harness the power of AI tools like ChatGPT for your content marketing. Register now! #AI #contentmarketing #webinar.
- We highlight the potential benefits of ChatGPT in marketing, such as automating tasks, providing more accurate insights, and improving customer engagement.
- We emphasize the ethical and societal implications of using ChatGPT, including its potential to perpetuate bias, replace jobs, and create dependencies.
- We provide recommendations for companies to mitigate these potential risks, including appropriate design and testing, protection of personal data, and responsible use of the technology.
2. Implication of ChatGPT in the Field of Marketing
2.1. What Does the Most Recent Development of ChatGPT Mean in the Field of Marketing?
2.2. Risks of ChatGPT in Marketing
2.3. Ethical Use of AI-Based Tools in Marketing
2.4. Ethics Evaluation of ChatGPT
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C. China’s ChatGPT Black Market Is Thriving. Available online: https://www.wired.com/story/chinas-chatgpt-black-market-baidu/ (accessed on 7 March 2023).
- Kumar, A.H. Analysis of ChatGPT Tool to Assess the Potential of its Utility for Academic Writing in Biomedical Domain. Biol. Eng. Med. Sci. Rep. 2023, 9, 24–30. [Google Scholar] [CrossRef]
- Scaringi, G.; Loche, M. An interview with ChatGPT: Discussing artificial intelligence in teaching, research, and practice. arXiv 2023. [Google Scholar] [CrossRef]
- Sakirin, T.; Said, R.B. User preferences for ChatGPT-powered conversational interfaces versus traditional methods. Mesopotamian J. Comput. Sci. 2023, 2023, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, C.; Winker, M.; Aggarwal, R.; Ferris, L.; Heinemann, M.; Lapeña, J.F.; Pai, S.; Citrome, L. Chatbots, ChatGPT, and Scholarly Manuscripts-WAME Recommendations on ChatGPT and Chatbots in Relation to Scholarly Publications. Afro-Egypt. J. Infect. Endem. Dis. 2023, 13, 75–79. [Google Scholar]
- Stokel-Walker, C.; Van Noorden, R. What ChatGPT and generative AI mean for science. Nature 2023, 614, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.B.; Lam, K.; Liebrenz, M. ChatGPT: Friend or Foe. Lancet Digit. Health 2023, 5, e102. [Google Scholar]
- Mijwil, M.; Aljanabi, M.; Ali, A.H. ChatGPT: Exploring the Role of Cybersecurity in the Protection of Medical Information. Mesopotamian J. Cybersecur. 2023, 2023, 18–21. [Google Scholar] [CrossRef]
- George, A.S.; George, A.H.; Martin, A.G. A Review of ChatGPT AI’s Impact on Several Business Sectors. Partners Univers. Int. Innov. J. 2023, 1, 1. [Google Scholar]
- Bornstein, M.; Stahl, S. ChatGPT vs. Content Marketing, A Free Webinar Brought to You by ON24. Available online: https://contentmarketinginstitute.com/ (accessed on 2 February 2023).
- Bowman, E. A New AI Chatbot Might Do Your Homework for You. But It’s Still Not an A+ Student. NPR. Available online: https://www.npr.org/2022/12/19/1143912956/chatgpt-ai-chatbot-homework-academia (accessed on 2 January 2023).
- Thorp, H.H. ChatGPT Is Fun, But Not an Author. Science. Available online: https://www.science.org/doi/10.1126/science.adg7879 (accessed on 28 January 2023).
- Zhuo, T.Y.; Huang, Y.; Chen, C.; Xing, Z. Exploring ai ethics of chatgpt: A diagnostic analysis. arXiv 2023, arXiv:2301.12867. [Google Scholar]
- Rivas, P.; Holzmayer, K.; Hernandez, C.; Grippaldi, C. Excitement and concerns about machine learning-based chatbots and talkbots: A survey. In Proceedings of the 2018 IEEE International Symposium on Technology and Society (ISTAS), Washington, DC, USA, 13–14 November 2018; pp. 156–162. [Google Scholar]
- Plant, R.; Giuffrida, V.; Gkatzia, D. You Are What You Write: Preserving Privacy in the Era of Large Language Models. arXiv 2022, arXiv:2204.09391. [Google Scholar]
- Yuan, S.; Zhao, H.; Zhao, S.; Leng, J.; Liang, Y.; Wang, X.; Yu, J.; Lv, X.; Shao, Z.; He, J.; et al. A roadmap for big model. arXiv 2022, arXiv:2203.14101. [Google Scholar]
- Ahn, J.; Oh, A. Mitigating language-dependent ethnic bias in BERT. arXiv 2021, arXiv:2109.05704. [Google Scholar]
- Gao, L.; Zhan, H.; Chen, A.; Sheng, V. Mitigate Gender Bias using Negative Multi-Task Learning. 2022; Preprint. [Google Scholar] [CrossRef]
- Kirov, V.; Malamin, B. Are Translators Afraid of Artificial Intelligence? Societies 2022, 12, 70. [Google Scholar] [CrossRef]
- Abdullah, Y.I.; Schuman, J.S.; Shabsigh, R.; Caplan, A.; Al-Aswad, L.A. Ethics of artificial intelligence in medicine and ophthalmology. Asia-Pac. J. Ophthalmol. 2021, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Hacker, P.; Engel, A.; Mauer, M. Regulating ChatGPT and other Large Generative AI Models. arXiv 2023, arXiv:2302.02337. [Google Scholar]
- Selvaraju, R.R.; Lee, S.; Shen, Y.; Jin, H.; Ghosh, S.; Heck, L.; Batra, D.; Parikh, D. Taking a hint: Leveraging explanations to make vision and language models more grounded. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 2591–2600. [Google Scholar]
- Borji, A. A categorical archive of ChatGPT failures. arXiv 2023, arXiv:2302.03494. [Google Scholar]
- Dziri, N.; Milton, S.; Yu, M.; Zaiane, O.; Reddy, S. On the origin of hallucinations in conversational models: Is it the datasets or the models? arXiv 2022, arXiv:2204.07931. [Google Scholar]
- Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
- Schramowski, P.; Turan, C.; Andersen, N.; Rothkopf, C.A.; Kersting, K. Large pre-trained language models contain human-like biases of what is right and wrong to do. Nat. Mach. Intell. 2022, 4, 258–268. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, F.; Berry, A.; Reed, M.; Zhang, S.; Savage, S. A survey on ethical principles of AI and implementations. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 3010–3017. [Google Scholar]
- Häußermann, J.J.; Lütge, C. Community-in-the-loop: Towards pluralistic value creation in AI, or—why AI needs business ethics. Ethics 2022, 2022, 1–22. [Google Scholar] [CrossRef]
- Hosseini, M.; Horbach, S.P. Fighting reviewer fatigue or amplifying bias? Considerations and recommendations for use of ChatGPT and other Large Language Models in scholarly peer review. Res. Sq. 2023. Preprint. [Google Scholar]
- Azaria, A. ChatGPT Usage and Limitations 2022. 2022; Preprint. Available online: https://hal.science/hal-03913837/(accessed on 2 February 2023).
- Association, A.M. Definition of Marketing. Available online: https://www.ama.org/the-definition-of-marketing-what-is-marketing/ (accessed on 20 February 2023).
- Ferrell, O.C.; Hartline, M.; Hochstein, B.W. Marketing Strategy, 8th ed.; Cengage Learning: Boston, MS, USA, 2021. [Google Scholar]
- Verma, S.; Sharma, R.; Deb, S.; Maitra, D. Artificial intelligence in marketing: Systematic review and future research direction. Int. J. Inf. Manag. Data Insights 2021, 1, 100002. [Google Scholar] [CrossRef]
- Oberoi, P. How Artificial Intelligence Is Impacting Marketing? In Encyclopedia of Data Science and Machine Learning; Wang, J., Ed.; IGI Global: Hershey, PA, USA, 2023; pp. 606–618. [Google Scholar] [CrossRef]
- Pitt, C.; Paschen, J.; Kietzmann, J.; Pitt, L.F.; Pala, E. Artificial intelligence, marketing, and the history of technology: Kranzberg’s laws as a conceptual lens. Australas. Mark. J. 2023, 31, 81–89. [Google Scholar] [CrossRef]
- Zaman, K. Transformation of Marketing Decisions through Artificial Intelligence and Digital Marketing. J. Mark. Strateg. 2022, 4, 353–364. [Google Scholar] [CrossRef]
- Lahoti, P.; Gummadi, K.P.; Weikum, G. Detecting and mitigating test-time failure risks via model-agnostic uncertainty learning. In Proceedings of the 2021 IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand, 7–10 December 2021; pp. 1174–1179. [Google Scholar]
- Yara, O.; Brazheyev, A.; Golovko, L.; Bashkatova, V. Legal Regulation of the Use of Artificial Intelligence: Problems and Development Prospects. Eur. J. Sustain. Dev. 2023, 10, 1. [Google Scholar] [CrossRef]
- Sun, G.H.; Hoelscher, S.H. The ChatGPT Storm and What Faculty Can Do. Nurse Educ. 2023. Preprint. [Google Scholar] [CrossRef]
- Stone, M.; Aravopoulou, E.; Ekinci, Y.; Evans, G.; Hobbs, M.; Labib, A.; Laughlin, P.; Machtynger, J.; Machtynger, L. Artificial Intelligence (AI) in Strategic Marketing Decision-Making: A research agenda. Bottom Line 2020, 33, 183–200. [Google Scholar] [CrossRef]
- Krafft, M.; Sajtos, L.; Haenlein, M. Challenges and opportunities for marketing scholars in times of the fourth industrial revolution. J. Interact. Mark. 2020, 51, 1–8. [Google Scholar] [CrossRef]
- Vlačić, B.; Corbo, L.; e Silva, S.C.; Dabić, M. The evolving role of artificial intelligence in marketing: A review and research agenda. J. Bus. Res. 2021, 128, 187–203. [Google Scholar] [CrossRef]
- Hermann, E. Leveraging artificial intelligence in marketing for social good—An ethical perspective. J. Bus. Ethics 2022, 179, 43–61. [Google Scholar] [CrossRef]
- Grewal, D.; Hulland, J.; Kopalle, P.K.; Karahanna, E. The future of technology and marketing: A multidisciplinary perspective. J. Acad. Mark. Sci. 2020, 48, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mogaji, E.; Soetan, T.O.; Kieu, T.A. The implications of artificial intelligence on the digital marketing of financial services to vulnerable customers. Australas. Mark. J. 2020, 29, 235–242. [Google Scholar] [CrossRef]
- Paluch, S.; Wirtz, J. Editorial: Artificial Intelligence and Robots in the Service Encounter. J. Serv. Manag. Res. 2020, 4, 3–8. [Google Scholar]
- Chowdhury, R.M.; Fernando, M. The Relationships of Empathy, Moral Identity and Cynicism with Consumers’ Ethical Beliefs: The Mediating Role of Moral Disengagement. J. Bus. Ethics 2014, 124, 677–694. [Google Scholar] [CrossRef]
- Brand, J.; Israeli, A.; Ngwe, D. Using GPT for Market Research. SSRN 2023. Preprint. [Google Scholar] [CrossRef]
- Ma, L.; Sun, B. Machine learning and AI in marketing–Connecting computing power to human insights. Int. J. Res. Mark. 2020, 37, 481–504. [Google Scholar] [CrossRef]
- Rivas, P.; Chelsi, C.; Nishit, N.; Ravula, L. Application-agnostic chatbot deployment considerations: A case study. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019; pp. 361–365. [Google Scholar]
- Akter, S.; McCarthy, G.; Sajib, S.; Michael, K.; Dwivedi, Y.K.; D’Ambra, J.; Shen, K.N. Algorithmic bias in data-driven innovation in the age of AI. Int. J. Inf. Manag. 2021, 60, 102387. [Google Scholar] [CrossRef]
- De Bruyn, A.; Viswanathan, V.; Beh, Y.S.; Brock, J.K.U.; Von Wangenheim, F. Artificial intelligence and marketing: Pitfalls and opportunities. J. Interact. Mark. 2020, 51, 91–105. [Google Scholar] [CrossRef]
- Wirtz, B.W.; Weyerer, J.C.; Sturm, B.J. The dark sides of artificial intelligence: An integrated AI governance framework for public administration. Int. J. Public Adm. 2020, 43, 818–829. [Google Scholar] [CrossRef]
- Bogina, V.; Hartman, A.; Kuflik, T.; Shulner-Tal, A. Educating software and AI stakeholders about algorithmic fairness, accountability, transparency and ethics. Int. J. Artif. Intell. Educ. 2021, 32, 808–833. [Google Scholar] [CrossRef]
- Kibbey, T. Transcriptivism: An ethical framework for modern linguistics. Proc. Linguist. Soc. Am. 2019, 4, 45. [Google Scholar] [CrossRef]
- Etzioni, A.; Etzioni, O. Incorporating ethics into artificial intelligence. J. Ethics 2017, 21, 403–418. [Google Scholar] [CrossRef]
- Agarwal, N. Artificial Intelligence and Marketing. Int. J. Soc. Sci. Econ. Res. 2022, 7. [Google Scholar]
- Davenport, T.; Guha, A.; Grewal, D.; Bressgott, T. How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 2020, 48, 24–42. [Google Scholar] [CrossRef] [Green Version]
- Rivas, P. AI Orthopraxy: Towards a Framework for AI That Promotes Fairness. In Proceedings of the 2020 IEEE International Symposium on Technology and Society (ISTAS), Virtual, 12–15 November 2020; pp. 80–84. [Google Scholar]
- Quinn, S.; Souppaya, M.; Cook, M.; Scarfone, K. National Checklist Program for IT Products: Guidelines for Checklist Users and Developers; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [CrossRef]
- Sallam, M. The Utility of ChatGPT as an Example of Large Language Models in Healthcare Education, Research and Practice: Systematic Review on the Future Perspectives and Potential Limitations. medRxiv 2023. [Google Scholar] [CrossRef]
Ways to Make Ethical Use of AI in Marketing | Primary Stakeholders | References |
---|---|---|
Ensuring transparency | Companies, Consumers | [49,50] |
Addressing bias | Companies, Consumers | [51] |
Prioritizing privacy | Companies, Consumers | [44] |
Conducting a risk assessment | Companies, Consumers | [52] |
Being responsible | Companies, Consumers | [53] |
Continuous monitoring | Companies | [54] |
Encouraging ethical decision-making | Companies | [59] |
Human oversight | Companies, Consumers | [56] |
Recruit data science experts | Companies | [57] |
Develop best practices AI marketing | Companies | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas, P.; Zhao, L. Marketing with ChatGPT: Navigating the Ethical Terrain of GPT-Based Chatbot Technology. AI 2023, 4, 375-384. https://doi.org/10.3390/ai4020019
Rivas P, Zhao L. Marketing with ChatGPT: Navigating the Ethical Terrain of GPT-Based Chatbot Technology. AI. 2023; 4(2):375-384. https://doi.org/10.3390/ai4020019
Chicago/Turabian StyleRivas, Pablo, and Liang Zhao. 2023. "Marketing with ChatGPT: Navigating the Ethical Terrain of GPT-Based Chatbot Technology" AI 4, no. 2: 375-384. https://doi.org/10.3390/ai4020019
APA StyleRivas, P., & Zhao, L. (2023). Marketing with ChatGPT: Navigating the Ethical Terrain of GPT-Based Chatbot Technology. AI, 4(2), 375-384. https://doi.org/10.3390/ai4020019