Electrodeposited Copolymer Films with Tunable Conductivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of 1,12-di-(1-Pyrrolyl)dodecane (DiPy)
2.3. Electrochemical Deposition of Polymer Films
2.4. Characterization Techniques
3. Results and Discussion
3.1. Electrochemical Polymerization of Py:DiPy Mixtures
3.1.1. Cyclic Voltammetry
3.1.2. Chronoamperometry
3.2. Physico-Chemical Properties of Electrodeposited Py:DiPy Copolymers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shirakawa, H.; Louis, E.J.; MacDiarmid, C.K.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Naveen, M.H.; Gurudatt, N.G.; Shim, Y.B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today 2017, 9, 419–433. [Google Scholar] [CrossRef]
- Han, Y.; Dai, L. Conducting polymers for flexible supercapacitors. Macromol. Chem. Phys. 2019, 220, 1800355. [Google Scholar] [CrossRef]
- Thomas, E.M.; Davidson, E.C.; Katsumata, R.; Segalman, R.A.; Chabinyc, M.L. Branched side chains govern counterion position and doping mechanism in conjugated polythiophenes. ACS Macro Lett. 2018, 7, 1492–1497. [Google Scholar] [CrossRef]
- Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. TrAC Trends Anal. Chem. 2017, 97, 363–373. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchova, M. Conducting polypyrrole nanotubes: A review. Chem. Papers 2018, 72, 1563–1595. [Google Scholar] [CrossRef]
- Yuan, T.; Ruan, J.F.; Zhang, W.M.; Tan, Z.P.; Yang, J.H.; Ma, Z.F.; Zheng, S.Y. Flexible overoxidized polypyrrole films with orderly structure as high-performance anodes for li- and na-ion batteries. ACS Appl. Mater. Interfaces 2016, 51, 35114–35122. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.T.; Ge, Y.; Shao, L.; Wang, C.; Wallace, G.G. Tunable conducting polymers: Toward sustainable and versatile batteries. ACS Sustain. Chem. Eng. 2019, 7, 14321–14340. [Google Scholar] [CrossRef]
- Yang, C.Y.; Zhang, P.F.; Nautiyal, A.; Li, S.H.; Liu, N.; Yin, J.L.; Deng, K.L.; Zhang, X.Y. Tunable three-dimensional nanostructured conductive polymer hydrogels for energy-storage applications. ACS Appl. Mater. Interfaces 2019, 11, 4258–4267. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Bhattarai, D.P.; Maharjan, B.; Ko, S.W.; Kim, H.Y.; Park, C.H.; Kim, C.S. Polydopamine-based implantable multifunctional nanocarpet for highly efficient photothermalchemo therapy. Sci. Rep. 2019, 9, 2943. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Hwang, Y.I.; Oh, J.M.; Maharjan, B.; Chun, S.; Kim, B.S.; Joshi, M.K.; Park, C.H.; Kim, C.S. pH/NIR-responsive polypyrrole-functionalized fibrous localized drug-delivery platform for synergistic cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 20256–20270. [Google Scholar] [CrossRef] [PubMed]
- Foysal, Z.K.; Hutcheson, J.A.; Hunter, C.J.; Powless, A.J.; Benson, D.; Fritsch, I.; Muldoon, T.J. Redox-magnetohydrodynamically controlled fluid flow with poly(3,4-ethylenedioxythiophene) coupled to an epitaxial light sheet confocal microscope for image cytometry applications. Anal. Chem. 2018, 90, 7862–7870. [Google Scholar]
- Foysal, Z.K.; Fritsch, I. Chip-scale electrodeposition and analysis of poly(3,4-ethylenedioxythiophene) (pedot) films for enhanced and sustained microfluidics using dc-redox-magnetohydrodynamics. J. Electrochem. Soc. 2019, 166, H615–H627. [Google Scholar]
- Massoumi, B.; Isfahani, N.S.; Saraei, M.; Entezami, A. Investigation of the electroactivity, conductivity, and morphology of poly(pyrrole-co-N-alkyl pyrrole) prepared via electrochemical nanopolymerization and chemical polymerization. J. Appl. Polym. Sci. 2012, 124, 3956–3962. [Google Scholar] [CrossRef]
- Cihaner, A. Electrochemical synthesis of new conducting copolymers containing pseudo-polyether cages with pyrrole. J. Electroanal. Chem. 2007, 605, 8–14. [Google Scholar] [CrossRef]
- Mert, O.; Demir, A.S.; Cihaner, A. Pyrrole coupling chemistry: Investigation of electroanalytic, spectroscopic and thermal properties of N-substituted poly(bis-pyrrole) films Pyrrole coupling chemistry: Investigation of electroanalytic, spectroscopic and thermal properties of N-substituted poly(bis-pyrrole) films. RSC Adv. 2013, 3, 2035–2042. [Google Scholar]
- Jang, K.S.; Kim, D.O. Synchronous vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) and poly(3-hexylthiophene) copolymer systems for tunable optoelectronic properties. Org. Electron. 2010, 11, 1668–1675. [Google Scholar] [CrossRef]
- Waware, U.S.; Hamouda, A.M.S.; Majumdar, D. Synthesis, characterization and physicochemical studies of copolymers of aniline and 3-nitroaniline. Polym. Bull. 2020, 77, 4469–4488. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.M.; Chang, H.L.; Lin, Y.W. Synthesis and characterization of conductive polypyrrole with improved conductivity and processability. Polym. Int. 2009, 58, 1065–1070. [Google Scholar] [CrossRef]
- Husson, J.; Lakard, S.; Monney, S.; Buron, C.C.; Lakard, B. Elaboration and characterization of carboxylic acid-functionalized polypyrrole films. Synth. Met. 2016, 220, 247–254. [Google Scholar] [CrossRef]
- Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar]
Py:DiPy Ratio | R (MΩ) | T (µm) | Ra (µm) |
---|---|---|---|
100:0 | 0.025 +/− 0.013 | 8.1 +/− 0.7 | 1.7 +/− 0.3 |
91:9 | 0.069 +/− 0.027 | 6.2 +/− 0.5 | 1.4 +/− 0.2 |
83:17 | 52 +/− 17 | 4.8 +/− 0.4 | 1.2 +/− 0.2 |
50:50 | 74 +/− 40 | 3.0 +/− 0.3 | 0.7 +/− 0.1 |
17:83 | 779 +/− 113 | 1.7 +/− 0.2 | 0.20 +/− 0.05 |
9:91 | 13,525 +/− 5379 | 1.1 +/− 0.2 | 0.10 +/− 0.05 |
0:100 | 169,666 +/− 4444 | <0.2 +/− 0.1 | <0.002 +/− 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnenet, C.; Contal, E.; Lakard, S.; Monney, S.; Lakard, B. Electrodeposited Copolymer Films with Tunable Conductivity. Electrochem 2020, 1, 358-366. https://doi.org/10.3390/electrochem1040023
Magnenet C, Contal E, Lakard S, Monney S, Lakard B. Electrodeposited Copolymer Films with Tunable Conductivity. Electrochem. 2020; 1(4):358-366. https://doi.org/10.3390/electrochem1040023
Chicago/Turabian StyleMagnenet, Claire, Emmanuel Contal, Sophie Lakard, Sandrine Monney, and Boris Lakard. 2020. "Electrodeposited Copolymer Films with Tunable Conductivity" Electrochem 1, no. 4: 358-366. https://doi.org/10.3390/electrochem1040023
APA StyleMagnenet, C., Contal, E., Lakard, S., Monney, S., & Lakard, B. (2020). Electrodeposited Copolymer Films with Tunable Conductivity. Electrochem, 1(4), 358-366. https://doi.org/10.3390/electrochem1040023